
Combination of Behavioral and Parametric Diagrams for
Model-based Testing

Technical Report
December 2015

Christoph Hilken
University of Bremen

Bibliothekstr. 1
28359 Bremen

Germany
chilken@cs.uni-

bremen.de

Felix Hübner
University of Bremen

Bibliothekstr. 1
28359 Bremen

Germany
felixh@cs.uni-bremen.de

Jan Peleska∗
University of Bremen

Bibliothekstr. 1
28359 Bremen

Germany
jp@cs.uni-bremen.de

ABSTRACT
Model-based testing is a promising approach to cope with
the complexity of nowadays systems. It shifts the effort from
manual test case specification to the modeling of the sys-
tem’s behavior and enables automated test case generation.
System behavior is often modeled by state machines. How-
ever, state machines are not appropriate to model all kinds of
behavior. This work combines state machines and paramet-
ric diagrams of the Systems Modeling Language (SysML)
to allow a higher degree of abstraction. This is shown by
application to a real-word example: a safety function of the
European Train Control System (ETCS).

Keywords
SysML, Model-based Testing, ETCS, Cyber-physical Sys-
tems, Hybrid Systems

1. INTRODUCTION

Model-based testing.
Model-based testing (MBT) has gained much attention

during the last decade [17, 14, 3]. This is mainly due to
the fact that MBT enables a high degree of automation,
increasing the efficiency of test-related verification and val-
idation activities in a considerable way. The main automa-
tion benefits are mechanized test case creation from the
model, test data calculation by means of mathematical con-
straint solvers, test procedure generation using model-based
code generation techniques, and compilation of traceability

∗The author’s research has been partially funded by ITEA2
project openETCS under grant agreement 11025

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

data relating testing artifacts to requirements by exploit-
ing traceability mechanisms available in the modeling lan-
guages [13]. At the same time, MBT allows for the applica-
tion of more complex test strategies. These provide higher
test strength, but the test case generation algorithms in-
volved can no longer be managed in a manual way; examples
of these more complex strategies are given in [8, 15, 10].

For automated MBT, the modeling formalism applied needs
to be associated with a formalized behavioral semantics de-
scribing how model states, inputs, and outputs evolve over
time. For test models described in the SysML formalism
[12], formalization options are described, for example, in [13,
9]. With these results at hand, model-based testing against
concurrent real-time SysML models can be considered as a
solved problem for continuous time/discrete control systems
depending on notions of discrete or dense time, but produc-
ing discrete control outputs only. The system behavior over
time is modeled, for example, by means of concurrent SysML
state machines, whose trigger conditions depend on variable
values and timer conditions. This is then formally speci-
fied by a transition relation describing how discrete control
steps or time-delays are performed. Using, for example, an
SMT solver that is also capable of floating point arithmetics,
the possible transition steps can be calculated. Specific test
objectives can be encoded as additional constraints used in
conjunction with the transition relation, so that the solu-
tions provided by the constraint solver describe at the same
time valid state transitions of the model and suitable candi-
dates for the test objective under consideration.

The challenge.
For real-time systems depending on mixed time-discrete

and time-continuous evolutions of observables and/or con-
trol variables, no comprehensive MBT methodology exists
yet. While the formal semantics of these so-called hybrid
systems has been thoroughly investigated [7, 2], the auto-
mated calculation of suitable test data for practical MBT
still remains a challenge. This is mainly due to the fact that
best practices for specifying time-continuous evolutions in
test models and creating associated concrete data by means
of constraint solving are still subject to discussions.

Objectives and main contributions.

In this paper, a novel approach to MBT in a hybrid sys-
tems context is presented, based on the SysML modeling
language. The utilization of blocks and associated diagrams
for decomposing the functionality of the system under test
(SUT) and the use of state machines is “imported” from
proven MBT technology for time-discrete systems. These
description means are, however, combined with an abstrac-
tion technique and extended by constraint blocks and para-
metric diagrams [12, Section 10] for modeling time-continuous
dependencies between inputs, outputs, and model variables.
From this descriptions means our proposed approach is able
to generate concrete test cases in a fully automatic way.

Our approach is illustrated and a proof of concept is given
by application to a complex real-world system. We create
a test model of a control problem from the European Train
Control System (ETCS), using the system requirement spec-
ification [16]. We describe how the expected EVC behavior
can be modeled using the SysML subset indicated above,
and the computational effort needed for automated test gen-
eration by means of an SMT solver is evaluated.

2. BACKGROUND
In order to keep this paper self contained relevant parts of

the European Train Control System and the Systems Mod-
eling Language are introduced.

