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First-order resolution

generalises propositional resolution to first-order logic

is a proof system that is well-suited for efficient
implementation

many automated first-order provers are based on resolution:
SPASS, Prover9, Vampire

also interactive provers for higher-order logic are based on
resolution: Isabelle, HOL, HOL-light
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Satisfiability and logical consequence

Logical consequence can be reduced to (un)satisfiability:

The logical consequence T |= S holds
if and only if
T ∪ {¬S} is unsatisfiable.

Note: Resolution is about satisfiability.
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Skolemization

The sentence
∀x∃yNeighbor(x , y)

is logically equivalent to the second-order sentence

∃f ∀xNeighbor(x , f (x))

In first-order logic, we have the Skolem normal form

∀xNeighbor(x , f (x))
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Theorem about Skolem normal form

Theorem
A sentence S ≡ ∀x∃yP(x , y) is satisfiable iff its Skolem normal
form ∀xP(x , f (x)) is.
Every structure satisfying the Skolem normal form also satisfies S .
Moreover, every structure satisfying S can be turned into one
satisfying the Skolem normal form. This is done by interpreting f
by a function which picks out, for any object b in the domain,
some object c such that they satisfy P(x , y).
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Unification of terms

{P(f (a)),∀x ¬P(f (g(x)))}

is satisfiable, but

{P(f (g(a))), ∀x ¬P(f (x))}

is not. This can be seen with unification.
Terms t1, . . . , tn are unifiable, if there is a substitution of terms for
some or all the variables in t1, . . . , tn such that the terms that
result from the substitution are syntactically identical terms.
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Example

f (g(z), x), f (y , x), f (y , h(a))

are unifiable by substituting h(a) for x and g(z) for y .
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Prenex Normal Form

Goal: shift all quantifiers to the top-level

(∀xP) ∧ Q ; ∀x(P ∧ Q) (∃xP) ∧ Q ; ∃x(P ∧ Q)
P ∧ (∀xQ) ; ∀x(P ∧ Q) P ∧ (∃xQ) ; ∃x(P ∧ Q)
(∀xP) ∨ Q ; ∀x(P ∨ Q) (∃xP) ∨ Q ; ∃x(P ∨ Q)
P ∨ (∀xQ) ; ∀x(P ∨ Q) P ∨ (∃xQ) ; ∃x(P ∨ Q)
¬∀xP ; ∃x(¬P) ¬∃xP ; ∀x(¬P)
(∀xP)→ Q ; ∃x(P → Q) (∃xP)→ Q ; ∀x(P → Q)
P → (∀xQ) ; ∀x(P → Q) P → (∃xQ) ; ∃x(P → Q)

P ↔ Q ; (P → Q) ∧ (Q → P)
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Alpha-renaming (change of bound variables)

The Prenex normal form algorithm assumes that all variables in a
formula are distinct. This can be achieved by α-renaming:
∀xP(x) ; ∀yP(y)
∃xP(x) ; ∃yP(y)
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Resolution for FOL

Suppose that we have a set T of sentences an want to show that
they are not simultaneously first-order satisfiable.

1 Put each sentence in T into prenex form, say

∀x1∃y1∀x2∃y2 . . .P(x1, y1, x2, y2, . . .)

2 Skolemize each of the resulting sentences, say

∀x1∀x2 . . .P(x1, f1(x1), x2, f2(x1, x2), . . .)

using different Skolem functions for different sentences.
3 Put each quantifier free matrix P into conjunctive normal

form, say
P1 ∧ P2 ∧ . . . ∧ Pn

where each Pi is a disjunction of literals.
4 Distribute the universal quantifiers in each sentence across the

conjunctions and drop the conjunction signs, ending with a
set of sentences of the form

∀x1∀x2 . . .Pi
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5 Change the bound variables in each of the resulting sentences
so that no variable appears in two of them.

6 Turn each of the resulting sentences into a set of literals by
dropping the universal quantifiers and disjunction signs. In
this way we end up with a set of resolution clauses.

7 Use resolution and unification to resolve this set of clauses

{C1, . . . ,Cm}, {¬D1, . . . ,Dn}
{C2θ, . . .Cmθ,D2θ, . . . ,Dnθ}

if C1θ = D1θ (θ is a unifier of C1 and D1)
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Example I

Is the following argument valid?

∀x(P(x, b) ∨ Q(x))
∀y( ¬P(f(y), b) ∨ Q(y))

∀y(Q(y) ∨ Q(f(y))

Reformulated: is the following set unsatisfiable?

∀x(P(x , b) ∨ Q(x))
∀y( ¬P(f (y), b) ∨ Q(y))
¬∀y(Q(y) ∨ Q(f (y))
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Step 1: Prenex normal form

∀x(P(x , b) ∨ Q(x))
∀y( ¬P(f (y), b) ∨ Q(y))
∃y¬(Q(y) ∨ Q(f (y))
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Step 2: Skolemization

∀x(P(x , b) ∨ Q(x))
∀y( ¬P(f (y), b) ∨ Q(y))
¬(Q(c) ∨ Q(f (c))

Since the existential quantifier was not preceeded by any universal
quantifier, we need a 0-ary function symbol, that is, an individual
constant c.
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Step 3: Conjunctive normal form

∀x(P(x , b) ∨ Q(x))
∀y( ¬P(f (y), b) ∨ Q(y))
¬Q(c) ∧ ¬Q(f (c))
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Step 4: Drop conjunctions

∀x(P(x , b) ∨ Q(x))
∀y( ¬P(f (y), b) ∨ Q(y))
¬Q(c)
¬Q(f (c))

Step 5: change bound variables: nothing to do.
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {P(x , b), Q(x)}
2 {¬P(f (y), b), Q(y)}
3 {¬Q(c)}
4 {¬Q(f (c))}

5 {Q(y),Q(f (y))} 1,2 with f (y) for x

6 {Q(f (c))} 3,5 with c for y

7 2 4,6
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Example II

Is the following argument valid?
From
“Everyone admires someone who admires them unless they admire
Quaid.”
we can infer
“There are people who admire each other, at least one of whom
admires Quaid.”
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The formalization

∀x[¬A(x, q)→ ∃y(A(x, y) ∧ A(y, x))]

∃x∃y[A(x, q) ∧ A(x, y) ∧ A(y, x)]

Reformulated: is the following set unsatisfiable?

