CyPhyAssure Spring School

Second Generation Model-based Testing

Provably Strong Testing Methods for the Certification of Autonomous
Systems
Part Il of lll -

Complete Test Suites for CSP Refinement

Jan Peleska
University of Bremen and Verified Systems International GmbH
peleska@uni-bremen.de
2019-03-21

\7
l@’ Universitat Bremen er

ﬂl
S
QL

mailto:peleska@uni-bremen.de

Finite Complete Test
Suites for CSP
Refinement lTesting”

Jan Peleska, Wen-ling Huang, and Ana Cavalcanti
{peleska,huang}@uni-bremen.de
ana.cavalcanti@york.ac.uk

*The results presented here have been submitted to Science of Computer Programming

Completeness Result

Theorem. Let P be a non-terminating, divergence-free CSP process over al-
phabet ¥ whose normalised transition graph G(P) has p states. Define fault
domain D as the set of all divergence-free CSP processes over alphabet X, whose
transition graph has at most ¢ states with ¢ > p. Then the test suite

TSy ={Ur(j) | 0<j < pqg}

is complete with respect to F = (P,Cp, D).

Analogous theorem holds
for trace refinement

Recall

e Complete test suites
e are specified for a given conformance relation
e accept every conforming implementation

e reject every non-conforming implementation

Recall

Fault domain. A collection of models that may or may not
conform to a reference model

Finite complete black-box test suites
e are specified with respect to a fault domain

e guarantee completeness provided that the true SUT
behaviour is reflected by a member of the fault domain

* provide a conformance proof with finitely many finite
test cases

Motivation

e Finite complete test suites are of high interest, because
they

e can establish full conformance, provided that the
SUT behaviour is captured by the fault domain

e still possess high test strength for SUTs outside the
fault domain (experimental evidence)

e still have manageable size if equivalence class
partitioning methods are applied

Failures Semantics — Representation
of Finite-State Processes

A. W. Roscoe, Model-checking CSP, in: A. W. Roscoe

P = a— (QMNR) (Ed.), A Classical Mind: Essays in Honour of C. A. R.

B PO P Hoare, Prentice Hall International (UK) Ltd., Hertfordshire,
@ = a=PUe= UK, UK, 1994, Ch. 21, pp. 353-378
R = b—->PUc— R

Normalised Transition Graph

1
minAcc:
{ac}
{b.c}

minAcc:

{a} R
{bc} <
3
b minAcc;:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a—(QMNR)
Q = a—Pc—P
R = b—~PUOc—R

1
minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—Pc—P
R —

b—PUc— R :P/azQI‘IR

1

minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—Pc—P
R —

b—PUc— R :P/azQI‘IR

(QIjR)/czPFIR

1

minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—Pc—P
R —

b—PUc— R :P/azQI‘IR

(QIjR)/czPFIR

1

minAcc: (P I_I R)lc =R
{ac} ;
{b 9C} S
minAcc: C
{a}
{b aC} ¢
3
b minAcc;:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a—(Q@NE) Assume that implementation
¢ = a—>PUc—>P process Z has transition
R = b=sPOdc—R graph with 4 states - just like P

1
minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
QQ = a—PUc— P
R = b—-PUc— R

1
minAcc:
{ac}
{b.c}

minAcc:

{a} [
{b,c} ¢
3
b minAcc:
{bc}

{é} must be a hitting set of acc(Z2)

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—PUOc— P
R = b—-PUc— R

{a,b}, {c} must be hitting sets of acc(Z/a)

|
minAcc:
{a.c}
{b,c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—PUOc— P
R = b—-PUc— R

la,b}, {a,c} must be hitting sets of acc(Z/a. c)

1
minAcc:
{ac}
{b.c}

minAcc:
{a}
{b,c}

minAcc:

ib.c}

Failures Semantics — Representation
of Finite-State Processes

P = a— (QMNR)
Q = a—PUOc— P
R = b—-PUc— R

{b}, {c} must be hitting sets of acc(Z/a.c.c)

1
minAcc:
{ac}
{b.c}

minAcc: .
{a} [
{bc} < |
3
b minAcc;:

ib.c}

Adaptive Test Cases for
Checking Failures
Refinement

UF(],O,E)

(e: (X —[n]”) = fail —» STOP)

]

(minHit(n) = @)&(pass — STOP)

L]

(k< i&(e:[n]” = Ur(j, k+1,t(n,e))
L]

(k = j AminHit(n) # @)&(Mgeminnitm) (€ : H — pass — STOP))

Check all traces up to length j+7

UF(],O,E)

(e: (X —[n]”) = fail — STOP)

]

(minHit(n) = &)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
]

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

When residing in node n of P’s transition graph, ...

