
Second Generation Model-based Testing


Provably Strong Testing Methods for the Certification of Autonomous 
Systems


Part I of III –

Motivation and Challenges

Jan Peleska

University of Bremen and Verified Systems International GmbH


peleska@uni-bremen.de

2019-03-20

CyPhyAssure Spring School

mailto:peleska@uni-bremen.de


Background



Background
• Jan Peleska’s research team at the University of Bremen


• Formal methods for modelling and model checking


• Model-based testing (MBT) with strategies providing 
guaranteed error detection capabilities


• Verified Systems International GmbH


• Specialised on Verification&Validation (V&V) of safety-
critical cyber-physical systems


• Main customers from avionic domain, railways, 
automotive 



RESEARCH FOCUS
Verification, validation and test of safety-critical embedded 

systems – model-based testing — real-time operating systems

Text

Model
Test Generator

Test Engine

System 
Under Test



APPLICATIONS
Main focus on transportation systems 

avionics — railways — automotive — space systems



A Remark on this Spring 
School

• Quality-related standards (e.g. ISO 9001) require


• Quality awareness – in particular safety/security 
awareness in the context of safety/security-critical 
systems


• Continual improvement


• This spring school is an excellent means to support this 
with respect to the new challenges of autonomous 
systems



Recall – Some Facts 
About Testing



Validation vs. Verification

• Validation. Determine that the SUT is fit for its intended 
purpose


• Verification. Determine that the SUT conforms to a 
specification


• This induces 2 categories of testing



Test Strategies 

• A test strategy is a method to create test cases 
promising an acceptable fault coverage (= error 
detection capability)


• Test strategies can be derived, for example, from


• models specifying the expected behaviour of the SUT


• structural SUT models, including code structure 
(“programs are models”)


• interface specifications (e.g. pairwise testing)



Test Cases

• Definition. A set of test inputs, execution conditions, and 
expected results developed for a particular objective, 
such as to exercise a particular program path or to verify 
compliance with a specific requirement.

RTCA DO-178B/C

• Concrete test case. Inputs, conditions, expected results 
are explicit values


• Symbolic (abstract) test case. Inputs, conditions, 
expected results are logical formulas, so that every solution 
is a concrete test case



Test Oracles

• Recall that a test oracle is the (preferably automated) 
testing component deciding whether the SUT reactions to 
the input stimulations conform to the expected behaviour



Test Oracles

• Conventional software test oracles – variants


• Expected result is a concrete value or a sequence 
thereof – exactly one SUT response is correct


• Expected result is a logical formula (1st order, trace 
logic, temporal logic) – several, even infinitely many 
reactions can be correct, if they fulfil the formula



Test Oracles – Verdicts
• A (conventional) test oracle observes the (timed sequence 

of) inputs to the SUT and its corresponding outputs and 
provides a verdict


• PASS – the SUT behaviour observed conforms to the 
expected behaviour


• FAIL – the SUT behaviour observes violates one or 
more requirements


• INCONCLUSIVE – the test execution could not check 
the test objectives originally planned



MBT-Paradigm

Model System

Abstract Tests Executable 
Tests

Is a partial 
description of

can be run 
against

Are abstract 
versions of

Are derived 
from



Testing and Formal 
Methods



Testing and Formal 
Methods

• In the context of safety-critical systems


• Testing is one of the essential means to achieve 
certification credit


• It has to be justified that tests have sufficient 


• Requirements coverage


• Structural coverage


• Strength to uncover errors



Testing and Formal 
Methods

• Formal methods are used to


• devise test strategies with guaranteed test strength


• prove that a strategy has a certain strength



Fault Models
• A fault model consists of 


• Reference model (or other specification)


• Conformance relation to be fulfilled between reference 
model and system under test (SUT)


• Fault domain = collection of models representing the 
potential (conforming or non-conforming behaviour)

ℱ = (M, ≤ , 𝒟)



Complete Test Suites

• A test suite is complete with respect to a given fault 
model if and only if 


• Every conforming SUT passes all test cases


• Every non-conforming SUT fails at least one test case, 
provided that its true behaviour is captured by a model 
inside the fault domain



Complete Test Suites
• Complete test suite generation methods 

have been researched since the 1970ies


• By applying equivalence class generation 
techniques, complete test suites can be 
reduced to manageable size, without 
losing the completeness property


• Experimental results have shown that 
complete test suites have superior test 
strength even if the true SUT behaviour 
lies outside the fault domain

Felix Hübner, Wen-ling Huang, Jan Peleska: 
Experimental evaluation of a novel 
equivalence class partition testing strategy. 
Software and System Modeling 18(1): 423-443 (2019)

Wen-ling Huang, Jan Peleska: 
Complete model-based equivalence class 
testing for nondeterministic systems. 
Formal Asp. Comput. 29(2): 335-364 (2017)

Chow, T.S.: 

Testing software design modeled by finite-state  
machines. 

IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

https://dblp.uni-trier.de/pers/hd/h/H=uuml=bner:Felix
https://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
https://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
https://dblp.uni-trier.de/db/journals/fac/fac29.html#HuangP17


Case Study. 
Urban Mobility



Airbus - italdesign Pop.Up
Pop.Up System consists of a three layers concept:
• an Artificial Intelligence platform that, based on its user 

knowledge, manages the travel complexity offering 
alternative usage scenarios and assuring a seamless travel 
experience;

• a vehicle shaped as a passenger capsule designed to be 
coupled with two different and independent electric 
propelled modules, the ground module and the air 
module. Other public means of transportation (e.g. trains or 
hyperloops) could also integrate the Pop.Up capsule;

• an interface module that dialogues with users in a fully 
virtual environment.

