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Description Logics: Signatures

A DL-signature Σ = (C,R, I) consists of

a set C of concept names,

a set R of role names,

a set I of individual names,
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Description Logics: Concepts

For a signature Σ = (C,R, I) the set of ALC-concepts over Σ is
defined by the following grammar:

(Hets) Manchester syntax
C ::= A for A ∈ C a concept name

| > Thing
| ⊥ Nothing
| ¬C not C
| C u C C and C
| C t C C or C
| ∃R.C for R ∈ R R some C
| ∀R.C for R ∈ R R only C

ALC stands for “attributive language with complement”
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Description Logic: Sentences

The set of ALC-Sentences over Σ (Sen(Σ)) is defined as

C v D, where C and D are ALC-concepts over Σ.

Class: C SubclassOf: D

a : C , where a ∈ I and C is a ALC-concept over Σ.

Individual: a Types: C

R(a1, a2), where R ∈ R and a1, a2 ∈ I.
Individual: a1 Facts: R a2

Till Mossakowski Logic



Description Logic: Models

Given Σ = (C,R, I), a Σ-model is of form I = (∆I , ·I), where

∆I is a non-empty set

AI ⊆ ∆I for each A ∈ C

RI ⊆ ∆I ×∆I for each R ∈ R

aI ∈ ∆I for each a ∈ I
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Description Logic: semantics of concepts

We can extend ·I to all concepts as follows:
>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∃R.C )I = {x ∈ ∆I |∃y ∈ ∆I .(x , y) ∈ RI , y ∈ CI}
(∀R.C )I = {x ∈ ∆I |∀y ∈ ∆I .(x , y) ∈ RI ⇒ y ∈ CI}
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Description Logic: Satisfaction of sentences in a model

I |= C v D iff CI ⊆ DI .
I |= a : C iff aI ∈ CI .
I |= R(a1, a2) iff (aI1 , a

I
2 ) ∈ RI .
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Translating ALC to FOL: Signatures

φ((C,R, I)) = (F ,P) with

S = {Thing} (one sort = single-sorted)

F = {a : Thing|a ∈ I} (constants)

P = {A : Thing|A ∈ C} ∪ {R : Thing× Thing|R ∈ R}
(predicate symbols)
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Translating ALC to FOL: Concepts

αx(A) = A(x : Thing)

αx(¬C ) = ¬αx(C )

αx(C u D) = αx(C ) ∧ αx(D)

αx(C t D) = αx(C ) ∨ αx(D)

αx(∃R.C ) = ∃y : Thing.(R(x , y) ∧ αy (C ))

αx(∀R.C ) = ∀y : Thing.(R(x , y)→ αy (C ))
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Translating ALC to FOL: Sentences and Models

Sentence translation

αΣ(C v D) = ∀x : Thing. (αx(C )→ αx(D))

αΣ(a : C ) = αx(C )[a/x ]1

αΣ(R(a, b)) = R(a, b)

Model translation (FOL-models are translated to ALC-models!)

For M ′ ∈ ModFOL(φΣ) define βΣ(M ′) := (∆, ·I ) with
∆ = M ′

Thing and AI = M ′
A, a

I = M ′
a,R

I = M ′
R .

1Replace x by a.
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Translating ALC to FOL: Correctness

Theorem 1: CI =
{

m ∈ M ′
Thing|M ′ + {x 7→ m} |= αx(C )

}
Proof: By Induction over the structure of C .

