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Abstract—This paper is about practical verification of Airbus
avionic systems during type certification, with special focus on
automated testing. The material is based on test and verification
services performed for Airbus by a spinoff company of the
University of Bremen, as well as on consultancy services delivered
by our research group to Airbus and its suppliers. In the
context of model-based systems engineering, the test automation
approach is currently shifting from manual test procedure
programming to model-based testing (MBT), where test cases
are automatically identified in models describing the application
behavior, allowing for automated test data calculation and test
procedure generation. We describe the situations where today’s
MBT technology is already adequate to increase the effectiveness
of automated testing in industry. In addition, we describe some
open challenges arising from practical avionic systems testing,
where satisfactory solutions still require some research effort.

Index Terms—model-based testing, test automation, model-
based systems engineering, avionic systems

I. INTRODUCTION

A. Motivation

HW/SW integration testing of avionic systems has been
automated at the beginning of this century in the sense that
test procedures were programmed and could be executed
automatically and in real-time. Apart from the motivation to
reduce the effort involved in manual testing, this automation
step was unavoidable: new generations of avionic systems
made manual interactions with the system under test (SUT)
during test executions more and more unreliable, if not in-
feasible. This was due to the growing speed and the growing
number of interfaces to be stimulated and monitored during
test executions.

During recent years, the methodology of model-based sys-
tems engineering (MBSE) and its supporting tools has been
observed by aircraft manufacturers like Airbus with growing
interest, and
• the potential of automated generation of target system

code, as well as
• the possible efficiency increase to be gained from model-

based testing (MBT)
have been investigated. In some areas, these possibilities have
already been integrated into the development and verification
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processes, and we expect the MBSE paradigm to be adopted
more widely in the avionic systems domain within the next
years.

In this paper, we report about MBT campaigns recently
performed for Airbus by a company specialized on embedded
systems verification1 and supported by our research group at
the University of Bremen. We summarize the technology used
for MBT and describe the main benefits to be gained from
applying MBT today, as well as some open challenges for
future improvements of the underlying methodology.

When using the term MBT in the context of this paper,
this is understood in the following sense. A test model is
developed specifying the expected behavior of the SUT, as far
as observable on the interfaces of a hardware-in-the-loop (HiL)
testing environment. The tests are black-box, so the internal
model structure will just represent a functional decomposition
of the applications to be tested and not necessarily reflect the
internal SUT design. The test model is used to automatically
identify test cases, calculate concrete test data, and generate
test procedures running the test cases against the SUT. This
includes the generation of test oracles checking the SUT
responses observed against the expected behavior encoded in
the model.

B. Overview

In Section II, an overview of the verification activities to
be performed for avionic systems for the purpose of type
certification is given. A case study derived from a real-world
test model is presented in Section III; this will be used in the
subsequent sections to illustrate various aspects of MBT for
HW/SW-integration testing of avionic systems. In Section IV,
we describe how MBT is performed in practice, with focus
on HW/SW integration testing. Open challenges for MBT in
the avionic domain are described in Section V, with some
research-directed suggestions how these problems might be
solved in the future. Section VI presents a conclusion. We
refer to related work throughout the text, where appropriate.

II. VERIFICATION PROCESS FOR AVIONIC SYSTEMS

The verification process for avionic systems has been stan-
dardized in RTCA DO-178B and its successor DO-178C [1],

1Verified Systems International, http://www.verified.de
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[2]. The main difference between these versions consists in
the explicit consideration of MBSE and Formal Methods in
the successor standard.

One of these standards’ main objectives is to ensure dif-
ferent verification perspectives that are applied to the artifacts
of all stages of the development process. Verification is con-
sidered as a separate process of the system life cycle, dis-
tinguished from the processes project planning, development,
quality assurance, configuration management, and certification
liaison. For the highest criticality levels A and B, verification
activities have to be performed with independence; in partic-
ular, software developers are not allowed to verify their own
software.

As verification techniques, reviews, analyses (with varying
degrees of formality), and testing are applicable according to
the standards. Software requirements are typically reviewed.
The standard distinguishes between high-level requirements
directly related to the applicable system requirements and
low-level requirements arising during the software design
process. Low-level requirements can represent refinements of
high-level requirements; alternatively, they can be derived
from design decisions or restrictions imposed by the target
hardware.