— UF(jaoaﬂ)
= (e: (X —[n]”) = fail - STOP)
L]
(minHit(n) = &)& (pass — STOP)
L]
(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
N

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

... offer any illegal event to Q which should not be accepted

Initials of node n

Upg (]7 07 ﬂ)

(e: (X —[n]”) = fail — STOP)

L]

(minHit(n) = &)& (pass — STOP)
L]

VR
I

< j)&(e)Y = Up(j,k+1,t(n, e))

[]

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

... allow to stop with verdict PASS if P allows to refuse

everything at node n

(e: (X —[n]") = fail = STOP)

(minHit(n) = &)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))

[]

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

... continue with any event which is admissible according
to n’s initials, as long as the trace is still shorter than .

Continue with the successor node of n according to P’s
transition function t (Back-to-Back Test Q against P)

UF(],O,E)

(e: (X —[n]'N — fail — STOP)

]

(minHit(n) = @)& (pass — STOP)

L]

(k < H&(e:[n]” = Ur(j, k+1,t(n,e))
]

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

... and check whether Q accepts an event from every

minimal hitting set of node n without blocking, if the length
of the trace is

UF(.]) O)ﬂ)
(e: (X — [n]) — fail - STOP)
]

(k = j AminHit(n) # @)&(M eminHit(n) (€ 1 H — pass — STOP))

PASS Criterion

e Q passes test Ur(j), if and only if for every possible
execution of

e no FAIL event is ever produced,

e the test always terminates with PASS

Q pass Ug(j) = (pass — STOP) Cr (O ||z Us(G)\Z

Complete Testing
Assumption

e There exists a constant ¢ > 1, such that every possible
behaviour of the SUT, when running in parallel to test
case U, is exhibited within ¢ executions of U

Completeness Result

Theorem. Let P be a non-terminating, divergence-free CSP process over al-
phabet ¥ whose normalised transition graph G(P) has p states. Define fault
domain D as the set of all divergence-free CSP processes over alphabet X, whose
transition graph has at most ¢ states with ¢ > p. Then the test suite

TSp={Ur(j) | 0<j <pq}

is complete with respect to F = (P,Cp, D).

Complexity
Considerations

Maximal Number of Test
Executions Required

Theorem. The maximal number of test executions to be performed using the
complete test suite T'Sp = {Upr(j) | 0 < 7 < pq} created from P is of order

0((&) P11 with n = |3,

2

For processes P satisfying (s,Y) € failures(P) for all traces s, the reachable
precise upper bound is given by

1 — nPd
<LZJ> ' _nn with n = |X|.
2

Maximal Number of Test
Executions Required

Theorem. The maximal number of test executions to be performed using the
complete test suite T'Sp = {Ur(j) | 0 < j < pq} created from P is of order

O((é) P with n = [X).

For processes P satisfying (s,Y) € failures(P) for all traces s, the reachable
precise upper bound is given by

1 — nPd
<Ln) : " with n = [X.

1l —n

Maximal number of hitting sets to be tested at the end of each test execution

Why we Cannot use Shorter
Traces

Theorem. Let 2 < p,q € N. Then there exists a reference process P and an
implementation process () with the following properties.

1. G(P) has p states.

2. G(Q) has g states.

3. P IZr (), and therefore, also P IZr ().

4. Vs € traces(Q) : #s < pqg = s € traces(P).

5. @ conf P.

Discussion

Discussion

e Could the test effort be further reduced?

e We know that maximal length of traces and number of

probes H cannot be reduced without losing
completeness

e [ranslate results about adaptive state counting
methods from FSMs to CSP

R. M. Hierons, Testing from a nondeterministic finite state machine using adaptive state
counting, IEEE Trans. Computers 53 (10) (2004) 18330-1342. doi:10.1109/TC.2004.85

Discussion

e |s it such a good idea to check for refinement?