2.1 European Train Control System
The European Train Control System (ETCS) shall replace

existing national train control systems by a modern unified
system in the European Union. The system requirement
specification is publicly available [16].

The onboard computer of ETCS trains (the so-called Eu-
ropean Vital Computer (EVC)) performs – among other safe-
ty-relevant control tasks – target speed monitoring (TSM):
the speed of the train, while approaching a target (for ex-
ample, a train station or a level crossing), is monitored by
the EVC, so that the ability to brake the train in time for
the target is always ensured [16]. To this end, the speed-
dependent braking curves of the train have to be taken into
account, so that the braking distance required is correctly
calculated.

In the remainder, the following variables are used: vest
is a system input describing the current train speed. The
maximum allowed speed on the track section of the train is
denoted by vmrsp. The value of vmrsp should remain con-
stant over time, while vest should change according to the
current acceleration a. All track related locations, including
the train position, are measured as track relative distances
D, starting from zero (start location) and ending at the tar-
get location DTarget. The train position is given by vari-
able Dfront and should always have values from the range
[0, DTarget]. DTarget is constant during runtime, while Dfront

might change over time as the train moves forward towards
the target location.

2.2 Systems modeling language
OMG’s Systems Modeling Language SysML [12] is a semi-

formal language to specify a model of the system’s structure
and behavior. In addition, corresponding diagrams offer a
graphical representation of parts of the model. Therefore,
a system description is composed of different kinds of dia-
grams, for example block definition diagrams and internal
block diagrams to describe the structure, complemented by
activity and state machine diagrams to describe the behavior

Braking Time
{0 = abtb + v0}

Braking Distance
{s = 1

2
abt

2
b + v0tb}

vest a

s

tb

tb

v0 ab

v0 ab

s

Figure 1: Parametric diagram for the calculation of
the braking distance

of the system. Our approach is working on state machines
and constraint blocks. Therefore, to focus on the objectives
of this paper, in the remainder only parametric diagrams
and state machine diagrams are used.

Constraint blocks.
Constraint blocks are used to express general dependen-

cies between observables, such as physical laws. Parametric
diagrams are used to bind the generic names of these observ-
ables to the concrete model variables that are restricted by
these constraints. Using these syntactic entities, the bound-
ary conditions restricting time-continuous inputs or outputs
of the SUT can be suitably specified.

Example 1. For the TSM function the braking distance
has to be calculated. The motion of a train can be expressed
by the equations for a translational acceleration, which are
v = at + vo and s = 1

2
at2 + v0t + s0. In Figure 1 both

expressions are combined to calculate the braking distance s.
The constraints are bound to the system inputs (vest and a)
in the parametric diagram.

SysML does not define a language to express constraints. In
the remainder the natural mathematical notation is used,
which is interpreted by our tools. In addition, it is possible
to add conditions under which constraints are valid. There-
fore, pseudocode is used. In particular, such conditioned
constraints can be used to specify the so-called flow con-
ditions of hybrid automata associated with control modes
specified in state machines: following [7], these flow con-
ditions describe the restrictions to be observed by time-
continuous variables, while the system resides in the given
control mode.

State machines and testing strategies.
UML’s state machines have been adopted for SysML with-

out changes. Hence, SysML state machines are a variant
of Harel’s statechart formalism [6]. Therefore, many MBT-
tools are using state machines as modeling formalism, e.g.[1,
4] and many testing strategies have been developed in re-
spect to state machines. This includes conventional strate-
gies based on coverage criteria, but also complete test strate-
gies, that give a guarantee that certain types of faults are
revealed, given an assumption that only pre-defined types of
faults can occur. In addition, it was shown in [11] that test
suites generated by a complete test strategy can have a very

high test strength even if the assumption for completeness
does not hold.

3. PROBLEM FORMULATION AND
GENERAL IDEA

As mentioned before, state machines have been shown
suitable to model the behavior of reactive systems in the past
and MBT approaches chose them as description means for
their input models. With respect to upcoming cyberphysical-
systems state machines are not convenient, especially, due
to the integration of components, such as sensors and actua-
tors in today’s embedded systems. Such hybrid systems can
be described by a combination of state machines and condi-
tioned constraint blocks. Constraint blocks and parametric
diagrams are well suited to describe mathematical expres-
sions, as for example physical laws, due to their declarative
manner. State machines on the opposite are an imperative,
state-based description means and, hence, are not conve-
nient to specify physical properties of the system. There
are many approaches in the field of control theory and sim-
ulation to handle physical properties, but in the field of
MBT physical constraints are usually neglected or simpli-
fied and current test strategies do not take them into ac-
count. As a consequence, test cases generated using current
tools and strategies may be unrealistic and violate physical
constraints.