An interesting aspect of these avionic standards is that
they do not require full sets of tests on all levels, from unit
tests via software integration tests and HW/SW integration
tests to system tests. Instead, the standard specifies a set of
completeness criteria for the testing activities. If completeness
can be achieved by means of, say, HW/SW integration testing,
no further unit tests are required to gain certification credit.
The DO-178C standard specifies the following criteria for the
test activities to be sufficient.

1) All high-level requirements have been covered by tests.
2) All low-level requirements have been covered by tests.
3) Robustness tests have been executed for all requirements

(high-level and low-level).
4) Tests have been performed on the target hardware to

show that the executable code is compatible with the
target hardware.

5) Tests or analyses have been performed for all elements
of the system parameterization.

6) Test procedures have been verified (typically by review)
that they implement the allocated test cases in a correct
way; this includes the checks of the expected results
typically performed automatically by the test procedure.

7) The collection of all tests (performed on all levels)
achieves the code coverage required for the SUT’s criti-
cality level; for example, MC/DC source code coverage
is required for level A systems.

8) The collection of tests covers the call structure of the
software and access structure of software components
to global resources, such as global data. The verification
of this variant of structural coverage is called data and
control coupling analysis [3].

9) For systems of criticality level A, it has to be ensured
that the collection of all tests also covers object code

that cannot be traced back to the C-code, because
the compiler introduces additional branching statements,
function calls or assignments in the object code. The
process for verifying this object code coverage is called
source code to object code traceability analysis [4].

A noteworthy consequence of these criteria distinguishes
the RTCA DO-178B,C from standards in, for example, the
railway domain: the avionic standards do not postulate the
investigation of test strength2 during the verification process;
it suffices just to meet the above completeness criteria.

Another consequence of the completeness criteria consists
in the fact that the avionic standards do not really need
additional rules for model-based testing: if model-generated
test suites fulfill the correctness and coverage criteria listed
above, the tests are considered as adequate, regardless whether
they have been manually written or automatically generated
from a model.

The addendum RTCA DO-331 on model-based develop-
ment and verification emphasizes that model simulation cannot
replace tests of the target system regarding criteria 2, 3, 4, and
9 [5, Section MB.6.8.2]. The addendum discusses at length,
under which circumstances some other parts of the testing
process might be performed in model simulations (this is
also called model-in-the-loop (MiL) testing. For example, it is
conceded that errors like incorrect loop operations or incorrect
logic decisions can be detected in MiL tests of the design
model, if the latter uses the same source code as is used
for compiling the target object code and is compiled with
the same options as used for the target. The obligations to
justify the replacement of on-target tests by MiL tests may
require considerable effort. Therefore, the efficiency gained
by MiL tests in comparison to tests on the target may be
undone by this extra justification effort. As a consequence,
we advocate MBT for the purpose of automatically generating
test that can be executed on the target, and the option of
MiL testing will not be considered in the remainder of this
paper. This assessment of the importance of on-target testing is
also supported by the supplement RTCA DO-331 which states
that even the comprehensive use of formal methods during
verification of documents and code cannot replace testing to
ensure the compatibility between executable object code and
target computer [6, Section FM.6.0].

A crucial aspect influencing the application of MBT is the
requirement that all tools automating aspects of the develop-
ment or verification process must be qualified, see [2, Sec-
tion 12.2] and the sub-standard [7]. In the context of automated
MBT, tools typically automate the check of the criteria 1, 2,
6, 7, and perhaps even 5, 8, and 9. As a consequence, tool
verification evidence needs to be produced, showing that the
tools perform these activities without errors [8].

III. CASE STUDY – FASTEN SEATBELT SIGN CONTROL

To illustrate various aspects of MBT for avionic systems,
a case study concerning the control of fasten seatbelt (FSB)

2the ability of a test suite to uncover failures in the SUT
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signs is presented in this section. The study has been derived
from the real FSB control function as used in today’s aircrafts,
but it has been reduced with respect to the input and output
interfaces to be handled, and the control logic has been sim-
plified to facilitate the presentation of various MBT features.

A. Interfaces

The input and output interfaces of the FSB control function,
parameters, and internal model variables are listed in Table I.

TABLE I
VARIABLES USED IN STATE MACHINE DIAGRAMS.