* From complete methods for FSMs we know that complete
equivalence checking can be performed with much shorter traces:
maximal length p+q-1 (instead of pqg - 7 as required for refinement

checking)
* Alternative approach to be preferred:
* refine original model and check correctness by model checker FDR4

e Stop refinement as soon as implementation can be required to be
equivalent to last refinement

* Then test for failures equivalence

Discussion

 Implications for CSP model checking

* As an alternative to checking pLC, O, coulditbe
effective to use an estimate for g and perform
concurrent checks

(pass — STOP) C. (O || UsGN\Z, j=0,...,pqg— 1

Acknowledgements

The authors would like to thank Bill Roscoe and Thomas Gibson-Robinson for their
advice on using the FDR4 model checker and for very helpful discussions concerning
the potential implications of this paper in the field of model checking. We are also
grateful to Li-Da Tong from National Sun Yat-sen University, Taiwan, for suggesting
the applicability of Sperner’s Theorem in the context of the work presented here.
Moreover, we thank Adenilso Simao for several helpful suggestions. The work of Ana

Cavalcanti is funded by the Royal Academy of Engineering and UK EPSRC Grant EP/
R025134/1.

Appendix.
Three
Mathematical Tools

Product Graphs
Minimal Hitting sets
Sperner Families

Product Graphs

Gl X G2
dom ¢
t((n1,n2), €)

(N1 X NQ, (ﬂl,QQ),t : (N1 X NQ) X D) 7@ (N1 X NQ))
{((n1,n2),€e) € (N1 X Na) x X|(n1,e) € dom t; A (ng,e) € dom to}
(t1(n1,€e),ta(ng, e)) for ((ny,nsz),e) € dom t

Product Graphs

Graph nodes are product of

nodes of each operand

Gl XGQ — (Nl XNQ,(@l,Qz),tI (Nl XNQ) XZ#(Nl XNQ))
domt = {((n1,n2),e) € (N1 X Ny) X ¥|(ny,e) € dom t; A (ng,e) € dom to}
t((n1,n2),e) = (t1(n1,e),ta(ng,e)) for ((n1,nsz),e) € dom t

Product Graphs

Initial state is pair of

operand’s initial states

Gl X GQ
dom ¢
t((n17n2)76)

(Nl X NQ, (ﬂl,ﬂz),t : (Nl X NQ) X D) 7L> (Nl X Ng))
{((n1,n2),e) € (N1 X N3) x X|(n1,e) € dom t; A (ng,e) € dom to}
(t1(n1,e),ta(ng, e)) for ((ny,ns2),e) € dom t

Product Graphs

Transition function allows transition labelled by
event e iff both “local” transition functions t;, t2

allow for this transition from their respective
source states

Gl XGQ — (Nl XNQ,(ﬂl,QQ),tI (Nl XNQ) XZ#(Nl XNQ))
domt = {((n1,n2),e) € (N1 X Ny) X ¥|(ny,e) € dom t; A (ng,e) € dom to}
t((n1,n2),e) = (t1(n1,e),ta(ng,e)) for ((n1,nsz),e) € dom t

Lemma on Product Graph

Lemma. If G; has p states and G5 has ¢q states, then G; X G5 has at most
pq states, and every reachable state of G; X G5 can be reached by a trace of
maximal length pg — 1.

Lemma on Product Graph

Lemma. If G; has p states and G5 has ¢q states, then G; X G5 has at most
pq states, and every reachable state of G; X G5 can be reached by a trace of

maximal length pg — 1.
Apply this lemma as follows
* G7is the normalised transition graph of reference process P
e (G2is the (unknown) normalised transition graph of SUT with behaviour Q
* Hypothesis. G2 has at most g = p states
e Suppose that Q exhibits faulty behaviour at some graph node nz. Then
e either this state can be reached by a trace of P with length < pq,

e or Q refuses to continue a shorter trace with an event which should not be refused
according to reference process P

Minimal Hitting Sets

e Given a finite universe 2, and a collection of subsets
{A1,...,Ak}, asubset H C 2 is called a hitting set of

{A1,...,A}, ifandonlyif HnAiz{}foralli=1,...,k

e A hitting set H is called minimal, if no true subset of H is
a hitting set of { As,..., Ak}

Minimal Hitting sets of Minimal
Acceptances Characterise conf

Lemma. Let P, () be two finite-state CSP processes. For each s € traces(P), let
minHit(P/s) denote the collection of all minimal hitting sets of minAcc(P/s).
Then the following statements are equivalent.