AI = M ′
A =

{
m ∈ M ′

Thing|M ′ + {x 7→ m} |= A(x)
}

(¬C )I = ∆ \ CI

=I .H. ∆ \ {m ∈ M ′
Thing|M ′ + {x 7→ m} |= αx(C )}

= {m ∈ M ′
Thing|M ′ + {x 7→ m} |= ¬αx(C )}

Theorem 2: (Satisfaction condition)

β(M) |= ϕ iff M |= α(ϕ)

Theorem 3: (Logical consequence coincides)

Γ |= ϕ (in ALC) iff α(Γ) |= α(ϕ) (in FOL)
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Outlook
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Beyond first-order logic

many-sorted logic (variables, constants, predicates and
functions have types)
E.g.: ∀n : Nat ∀l : List head(cons(n, l)) = n

partial function logic: D(f (x)) (“f (x) is defined”)

higher-order logic: ∀f : s → t . . ., ∀p : Pred(t) . . .
∀u∀v(Path(u, v)↔
∀R {[∀x∀y∀z(R(x , y) ∧ R(y , z)→ R(x , z))

∧∀x∀y(DirectWay(x , y)→ R(x , y))]
→ R(u, v)})
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Modal and temporal logics

modal logic:
2P (“necessarily P”) and 3P (“possibly P”)
Other readings of 2P:
It ought to be that P
It is known that P
It is provable that P
Always P (temporal logic)
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temporal logic: 2P (“always in the future, P”), 3P
(“sometimes in the future, P”), and P (“in the next step, P”)
e.g. 2bank account > 0 (very unrealistic)
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Further modal and temporal logics

temporal logic of actions (TLA): 2[state ′ = f (state)]state
read: always in the future, either the state does not change,
or the next state is f applied to the previous state

dynamic logic:
[p]P (“after every run of program p, P holds”)
<p> P (“after some run of program p, P holds”)
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More exotic modal logics

agent logics, e.g. ATL: agents A and B have the possibility to
make a telephone call, if they cooperate

logics for security, e.g. ABLP: A controls P (“agent A has the
permission to perform action P”)
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Logics for knowledge representation/semantic web

description logics, e.g. ALC:
Elephant

.
= Mammal u ∃bodypart.Trunk u ∀color .Grey

abbreviates
∀x [Elephant(x)↔

(Mammal(x) ∧ ∃y(bodypart(x , y) ∧ Trunk(y))
∧ ∀z(color(x , z)→ Grey(z)))]
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Multi-valued logics

three-valued logics: truth values are true, false, and undefined

object constraint logic (OCL)
(for UML — the unified modeling language)

-- Managers get a higher salary than employees
inv Branch2:
self.employee->forall(e | e <> self.manager

implies self.manager.salary > e.salary)
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Multi-valued logics (cont’d)

fuzzy logic: truth values in the interval [0, 1] correspond to
different degrees of truth (e.g. Peter is quite tall, is tall, is
very tall)
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Even more exotic logics

paraconsistent logics
for databases, local inconsistency is o.k. and should not lead
to global inconsistency

non-monotonic logics
new facts make previous arguments invalid, e.g.
Bird(x) ` CanFly(x)
{Bird(x),Penguin(x)} 6` CanFly(x)

linear logic (resource-bounded logic)
A⊗ A ` B
(we can prove B when we are allowed to use A twice)
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Why do we need so many logics?

different aspects of the complex world / of software systems

one “big” logic covering everything would be too clumsy

good news: most of the logics are based on propositional or
first-order logics

most of the logics have central notions in common
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What is common to (most of) these logics?

A notion of language (or vocabulary of symbols, or signature)

A syntax for sentences

A notion of model

A notion of satisfaction, i.e. M |= P (read: “M satisfies P”,
or “P holds in M”)

A calculus T ` P (read “P is provable from T )
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What is common to all these logics? (cont’d)

logical consequence: T |= P iff
for all models M with M |= T , also M |= P

logical validity: |= P iff for all models M, also M |= P

satisfiability: T is satisfiable iff
there is some M with M |= T

formal consistency: T is formally consistent iff
T 6` P for some P

soundness of the calculus: T ` P implies T |= P

(sometimes) completeness: T |= P implies T ` P
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Multi logic systems

The central notions common to all logics can be axiomatized

Based on this meta-notion, multi-logic systems can be defined

In Bremen, we also develop multi-logic tools
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Next semester

CASL for software specification
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Evaluation of this course

Please (anonymously) fill out the questionaire and return it to me!
(either now, or MZH 6. Ebene, Postfach 99)
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