Symbol I M O Meaning
pa p FSB AUTO condition variant, range 1, 2, 3
pea p Excessive altitude (EA) handling variant for

FSB signs, range 0 (no EA handling for FSB
signs), 1 (FSB signs are switched on when
EA is active)

C • Cockpit switch for FSB signs, range 0 (FSB
signs OFF), 1 (ON), 2 (AUTO)

EA • Excessive altitude (i.e., cabin decompres-
sion) is active, range 0 (false), 1 (true)

EM • Emergency mode active (normal power un-
available), range 0 (false), 1 (true)

ESG • Engine shutdown & aircraft on ground,
range 0 (false), 1 (true)

L • Nose landing gear down&locked, range 0
(false), 1 (true)

S1 • Slats 1 extended, range 0 (false), 1 (true)
S2 • Slats 2 extended, range 0 (false), 1 (true)
a • AUTO condition active, range 0 (false), 1

(true)
f • FSB ON condition active, range 0 (false), 1

(true)
SC • System startup completed, range 0 (false), 1

(true)
F • Fasten seatbelts signs are switched on, range

0 (off), 1 (on), 2 (undefined)

I: p = input parameter
I: • = Input variable
M: Internal model variable
O: Output variable

The main input is the FSB cockpit switch C which is used
to switch the signs on (switch position 1) or off (position
0). In switch position 2 (so-called AUTO position), the FSB
signs are switched automatically on or off, depending on
further inputs L, S1, S2, and ESG signaling the status of the
nose landing gears, slats 1 and 2, and the engine status in
conjunction with on-ground status of the aircraft, respectively.
The normal control logic can be overridden by the occurrence
of the excessive altitude condition (input EA) or by the loss
of normal power (input EM).

The SUT outputs considered during FSB-related tests are
represented by variables SC indicating that the SUT is in the
operative state and F indicating whether the FSB signs are
to be switched on. Output F is an abstraction of the status
of all FSB signs which are connected to a peripheral bus and
need to be controlled by sending ON/OFF commands to all
device addresses where FSB signs are deployed. Since all FSB
signs are switched synchronously, the test model just uses one
variable aggregating their state. A subordinate software layer

of the test engine monitors the individual device states and
aggregates the concrete bus commands associated with FSB
devices to outputs 0 (all FSB signs off), 1 (all on), or to value
2 (undefined) as long as the FSB signs are in inconsistent
states.

The control logic for FSB signs depends on two config-
uration parameters pa and pea which may be set only once
at system startup and remain constant during the whole SUT
execution. Parameter pa has 3 different values determining
the variant how FSB signs are automatically switched on
or off while the cockpit switch is in the AUTO position.
Boolean parameter pea indicates whether the occurrence of
the excessive altitude state affects the FSB control logic or
not.

B. Functional Model

The FSB control functionality is modeled by three concur-
rent, interacting state machines depicted in Fig. 1, 2, and 3.
The first machine decides whether the condition for switching
signs automatically on holds and records the decision in
internal variable a (see Table I). The second decides whether
FSB signs should be switched on and records this decision in
the model variable f . The decision is based on inputs C and
EA, and on the AUTO condition a. The third machine actually
writes to the FSB control output F ; the output value depends
on the current value of f and the state of the EM input.

The state machines shown adhere to UML/SysML syntax
as defined in [9]. The change event when(c) occurs when
a Boolean condition switches from false to true. The
transitions emanating from transient choice pseudo states are
labelled with guard conditions in square brackets, determining
the transition to be followed.

1) FSB AUTO Function: The FSB AUTO condition de-
pends on a parameter pa, since different airlines prefer specific
variants of the automatic switch function; this is modeled by
the state machine shown in Fig. 1. The machine sets the inter-
nal model variable a to 1 if and only if the AUTO condition
holds. When pa equals 1, signs shall be automatically switched
on if the aircraft is not on ground with engines switched off
(ESG = 0), and the nose landing gear is down and locked
or at least one of the slats is extended. With parameterization
pa = 2, the AUTO condition only depends on nose landing
gear and slats, and for pa = 3, it depends on the nose landing
gears alone.

2) FSB Control Logic: The central control logic setting the
FSB on flag is shown in Fig. 2. If the excessive altitude state
EA has no influence on the FSB control logic (this is reflected
by parameter setting pea = false), control of the FSB signs
is specified completely by submachine FSB NORMAL: the
signs are switched on if the cockpit switch is in position 1,
or if it is in position 2 and the AUTO condition a holds.
Otherwise the FSB signs are switched off.

