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Completeness Result

Theorem. Let P be a non-terminating, divergence-free CSP process over al-
phabet ¥ whose normalised transition graph G(P) has p states. Define fault
domain D as the set of all divergence-free CSP processes over alphabet X, whose
transition graph has at most ¢ states with ¢ > p. Then the test suite

TSy ={Ur(j) | 0<j < pqg}

is complete with respect to F = (P,Cp, D).

Analogous theorem holds
for trace refinement




Recall

e Complete test suites
e are specified for a given conformance relation
e accept every conforming implementation

e reject every non-conforming implementation



Recall

Fault domain. A collection of models that may or may not
conform to a reference model

Finite complete black-box test suites
e are specified with respect to a fault domain

e guarantee completeness provided that the true SUT
behaviour is reflected by a member of the fault domain

* provide a conformance proof with finitely many finite
test cases



Motivation

e Finite complete test suites are of high interest, because
they

e can establish full conformance, provided that the
SUT behaviour is captured by the fault domain

e still possess high test strength for SUTs outside the
fault domain (experimental evidence)

e still have manageable size if equivalence class
partitioning methods are applied



Failures Semantics — Representation
of Finite-State Processes

A. W. Roscoe, Model-checking CSP, in: A. W. Roscoe

P = a— (QMNR) (Ed.), A Classical Mind: Essays in Honour of C. A. R.

B PO P Hoare, Prentice Hall International (UK) Ltd., Hertfordshire,
@ = a=PUe= UK, UK, 1994, Ch. 21, pp. 353-378
R = b—->PUc— R

Normalised Transition Graph
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Failures Semantics — Representation
of Finite-State Processes

P = a—(QMNR)
Q = a—Pc—P
R = b—~PUOc—R

1
minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}




Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—Pc—P
R —

b—PUc— R :P/azQI‘IR

1

minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}




Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—Pc—P
R —

b—PUc— R :P/azQI‘IR

(QIjR)/czPFIR

1

minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}




Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
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Failures Semantics — Representation
of Finite-State Processes

P = a—(Q@NE) Assume that implementation
¢ = a—>PUc—>P process Z has transition
R = b=sPOdc—R graph with 4 states - just like P
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Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
QQ = a—PUc— P
R = b—-PUc— R
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Failures Semantics — Representation
of Finite-State Processes
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Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—PUOc— P
R = b—-PUc— R

{b}, {c} must be hitting sets of acc(Z/a.c.c)

1
minAcc:
{ac}
{b.c}

minAcc: .
{a} [
{bc} < |
3
b minAcc;:

ib.c}



Adaptive Test Cases for
Checking Failures
Refinement



UF(],O,E)

(e: (X —[n]”) = fail —» STOP)

]

(minHit(n) = @)&(pass — STOP)

L]

(k< i&(e:[n]” = Ur(j, k+1,t(n,e))
L]

(k = j AminHit(n) # @)&( Mgeminnitm) (€ : H — pass — STOP))



Check all traces up to length j+7

UF(],O,E)

(e: (X —[n]”) = fail — STOP)

]

(minHit(n) = &)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
]

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



When residing in node n of P’s transition graph, ...

— UF(jaoaﬂ)
= (e: (X —[n]”) = fail - STOP)
L]
(minHit(n) = &)& (pass — STOP)
L]
(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
N

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



... offer any illegal event to Q which should not be accepted

Initials of node n

Upg (]7 07 ﬂ)

(e: (X —[n]”) = fail — STOP)

L]

(minHit(n) = &)& (pass — STOP)
L]

VR
I

< j)&(e )Y = Up(j,k+1,t(n, e))

[]

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



... allow to stop with verdict PASS if P allows to refuse

everything at node n

(e: (X —[n]") = fail = STOP)

(minHit(n) = &)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))

[]

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



... continue with any event which is admissible according
to n’s initials, as long as the trace is still shorter than .

Continue with the successor node of n according to P’s
transition function t (Back-to-Back Test Q against P)

UF(],O,E)

(e: (X —[n]'N — fail — STOP)

]

(minHit(n) = @)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
]

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



... and check whether Q accepts an event from every

minimal hitting set of node n without blocking, if the length
of the trace is

UF(.]) O)ﬂ)
(e: (X — [n]) — fail - STOP)
]

(k = j AminHit(n) # @)&( M eminHit(n) (€ 1 H — pass — STOP))



PASS Criterion

e Q passes test Ur(j), if and only if for every possible
execution of

e no FAIL event is ever produced,

e the test always terminates with PASS

Q pass Ug(j) = (pass — STOP) Cr (O ||z Us(G)\Z



Complete Testing
Assumption

e There exists a constant ¢ > 1, such that every possible
behaviour of the SUT, when running in parallel to test
case U, is exhibited within ¢ executions of U



Completeness Result

Theorem. Let P be a non-terminating, divergence-free CSP process over al-
phabet ¥ whose normalised transition graph G(P) has p states. Define fault
domain D as the set of all divergence-free CSP processes over alphabet X, whose
transition graph has at most ¢ states with ¢ > p. Then the test suite

TSp={Ur(j) | 0<j <pq}

is complete with respect to F = (P,Cp, D).