1. QQ conf P

2. For all s € traces(P) N traces(Q)) and H € minHit(P/s), H is a (not
necessarily minimal) hitting set of minAcc(Q/s).

Sperner Families

* Sperner Family. A collection of subsets of finite universe 2,

such that no pair of distinct sets in the family are in subset
relation

(A, AYC25 Vi#j:ACANA LA

* Sperner’s Theorem. The cardinality of a Sperner family is

bounded by
") with n=13
<l3J>

Sperner Families

* Sperner Family. A collection of subsets of finite universe 2,

such that no pair of distinct sets in the family are in subset
relation

This maximum is reached
e -or even n: all subsets of 2 with cardinality n/2

e For odd n : all subsets of > with cardinality (n-17)/2
e For odd n : all subsets of 2 with cardinality (n+17)/2

* Sperner’s Theorem. @Wle cardinality of a Sperner family is

bounded by
") with n=|3
<l5J>

E. Sperner, Ein Satz Uber Untermengen einer endlichen Menge,
Mathematische Zeitschrift 27 (1) (1928) 544-548. doi:10.1007/ BFO1171114.

Sperner Families in our
Context

e Maximal refusals of a process state
e Minimal acceptances of a process state

e Minimal hitting sets

Appendix.
Semantics of CSP,
Refusals and Acceptances

Overview

* A new result: finite complete test suites for CSP
conformance relations

e traces refinement

e failures refinement
e Complexity bounds

e Presentation of methods that are universally applicable for
arbitrary formalisms

CSP

Nondeterministic communicating sequential processes over finite alphabets

Deadlock process STOP

Prefixing with events a—>b—c— STOP
Process equations P=a—0Q

with recursion Q=0—P

External choice P=(a—-P[]b—>c—P)
Internal choice P=(a— Pnb—c— P)

Concurrent processes
synchronised over set P [[{a,b,c}|] O

of events

CSP Traces Semantics

* traces(P) — language generated by CSP process P
* Prefix-closed traces(a - b - STOP) = {¢,a,a.b}

 Denotational traces semantics provides compositional rules
about how to compute the traces of a composed processes,
provided that the traces of the operands are known

traces(P n Q) = traces(P) U traces(Q)

CSP Failures Semantics

* Refusal. A set of events that may be refused in a certain
process state P/s (= P, after having run through trace s)

e Refusals are subset-closed

e All refusals of a process state can be calculated from
its maximal refusals, due to subset closure

e Failure. A pair (s,R), such that R is a refusal of P/s

e failures(P) can be calculated via compositional rules of
the denotational semantics

Example

Rule
failures(STOP) = {(¢,R) | RC X}

Rule
failures(a - P)={(e,R) | RC X —{a}}Uu{(a.s,R) | (s,R) € failures(P)}

Conclusion

failures(a - STOP)={(e,R) | RCX-{a}}U{(@a,R) | RCZX}

Conformance Relations in

Trace refinement
Trace equivalence
Failures refinement

Failures equivalence

CSP

P C, QO =traces(Q) C traces(P)
P =; QO = traces(Q) = traces(P)
P C . Q = failures(Q) C failures(P)

P = Q = failures(Q) = failures(P)

Auxiliary Conformance
Relation

O conf P = Vs € traces(P) ntraces(0Q) : Ref(Q/s) C Ref(P/s)

Lemma. PC. O P, OAQ conf P

A. Cavalcanti, M. Gaudel, Testing for refinement in CSP, in: M. J. Butler, M. G. Hinchey, M. M. Larrondo-Petrie (Eds.), Formal

Methods and Software Engineering, 9th International Conference on Formal Engineering Methods, ICFEM 2007, Boca Raton, FL, USA,

November 14-15, 2007, Proceedings, Vol. 4789 of Lecture Notes in Computer Science, Springer, 2007, pp. 151-170. doi:
10.1007/978-3-540-76650-6\ _10.

J. Tretmans. A formal approach to conformance testing. PhD thesis, University of Twente, Enschede, The Netherlands, 1992,

Acceptances vs. Refusals

* A set of events A is an acceptance of process
state, if A Iis the complement of a refusal R In
this state

e A minimal acceptance is a complement of a
maximal refusal

o Saturation property: A is an acceptances of a

process state P/s, if A is
A CACIP/s]
e a superset of some minimal acceptance, and

 asubset of the state’s initials [P/s]°