If the FSB control logic should take the excessive altitude
state into account (pea = true), occurrence of this state
forces the signs to be switched on, regardless of the cockpit
switch position and the state of the AUTO condition. When the
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Fig. 1. State machine calculating the auto condition.

Fig. 2. State machine modeling the FSB ON/OFF logic.
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Fig. 3. State machine modeling the FSB output handler logic, taking the emergency mode into account.

excessive altitude state is no longer active, the FSB signs are
switched again according to the rules of the FSB NORMAL
submachine.

The state machine in Fig. 2 also exemplifies how model
elements can be traced back in SysML to the requirements
they help to realize. In the example shown here, only one
requirement (V-STS-4411-PLS-130) is referenced. It states
that the FSB signs shall be switched on if the cockpit switch C
is in position 1, and they shall be switched off if C is switched
back to 0. This holds as long as the sign state is not overridden
by the excessive altitude condition or the emergency mode.
Obviously, all transitions setting f to 1 or 0 due to cockpit
switch changes between C == 1 and C == 0 contribute
to modeling this requirement. Therefore the transitions trig-
gered by C == 1 and C == 0 conditions are connected
to the requirement by means of a satisfy relationship. Its
interpretation is that every model computation triggering one
of these three transitions is a witness for requirement V-STS-
4411-PLS-130. This information can be exploited to associate
requirements with test cases: for each of the three transitions,
a covering test case is needed, in order to test the requirement
in a comprehensive way. More complex requirements can be
related to constraints containing LTL formulas, expressing
more complex conditions to be fulfilled by the requirement’s
witness computations.

Though the graphical satisfy-notation shown in Fig. 2 is part
of the SysML syntax, it is not so frequently used, because
it clutters behavioral diagrams if their model elements are
linked to many requirements. Therefore, most tools offer a

separate tabular notation for associating model elements with
the requirements they help to satisfy. In the state machine
diagrams presented in this paper, we have only shown this
one requirement, in order to explain the SysML traceability
concept. In the real-world model, more than 30 requirements
need to be linked to these model elements.

3) FSB Output Logic: The state machine depicted in Fig. 3
performs the actual writes to the output interface F . As long
as normal power is available (EM = false), output F is
switched consistently with internal variable f . The occurrence
of a power loss (EM = true) forces the FSB signs to be
switched off.

IV. MODEL-BASED HW/SW INTEGRATION TESTING IN
PRACTICE

In this section, it is described how MBT is applied today
for HW/SW integration testing of avionic systems. To this end,
we first describe the capabilities of our toolset in Section IV-A
and then summarize the main benefits resulting from the MBT
approach in Section IV-B.

A. Technical Approach – the RT-Tester Tool

For model-based HW/SW integration testing in the avionic
systems testing context described in this paper, the RT-Tester
tool is used [10]–[13]. In several aspects, RT-Tester competes
with tools like Rational Test Conductor and Automated Test
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Generator3, the TGV tool integrated with TORX [14], and
UppAal-TRON [15]. Each of these tools has its unique selling
points, but they adhere to the same model-based testing
paradigm, where models specify the expected behavior of the
SUT, test cases are identified in the model using some auxiliary
information, and concrete test data are calculated using model
checking methods for witness generation and, optionally, SMT
solvers.

The RT-Tester tool parses SysML models consisting of
blocks, operations, and state machines and creates an internal
model representation (IMR) which is a special variant of
an abstract syntax tree. The IMR is traversed to generate
a transition relation Φ(s, s′) relating model pre-states s to
potential post-states s′. The transition relation takes dense time
into account, so transitions may be discrete (performed in zero
time while inputs remain stable) or delays (inputs may change
and time is advanced, taking into account when discrete
transitions may become enabled, due to elapsed timers). In
contrast to the UppAal tool which is based on the non-urgent
Timed Automata semantics [16, Chapter 9], enabled SysML
transitions need to fire immediately, so our transition relation
encodes maximal progress. More details about the encoding
of the behavioral SysML semantics in RT-Tester have been
described in [17, Chapter 11].