Complexity
Considerations



Maximal Number of Test
Executions Required

Theorem. The maximal number of test executions to be performed using the
complete test suite T'Sp = {Upr(j) | 0 < 7 < pq} created from P is of order

0((&) P11 with n = |3,

2

For processes P satisfying (s,Y) € failures(P) for all traces s, the reachable
precise upper bound is given by

1 — nPd
<LZJ> ' _nn with n = |X|.
2




Maximal Number of Test
Executions Required

Theorem. The maximal number of test executions to be performed using the
complete test suite T'Sp = {Ur(j) | 0 < j < pq} created from P is of order

O((é) P with n = [X).

For processes P satisfying (s,Y) € failures(P) for all traces s, the reachable
precise upper bound is given by

1 — nPd
<Ln ) : " with n = [X.

1l —n

Maximal number of hitting sets to be tested at the end of each test execution




Why we Cannot use Shorter
Traces

Theorem. Let 2 < p,q € N. Then there exists a reference process P and an
implementation process () with the following properties.

1. G(P) has p states.

2. G(Q) has g states.

3. P IZr (), and therefore, also P IZr ().

4. Vs € traces(Q) : #s < pqg = s € traces(P).

5. @ conf P.



Discussion



Discussion

e Could the test effort be further reduced?

e We know that maximal length of traces and number of

probes H cannot be reduced without losing
completeness

e [ranslate results about adaptive state counting
methods from FSMs to CSP

R. M. Hierons, Testing from a nondeterministic finite state machine using adaptive state
counting, IEEE Trans. Computers 53 (10) (2004) 18330-1342. doi:10.1109/TC.2004.85



Discussion

e |s it such a good idea to check for refinement?

* From complete methods for FSMs we know that complete
equivalence checking can be performed with much shorter traces:
maximal length p+q-1 (instead of pqg - 7 as required for refinement

checking)
* Alternative approach to be preferred:
* refine original model and check correctness by model checker FDR4

e Stop refinement as soon as implementation can be required to be
equivalent to last refinement

* Then test for failures equivalence



Discussion

 Implications for CSP model checking

* As an alternative to checking pLC, O, coulditbe
effective to use an estimate for g and perform
concurrent checks

(pass — STOP) C. (O || UsGN\Z, j=0,...,pqg— 1
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Appendix.
Three
Mathematical Tools

Product Graphs
Minimal Hitting sets
Sperner Families



Product Graphs

Gl X G2
dom ¢
t((n1,n2), €)

(N1 X NQ, (ﬂl,QQ),t : (N1 X NQ) X D) 7@ (N1 X NQ))
{((n1,n2),€e) € (N1 X Na) x X|(n1,e) € dom t; A (ng,e) € dom to}
(t1(n1,€e),ta(ng, e)) for ((ny,nsz),e) € dom t



Product Graphs

Graph nodes are product of

nodes of each operand

Gl XGQ — (Nl XNQ,(@l,Qz),tI (Nl XNQ) XZ#(Nl XNQ))
domt = {((n1,n2),e) € (N1 X Ny) X ¥|(ny,e) € dom t; A (ng,e) € dom to}
t((n1,n2),e) = (t1(n1,e),ta(ng,e)) for ((n1,nsz),e) € dom t



Product Graphs

Initial state is pair of

operand’s initial states

Gl X GQ
dom ¢
t((n17n2)76)

(Nl X NQ, (ﬂl,ﬂz),t : (Nl X NQ) X D) 7L> (Nl X Ng))
{((n1,n2),e) € (N1 X N3) x X|(n1,e) € dom t; A (ng,e) € dom to}
(t1(n1,e),ta(ng, e)) for ((ny,ns2),e) € dom t



Product Graphs

Transition function allows transition labelled by
event e iff both “local” transition functions t;, t2

allow for this transition from their respective
source states

Gl XGQ — (Nl XNQ,(ﬂl,QQ),tI (Nl XNQ) XZ#(Nl XNQ))
domt = {((n1,n2),e) € (N1 X Ny) X ¥|(ny,e) € dom t; A (ng,e) € dom to}
t((n1,n2),e) = (t1(n1,e),ta(ng,e)) for ((n1,nsz),e) € dom t



Lemma on Product Graph

Lemma. If G; has p states and G5 has ¢q states, then G; X G5 has at most
pq states, and every reachable state of G; X G5 can be reached by a trace of
maximal length pg — 1.