Source: https://www.italdesign.it/project/popup/



Copyright italdesign



Copyright italdesign



Communication and 
coordination centre



Autonomous mobile systems – 
certification-related challenges 
with impact on testing



Emergent behaviour
• Control centre and drones cooperate to optimise the 

transportation of waiting passenger capsules to their 
destination


• This also applies to cooperating walking/driving/flying 
robots


• The resulting behaviour depends on


• the actual configuration


• the contract negotiations between participants


• the learned behaviour of each participant



Emergent behaviour
• Autonomous cars have a slightly less complex emergent 

behaviour


• They only cooperate in so far as to avoid collisions


• This does not require contract negotiations


• Consider, however, trucks driving in line using electronic 
towbar (= platooning) technology


• In the future, contracts negotiations may become 
necessary


• For example, leading truck should be the fastest



Platooning Trucks

Here, all members have the same type – no contract negotiations required 



Evolution of behaviour
• Autonomous systems may change their behaviour over time, 

due to


• Dynamic configuration changes


• Example. A new drone arrives to speed up the 
transportation of waiting passenger capsules 


• Learning how to optimise behaviours


• Example. A drone learns how to optimise the flight 
trajectory when approaching a specific geographical 
point where a passenger capsule should be picked up



Learning by Local Experience vs. 
Learning from Global Information

• Global information from


• Other sub-systems of the mission


• Internet instructions



Combined           
Safety&Security Analysis

• Autonomous collaborative cyber-physical systems 
depend so strongly on distributed communication 
technologies that safe operation can only be guaranteed if 
attacks by malicious agents can be repelled



Certification Challenges
• Safe behaviour of a cyber-physical system depends on 

mutual guarantees between all sub-systems involved


• Safe behaviour depends on the specific mission and its 
configuration


• System behaviour may change during operation


• Not all emergent behaviours can be anticipated  


• Current standards are not prepared for the application of 
Artificial Intelligence in safety-critical systems



. . . . . . .

NR = NOT RECOMMENDED

Current standards are not prepared for the application of Artificial 
Intelligence in safety-critical systems



Specific test-related 
challenges



Test Strategies – 
Challenges

• The effectiveness of test strategies depends (among other 
things) on the development techniques used


• But autonomous systems development uses novel 
techniques such as


• Strategic mission planning


• Situation awareness and dynamic risk assessment


• As a consequence, proven strategies for testing 
conventional systems are not necessarily effective for 
autonomous systems 



Wardziński A. (2008) Safety Assurance Strategies for Autonomous Vehicles. 
In: Harrison M.D., Sujan MA. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2008. Lecture Notes in Computer Science, vol 5219. Springer, 
Berlin, Heidelberg

Generic Architecture for Autonomous Systems



Test Case Generation – 
Challenges

• Too many test cases required to create them manually 


• No complete reference model available for MBT, so model-based 
test generation does not necessarily lead to all relevant test cases


• Test models need comprehensive environment representation


• Some validation tests may need to be designed/executed during 
runtime – runtime acceptance testing:


• Validation depends on contracts between configuration of 
constituent systems


• Validation depends on mission details specified for the actual 
task at hand



Test Oracles – Challenges

• For autonomous systems, test oracles need to cope with


1. Behaviour that is under-specified


2. Behaviour that is only acceptable if its risk level is 
acceptable


3. Behaviour that is not deterministic, but follows some 
(sometimes even unknown) probability distribution or 
probabilistic reference model 



Test Oracles – Challenges
• Example 1. Under-specified behaviour


• A robot arm handing a drinking cup to a disabled patient can 
solve this mission by infinitely many trajectories for the cup


• This type of problem has led to layered architectures in 
robotics control software


• Strategic Layer for defining and controlling the high-level 
mission (“lift cup from table to patient’s mouth”)


• Control layer for executing concrete movements in space-
time (“find trajectory for cup to reach patient’s mouth 
without collisions with any obstacles”)



Test Oracles – Challenges
• Example 2. Behaviour that is only acceptable if its risk 

level is acceptable


• An autonomous car avoiding collision with another car 
during conflicting lane changes by accelerating during the 
lane change – instead of aborting the lane change


• Test fails due to intolerable risk taken by autonomous car E

Hardi Hungar: Scenario-Based Validation of Automated Driving Systems. ISoLA (3) 2018: 449-460

https://dblp.uni-trier.de/db/conf/isola/isola2018-3.html#Hungar18


Test Oracles – Challenges
• Example 3. Behaviour that is not deterministic, but follows 

some probabilistic reference model


• A drone that chooses landing trajectories that are distributed 
around an optimal trajectory with acceptable variance

X



Test Oracles – Challenges

• Test oracles for autonomous systems will become a 
combination of 


• conventional oracles for control systems and


• statistical testing of hypotheses


• For the statistical testing, the number of test executions 
(for the same test case) needs to be much higher than for 
deterministic or nondeterministic systems without 
statistical distribution requirements 



Test Oracles
• For autonomous safety-critical systems (as in our case study) test 

oracles have extended verdicts


• (definitely) FAIL – violation of a non-probabilistic requirement – the 
mission objectives could not be achieved


• FAIL due to unacceptable risk level – though the mission objectives 
could be achieved


• PASS with acceptable risk level – the mission objectives could be 
achieved


• (definitely) PASS – conformance to a non-probabilistic requirement


• INCONCLUSIVE



PLEASE ATTEND THE 2 SESSIONS 
ON NOVEL TESTING SOLUTIONS 
TO BE PRESENTED ON 
THURSDAY!