Requirements are formally represented as model properties
specified in LTL. Simple requirements, as the one discussed
in Section III-B2 above, can be represented by conjunctions
of LTL formulas of the form G(ψ ⇒ Xψ′), where ψ and ψ′

are propositions which do not contain any temporal operators.
The requirement VTS-STS-4411-PLS-130 introduced above,
for example, can be represented as

G
(
(FSB OFF ∧ C = 1)⇒ X(FSB ON ∧ f = 1)

)
∧

G
(
(FSB NORMAL.CHOICE ∧ C = 1)⇒

X(FSB ON ∧ f = 1)
)
∧

G
(
(FSB ON ∧ C = 0)⇒ X(FSB OFF ∧ f = 0)

This representation is automatically derived from the satisfy-
relations contained in the model. More complex requirements
need to be specified by user-defined LTL formulas.

Simple test cases are derived from model elements, us-
ing the following model coverage strategies: (1) simple
state coverage (Fstate identifier), (2) transition coverage
(F(state identifier ∧ trigger condition)), (3) MC/DC cover-
age, (4) hierarchic transition coverage, and (5) coverage of
different combinations of pairs of states in concurrent com-
municating state machines. The details of the strategies 3 –
5 are described in [10], [18]. Simple test cases are related to
requirements using the satisfy-relation: a test case covering
a model element linked to a given requirement contributes
to this requirement’s verification. More formally, test cases
leading to computations fulfilling Fψ contribute to the test of a

3See https://www.ibm.com/support/knowledgecenter/SSB2MU 8.2.1/
com.btc.tcatg.user.doc/topics/com.btc.tcatg.user.doc.html and
ftp://public.dhe.ibm.com/software/uk/itsolutions/innovate2013/
12.00 Udo Brockmeyer-003.pdf

requirement G(ψ ⇒ Xψ′), if the test execution is sufficiently
long to check the fulfillment of ψ′.

Calculating concrete test data for a given test case ϕ
is realized by solving the bounded model checking (BMC)
instance

BMC ≡ I(s0) ∧
k∧

i=1

Φ(si−1, si) ∧G(s0, . . . , sk) (1)

using an SMT solver. Here, I(s0) specifies the initial state, and
Φ is the transition relation. G(s0, . . . , sk) is a first-order repre-
sentation of the LTL formula ϕ, interpreted on the finite state
sequence s0, . . . , sk as described in [19]. From a solution of
(1), the sequence of input vectors si(~x), i = 0, . . . , k, together
with their input time stamps si(t), i = 0, . . . , k is extracted.
Model parameters are encoded in the transition relation as
special inputs p satisfying si(p) = si−1(p), i = 1, . . . , k. This
implies that they can be set only once as the very first input
and remain constant throughout the remaining execution.

B. MBT Benefits in Practice

In our discussions with verification and validation experts
from Airbus, the following characteristics of the existing MBT
technology were considered as the main advantages, when
compared to conventional programming of test procedures.

a) Automated requirements tracing: A major objective of
avionic systems verification is to provide evidence that each
requirement has been comprehensively reviewed, analyzed,
and tested. Typically, a traceability matrix is created which
associates each requirement to the related verification activities
performed, documenting the outcome of each activity. For
MBT activities, the traceability matrix can be constructed in
an automated way as follows. (1) We start with a requirement’s
representation as an LTL formula ϕ. (2) Collect all test cases
ψi associated with ϕ by the relation ψi ⇒ ϕ, so that every
witness generated for a test case represented by LTL formula
ψi is also a witness for requirement ϕ. (3) Associate each of
these ψi, together with their verdicts with requirement ϕ in
the traceability matrix.

In Fig. 4, a section of the traceability matrix is shown
for the FSB control function. Consider again the requirement
VTS-STS-4411-PLS-130 discussed above in Section III-B2.
Since the criticality level of this requirement is only C, it
suffices to associate transition coverage test cases with this
requirement. Test case TC-PLS-TR-174, for example, has wit-
nesses covering the model transition from the choice pseudo
state to state FSB ON, guarded by [C == 1] in submachine
FSB NORMAL shown in Fig. 2. Test case TC-PLS-TR-
0177 has witnesses covering the transition from FSB ON to
FSB OFF guarded by [C == 0].

b) Automated identification of implicitly covered test
cases: When programming test procedures in a manual way,
one always has a fixed set of test objectives in mind that
should be implemented by this procedure. In many cases,
however, the resulting test execution also covers other useful
test cases which could also be marked as passed or failed, if
the test procedure designer would be aware of this opportunity
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Fig. 4. Traceabilty matrix from requirements to test cases.

and insert associated checks for expected results into the
procedure.