Lemma on Product Graph

Lemma. If G; has p states and G5 has ¢q states, then G; X G5 has at most
pq states, and every reachable state of G; X G5 can be reached by a trace of

maximal length pg — 1.
Apply this lemma as follows
* G7is the normalised transition graph of reference process P
e (G2is the (unknown) normalised transition graph of SUT with behaviour Q
* Hypothesis. G2 has at most g = p states
e Suppose that Q exhibits faulty behaviour at some graph node nz. Then
e either this state can be reached by a trace of P with length < pq,

e or Q refuses to continue a shorter trace with an event which should not be refused
according to reference process P



Minimal Hitting Sets

e Given a finite universe 2, and a collection of subsets
{A1,...,Ak}, asubset H C 2 is called a hitting set of

{A1,...,A}, ifandonlyif HnAiz{}foralli=1,...,k

e A hitting set H is called minimal, if no true subset of H is
a hitting set of { As,..., Ak}



Minimal Hitting sets of Minimal
Acceptances Characterise conf

Lemma. Let P, () be two finite-state CSP processes. For each s € traces(P), let
minHit(P/s) denote the collection of all minimal hitting sets of minAcc(P/s).
Then the following statements are equivalent.

1. QQ conf P

2. For all s € traces(P) N traces(Q)) and H € minHit(P/s), H is a (not
necessarily minimal) hitting set of minAcc(Q/s).



Sperner Families

* Sperner Family. A collection of subsets of finite universe 2,

such that no pair of distinct sets in the family are in subset
relation

(A, AYC25 Vi#j:ACANA LA

* Sperner’s Theorem. The cardinality of a Sperner family is

bounded by
") with n=13
<l3J>



Sperner Families

* Sperner Family. A collection of subsets of finite universe 2,

such that no pair of distinct sets in the family are in subset
relation

This maximum is reached
e -or even n: all subsets of 2 with cardinality n/2

e For odd n : all subsets of > with cardinality (n-17)/2
e For odd n : all subsets of 2 with cardinality (n+17)/2

* Sperner’s Theorem. @Wle cardinality of a Sperner family is

bounded by
") with n=|3
<l5J>

E. Sperner, Ein Satz Uber Untermengen einer endlichen Menge,
Mathematische Zeitschrift 27 (1) (1928) 544-548. doi:10.1007/ BFO1171114.



Sperner Families in our
Context

e Maximal refusals of a process state
e Minimal acceptances of a process state

e Minimal hitting sets



Appendix.
Semantics of CSP,
Refusals and Acceptances



Overview

* A new result: finite complete test suites for CSP
conformance relations

e traces refinement

e failures refinement
e Complexity bounds

e Presentation of methods that are universally applicable for
arbitrary formalisms



CSP

Nondeterministic communicating sequential processes over finite alphabets

Deadlock process STOP

Prefixing with events a—>b—c— STOP
Process equations P=a—0Q

with recursion Q=0—P

External choice P=(a—-P[]b—>c—P)
Internal choice P=(a— Pnb—c— P)

Concurrent processes
synchronised over set P [[{a,b,c}|] O

of events



CSP Traces Semantics

* traces(P) — language generated by CSP process P
* Prefix-closed traces(a - b - STOP) = {¢,a,a.b}

 Denotational traces semantics provides compositional rules
about how to compute the traces of a composed processes,
provided that the traces of the operands are known

traces(P n Q) = traces(P) U traces(Q)



CSP Failures Semantics

* Refusal. A set of events that may be refused in a certain
process state P/s (= P, after having run through trace s)

e Refusals are subset-closed

e All refusals of a process state can be calculated from
its maximal refusals, due to subset closure

e Failure. A pair (s,R), such that R is a refusal of P/s

e failures(P) can be calculated via compositional rules of
the denotational semantics



Example

Rule
failures(STOP) = {(¢,R) | RC X}

Rule
failures(a - P)={(e,R) | RC X —{a}}Uu{(a.s,R) | (s,R) € failures(P)}

Conclusion

failures(a - STOP)={(e,R) | RCX-{a}}U{(@a,R) | RCZX}



Conformance Relations in

Trace refinement
Trace equivalence
Failures refinement

Failures equivalence

CSP

P C, QO =traces(Q) C traces(P)
P =; QO = traces(Q) = traces(P)
P C . Q = failures(Q) C failures(P)

P = Q = failures(Q) = failures(P)



Auxiliary Conformance
Relation

O conf P = Vs € traces(P) ntraces(0Q) : Ref(Q/s) C Ref(P/s)

Lemma. PC. O P, OAQ conf P

A. Cavalcanti, M. Gaudel, Testing for refinement in CSP, in: M. J. Butler, M. G. Hinchey, M. M. Larrondo-Petrie (Eds.), Formal

Methods and Software Engineering, 9th International Conference on Formal Engineering Methods, ICFEM 2007, Boca Raton, FL, USA,

November 14-15, 2007, Proceedings, Vol. 4789 of Lecture Notes in Computer Science, Springer, 2007, pp. 151-170. doi:
10.1007/978-3-540-76650-6\ _10.

J. Tretmans. A formal approach to conformance testing. PhD thesis, University of Twente, Enschede, The Netherlands, 1992,



Acceptances vs. Refusals

* A set of events A is an acceptance of process
state, if A Iis the complement of a refusal R In
this state

e A minimal acceptance is a complement of a
maximal refusal

o Saturation property: A is an acceptances of a

process state P/s, if A is
A CACIP/s]
e a superset of some minimal acceptance, and

 asubset of the state’s initials [P/s]°