∀x [¬A(x , q)→ ∃y(A(x , y) ∧ A(y , x))]
¬∃x∃y [A(x , q) ∧ A(x , y) ∧ A(y , x)]
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Step 1: Prenex normal form

∀x∃y [¬A(x , q)→ (A(x , y) ∧ A(y , x))]
∀x∀y¬[A(x , q) ∧ A(x , y) ∧ A(y , x)]

Step 2: Skolemization

∀x [¬A(x , q)→ (A(x , f (x)) ∧ A(f (x), x))]
∀x∀y¬[A(x , q) ∧ A(x , y) ∧ A(y , x)]

Step 3: Conjunctive normal form

∀x [(A(x , q) ∨ A(x , f (x))) ∧ (A(x , q) ∨ A(f (x), x))]
∀x∀y [¬A(x , q) ∨ ¬A(x , y) ∨ ¬A(y , x)]
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Step 4: Drop conjunctions

∀x(A(x , q) ∨ A(x , f (x)))
∀x(A(x , q) ∨ A(f (x), x))
∀x∀y [¬A(x , q) ∨ ¬A(x , y) ∨ ¬A(y , x)]

Step 5: change bound variables.

∀x(A(x , q) ∨ A(x , f (x)))
∀y(A(y , q) ∨ A(f (y), y))
∀z∀w [¬A(z , q) ∨ ¬A(z ,w) ∨ ¬A(w , z)]
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {A(x , q),A(x , f (x))}
2 {A(y , q),A(f (y), y)}
3 {¬A(z , q),¬A(z ,w),¬A(w , z)}
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {A(x , q),A(x , f (x))}
2 {A(y , q),A(f (y), y)}
3 {¬A(z , q),¬A(z ,w),¬A(w , z)}
4 {A(q, f (q))} 1,3 with q for w , x , z
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {A(x , q),A(x , f (x))}
2 {A(y , q),A(f (y), y)}
3 {¬A(z , q),¬A(z ,w),¬A(w , z)}
4 {A(q, f (q))} 1,3 with q for w , x , z

5 {A(f (q), q)} 2,3 with q for w , y , z
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {A(x , q),A(x , f (x))}
2 {A(y , q),A(f (y), y)}
3 {¬A(z , q),¬A(z ,w),¬A(w , z)}
4 {A(q, f (q))} 1,3 with q for w , x , z

5 {A(f (q), q)} 2,3 with q for w , y , z

6 {¬A(q, f (q))} 3,5 with f (q) for z , q for w
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Step 6: Drop universal quantifiers and disjunctions, and
step 7: do resolution

1 {A(x , q),A(x , f (x))}
2 {A(y , q),A(f (y), y)}
3 {¬A(z , q),¬A(z ,w),¬A(w , z)}
4 {A(q, f (q))} 1,3 with q for w , x , z

5 {A(f (q), q)} 2,3 with q for w , y , z

6 {¬A(q, f (q))} 3,5 with f (q) for z , q for w

7 2 4,6
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The FO Con routine of Fitch . . .

. . . is based on automated deduction similar to resolution.
However, note: first-order consequence is undecidable (Church).
Hence, the FO Con routine at some inputs does not give a result.
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Prolog: Programming in logic

Prolog is based on definite Horn clauses (i.e. exactly one positive
literal in each clause)

ancestorOf (X ,Y ) : −motherOf (X ,Y ).
ancestorOf (X ,Y ) : −fatherOf (X ,Y ).
ancestorOf (X ,Z ) : −ancestorOf (X ,Y ), ancestorOf (Y ,Z ).
motherOf (a, b).
fatherOf (b, c).
fatherOf (b, d).
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SLD resolution

All subgoals are of form ← P1, . . . ,Pn (i.e. ¬P1 ∨ . . . ∨ ¬Pn).
Resolution always with the leftmost disjunct:
← P1, . . . ,Pn

R ← Q1, . . . ,Qm Rθ = P1θ
(← Q1, . . . ,Qm,P2, . . . ,Pn)θ
In disjunctive form:
¬P1 ∨ . . . ∨ ¬Pn

R ∨ ¬Q1 ∨ . . . ∨ ¬Qm Rθ = P1θ
(¬Q1 ∨ . . . ∨ ¬Qm ∨ ¬P2 ∨ . . .¬Pn)θ
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Example

← ancestor(X ,Y )
Answers:

X = a Y = b
X = b Y = c
X = b Y = d
X = a Y = c
X = a Y = d
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Example

← ancestor(X ,Y )
Answers:

X = a Y = b
X = b Y = c
X = b Y = d
X = a Y = c
X = a Y = d
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SWI-Prolog

In the local net: just call pl.
Documentation:
http:// www.swi.psy.uva.nl/projects/SWI-Prolog/Manual
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Exercises

chapter 18, 18.20-18.30
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