When applying MBT, test procedures can be analyzed with
respect to the model computations they will trigger. This is
performed in RT-Tester by a model interpreter which uses
the test data calculated by the test generator and the SMT
solver to simulate the model with these data. The resulting
computation is then checked against all test cases identified
in the model, so that also implicitly covered test cases can
be identified, though they were not among the test objectives
used to generate the procedure. Moreover, the test oracles
generated from the model always monitor all SUT outputs and
compare them to the behavior expected from the concurrent
state machine model. As a consequence, it is also checked
whether the implicitly covered test cases lead to SUT reactions
that are consistent with the expected results.

c) 150% models: The test models typically used for
testing avionic systems are so-called 150% models. This term
is used to indicate that the model comprises different, mutually
exclusive behaviors depending on the system parameterization.
It a considerable advantage to capture these parameterization
effects in a single model and let the test generator and SMT
solver automatically calculate the parameter settings required
to cover a specific behavior during a test.

Consider, for example, the FSB control logic shown in the
state machine of Fig. 2. When generating a test procedure
covering the excessive altitude reaction modeled by the tran-
sition with trigger when(EA∧pea), the test generator identifies

the dependency on parameter pea and sets the appropriate
parameter value (true) needed for this test.

d) Advantages during regression testing: Some of the
main advantages of MBT become effective during regres-
sion testing. When test procedures have been conventionally
programmed, all of them need to be analyzed, whether they
are affected by the changes performed in the SUT and its
requirements. With manually programmed procedures, this
task is very time consuming, because both the test data
(including parameterizations) and the software structure of
each procedure may need to be adapted. When using MBT,
the changed requirements directly identify the model portions
to be modified, using the satisfy-relationships described above.
After that, the complete test suite is generated again, and the
new procedures are executed against the new SUT revision.

RT-Tester supports regression testing with a specific feature
for configuring the test procedure generations: the generation
directives of each procedure are automatically analyzed to
check whether the symbols referenced in the procedure con-
figuration (e.g. a target state or a transition to be covered,
or the symbols used in an LTL formula) are still available
in the modified model. If this is not the case, the procedure
is marked as outdated for the new SUT version, and the
procedure’s configuration data needs to be modified. Otherwise
the procedure just needs to be generated again, using the same
test objectives. Depending on the model changes performed for
the new SUT release, this new generation may use different
test data to meet the objectives and apply modified test oracles
to check the SUT behavior.

e) Integrated approach to MiL, SiL, and HiL testing:
Since test models operate on interface abstractions, tests can
be executed in different modes. In model-in-the-loop (MiL)
test mode, a model simulation is executed during each test,
as described above. This mode is useful during the model
verification phase: tests are executed, and it is checked whether
their associated computations reflect the expected SUT behav-
ior. In software-in-the-loop (SiL) mode, the tests are executed
against the SUT software. The model interface data referenced
in the test procedures are transformed to software interfaces
using simple adapters. In hardware-in-the-loop test mode, the
SUT consists of the integrated HW/SW system, and the model
interface data are transformed by more complex interface
modules using the drivers needed to access the SUT hardware
interfaces.

V. OPEN ISSUES FOR MODEL-BASED TESTING OF
AVIONIC SYSTEMS

Already today, the characteristics of MBT described above
offer significant advantages over conventional test procedure
programming. There is, however, considerable potential to
optimize the MBT approach further with respect to automated
test case selection and test procedure generation. In this
section, we describe two challenges of specific importance
and indicate how these may be overcome in a satisfactory
way; further challenges and promising solution possibilities
are described in [20].
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A. Two Challenges

1) Fine-grained Test Cases versus Test Scenarios: Discus-
sions with verification experts from Airbus have shown that
the test cases derived from model coverage criteria (e.g., [hier-
archic] transition coverage, MC/DC coverage) are usually too
fine-grained to result in expressive test procedures reflecting
complete end-to-end functionality. In particular, demonstration
tests for the certification authorities should rather cover a larger
number of SUT interactions, illustrating comprehensive use
cases of the SUT functionality. Moreover, the witnesses gen-
erated by the SMT solver for a model coverage objective are
often robustness test cases, because they may apply unusual
input combinations that would occur only as a consequence
of failures in the SUT’s operational environment. These test
are of course also necessary, but usually unsuited for demon-
strating normal behavior use cases.

These considerations have led to the introduction of
scenario-based testing, where experts define important use
cases to be transformed into test procedures to be run against
the SUT. The fine-grained model coverage test cases are then
used to complement the test scenarios by robustness tests and
other test cases applying unusual input traces which may be
unintuitive, but will usually increase the test strength of a suite
in a considerable way, because faulty SUT behavior will often
be revealed by these less intuitive test executions.

The present version of RT-Tester supports the definition of
test scenarios by means of additional state machines restricting
the solutions to be calculated by the SMT solver to intuitively
understandable normal behavior executions. Alternatively, test
scenarios can be specified using LTL formulas. Other tools
(e.g., Rational Test Conductor) offer the possibility to specify
test scenarios by means of SysML sequence diagrams de-
scribing the desired interface interactions between operational
environment and SUT during the scenario execution.

From our experience, neither state machines, LTL formulas,
nor sequence diagrams are sufficiently effective to specify test
scenarios. This seems to have been observed by others as well,
so that several suggestions for test scenario languages have
been made; see, for example, [21], [22]. We will illustrate our
own approach to test scenario specification in Section V-B.

2) Configuration Testing: The current capabilities of RT-
Tester suffice to calculate both configuration parameters and
timed sequences of input vectors needed to cover a given test
objective. It is also desirable, however, to be able to determine
whether the different parameter assignments applied in a test
suite represent an acceptable coverage of parameter value com-
binations. The number of different parameterizations is usually
so big in avionic systems, that an exhaustive enumeration of
all value combinations would be infeasible. Additionally, it
needs to be investigated whether a given test scenario should
be executed with more than one set of configuration parameter
assignments. A solution for this problem is described in
Section V-C.

B. Test Scenario Specification and Scenario Generation

The idea of presenting test scenarios in the form described
here is inspired by constraint programming, see, e.g., [23]:
instead of explicitly specifying the inputs and expected outputs
to be exercised is a test scenario, we describe a sequence of
constraints to be fulfilled by the test. The test generator uses
the SMT solver to construct a model of the BMC instance

scenario ≡ I(s0) ∧
k∧

i=1

Φ(si−1, si) ∧ SC(s0, . . . , sk), (2)

where, as before, Φ represents the transition relation and
SC(s0, . . . , sk) is a first-order representation of the scenario
specification. Models are finite sequences of model states, each
pair of states connected by the transition relation, such that the
sequence also fulfills the scenario constraints encoded in SC.

The formal semantics of these test scenarios is defined by
transforming them into LTL formulas that are interpreted in
the finite trace semantics introduced in [19]. The details are
described in [20]; here we only give an intuitive explanation,
using the test scenario shown in Fig. 5.

There, different time lines specify constraints changing at
certain uniquely identified points during the test scenario exe-
cution. In the simplest case shown in the examples presented
here, these points are specified by execution time stamps. In
the more general case handled in [20], the points may be
specified my arbitrary predicates on the model state that are
unique identifiers of the execution, such as, for example, cycle
counter values or other conditions occurring only once during
test execution. The formal semantics of the section between
two points of one time line is close to that of the TCTL
Globally operator G[t1,t2]ϕ which asserts that constraint ϕ
holds in all computation states traversed between time points
t1 and t2, see [16, pp. 698]. When changing between two
sections of a time line, a finite number of zero-time transitions
are allowed to ensure that the new constraint holds after these
transitions have been completed. Several time lines in the same
scenario specification are interpreted by logical conjunction.
The FRAME constraint specifies which input symbols are
allowed to change in order to ensure that the other constraints
applicable at the corresponding time line sections are fulfilled.
In Fig. 5, it is specified that during the first 10 seconds of
the execution, only the cockpit switch input C is allowed to
change. After that, inputs C,L, S1, S2 are allowed to change
until the end of the test.

During the first 10 seconds of the scenario execution, the
cockpit switch C remains in position 0. Since C is the
only input symbol in the applicable frame, this automatically
implies that FSB signs shall remain in state off during this
period. From test seconds 10 to 25, the cockpit switch is set
into the AUTO position, and it is required that the AUTO
condition shall not hold, so that the FSB signs remain off,
because the EA interface is not in the current frame, so the
signs cannot be switched on due to the excessive altitude
condition. At second 25, the auto condition shall become true,
and we expect the FSB signs to be activated, since the EM
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Fig. 5. Test scenario specification 1 for testing the FSB AUTO function.

interface is not in the frame, so the emergency mode cannot
be activated. This illustrates the advantages of the constraint
programming style used in scenario specifications, in contrast
to imperative test procedure programming: instead of explicitly
setting inputs in a way leading to a becoming true, we just
require that a should become true in zero time at point
t = 25 and leave the task of setting the appropriate inputs
and parameterizations to the SMT solver. At second 32, the
auto condition shall become false again, and we expect the
FSB signs to be switched off again. At second 47, the AUTO
condition shall become true again, but we expect the FSB signs
to remain off, since the cockpit switch C is in the off-position.

C. Automated Configuration Testing

To explain the method for automated generation of
parameter-dependent test procedures, consider the test scenario
shown in Fig. 6. This is a more complex variant of the scenario
shown in Fig. 5, with the following changes. (1) The landing
gears input L is no longer contained in any frame, so it has
to remain 0 throughout the scenario execution. (2) Excessive
altitude may occur, and it is checked between time 32 and 47
that the FSB signs remain active when the AUTO condition
is no longer true, but excessive altitude is reached.

The following algorithm describes how several test pro-
cedures are generated from this scenario, each time with a
different parameterization.

1) Input. Transition relation Φ and scenario representation
as LTL formula ψ.

2) Output. A set of test procedures P = (x, ~p), where
x is a timed trace of input vectors for stimulating
the SUT and ~p is a parameterization vector, such that
each P corresponds to a model of formula (2) with
SC(s0, . . . , sk) a valid first-order representation of ψ.

3) Extract all symbols from ψ representing internal model
variables or outputs; this results in a set S.
For our example scenario, this results in the symbol set
S = {a}.

4) Perform a writer/reader analysis across all state ma-
chines to determine which parameters influence the
symbols in S. This results in a set Q of parameter
symbols.
In our example, the actual value of a is influenced by
parameter pa, as follows from a writer/reader analysis
of the state machine in Fig. 1. The other state machines
do not write to a, so there are no further dependencies,
and Q = {pa}.

5) Perform a writer/reader analysis to determine which
transitions depending on symbols from S finally affect
output values. Insert these transitions into set T . Extract
parameters from both triggers and actions of these
transitions and add them to Q.
In the example, a backward analysis to this end starts
in the state machine from Fig. 3, and we see that (apart
from certain inputs) the only output F is affected by
the value of internal model variable f . This is traced
back to the state machine in Fig. 2, where we identify
two transitions t1, t2 depending on the trigger events
when(C == 2 ∧ a) and when(C == 2 ∧ ¬a), respec-
tively. The transitions do not contain any parameters to
add into Q.

6) For each transition t ∈ T , check which other transitions
u enable or prevent that t is triggered. Extract additional
parameters occurring in trigger conditions or actions of
each u and add them to Q.
In the example, the transitions t1 and t2 are enabled
or prevented by transitions depending on the parameter
pea. This results in Q = {pa, pea}.

7) For each value assignment for the parameters in Q,
check whether the scenario BMC instance from formula
(2) can be solved. Each solution gives rise to a new test
procedure P = (x, ~p), running the scenario with a new
set of parameter assignments.
In our example, formula (2) can be solved for each
combination of pa = 1, 2 and pea = 0, 1. For pa = 3
there is no solution, because a will never be set to true,
since this would depend on input value L which cannot
be changed due to the frame definition in this scenario.

As can be seen from the algorithm specification above, the
parameter and value identification technique takes into account
which parameters are really logically related, and which value
combinations for these parameters can lead to an instance of
the scenario. This contrasts to “naive” n-way testing [24],
where parameter combinations are selected without further
analysis of their logical dependencies.

Further optimization heuristics can be applied if the pa-
rameter set Q gives rise to too many value combinations. In
this situation, n-way testing can prove to be very valuable for
systematically reducing the number of parameter combinations
to be tested in separate procedures, because it ensures that at
least all subsets of Q containing n parameters are exhaustively
tested.
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Fig. 6. Test scenario specification 2 for testing the FSB AUTO function.

VI. CONCLUSION

We have described an approach to model-based testing, as
it is applied today for HW/SW integration testing of avionic
controllers in Airbus aircrafts. The main benefits of the MBT
approach have been described and compared to conventional
automated testing based on manually programmed test pro-
cedures. Two challenges for future improvements regarding
test scenario specification and automated configuration testing
have been described, and promising solutions for these chal-
lenges have been sketched.
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