Example 2. Assume test cases shall be generated for the
TSM function. Without considering physical laws, a con-
crete test case might be generated that contains a sequence
of train speed values that have sudden jumps from very low
to very high values. Such a behavior is unrealistic, since
the acceleration of a train is bounded by the train engine
and train brakes. Figure 2 describes the physical constraints,
that model how the speed and position of a train should evolve
over time. Considering this kind of physical constraints leads
to test cases that are executable in a real environment.

To overcome this situation and to allow the utilization of
parametric diagrams as well as constraint blocks, we pro-
pose the following approach:
In a first step using an abstracted version of the state ma-
chine, abstract test cases are generated. Such an abstracted
version is a so-called simulation of the concrete system [5];
the former represents an over-approximation of the latter.
The simulation can easily be obtained by using Boolean
variables as guard condition for every transition in the state
machine. These Boolean variables are not restricted on the
state machine level but bound to concrete system variables
in the parametric diagrams.1 Abstract test cases are con-
structed from this simulation model using an input equiva-
lence class partitioning test strategy with proven error de-
tection capabilities [10]. 2 The inputs associated with an
abstract test case are sequences of input equivalence classes.

In the second step, the abstract input sequences are re-
solved to sequences of concrete model variable valuations,

1Given a concrete system description by means of a state
machine, this simulation can as well be obtained automati-
cally. But in most cases, the a priori modeling of an abstract
state machine description of the system might be more nat-
ural and reduce the modeling effort, as will be shown in
section 5.
2Apart from that, the proposed approach allows the appli-
cation of every other state machine based testing strategy

dv
dt

= a

−10 ≤ a ≤ 2

dD
dt

= a ∗ t+ v

a ≤ As

if TSM.inState(EB)

Dfront

vest

Asafe

Dv v

As

a

a

a
a

a

a

Figure 2: Parametric diagram describing the tem-
poral evolution of the TSM

using a mathematical constraint solver. For this step, the
bindings of abstract Boolean condition variables to concrete
model variables defined by parametric diagrams are taken
into account. Additional physical constraints describing the
temporal evolution of system variables are considered in this
step as well, which leads to realistic concrete test cases.

4. TWO-STEP APPROACH

Step 1. System abstraction.
In the first step, the system behavior is abstracted. The

idea is to use an overapproximation of the specified system’s
behavior: all traces possible in the concrete system based
on the specification, considering all physical and system re-
lated constraints, are also observable in the abstract model.
Whether a trace in the abstract model has a concrete so-
lution in the real world, depends on the abstraction and
constraints. This is a conservative approach, which guar-
antees that every system behavior is covered by the model,
while unrealistic traces might remain. If in the second step,
no concrete solution for an abstract test exists, it can be de-
duced, that this behavior is not possible (assuming that the
constraints are correct), and therefore it is safe to neglect
this test case.

Example 3. Consider the following complex boolean ex-
pression, taken from the ETCS specification [16]:

Vest > Vmrsp +DVebi(Vmrsp) ∨Dfront > DEBI (1)

This boolean expression describes a trigger condition for
the onboard controller of the train to automatically activate
the emergency brakes. Variable Vest describes the current
train speed. If this speed exceeds the maximum allowed speed
Vmrsp by more than an offset DVebi, the emergency brakes
are activated. Alternatively, if the front of the train Dfront is
too close to the target location (this is expressed by Dfront >
DEBI), the emergency brakes are activated as well.

Instead of explicitly describing this trigger condition by
concrete model variables, an abstract input variable t13 is
introduced. The state machine transition that uses this ab-

stract input variable looks like this: L1 L2
[t13]

. In this
case we introduced a new free input variable. It can be as-
sumed, that the value of this variable can change arbitrarily
over time. This is a safe overapproximation of the real sys-
tem.

The replacement of a complex guard-condition by a new
boolean input variable is always possible, but n replacements
introduce n new inputs. In the worst case this results in 2n

new input equivalence classes of the SUT [10]: each feasible
conjunction of the positive or negated Boolean expressions
associated with each of the abstraction variables ti specifies
an input equivalence class. For realistic models, not all com-
binations of valuations of the complex conditions are possi-
ble. Using an SMT solver, impossible input combinations
can be dropped a priori. These combinations are ignored in
the test generation.

With this abstract description of the system behavior at
hand, we are able to apply the test generation strategy pre-
sented in [10] and create a test suite, whose inputs are rep-
resented by abstract equivalence classes.

Example 4. For our running example, the TSM func-
tion, we introduced nine abstract input variables. From the
29 = 512 possible combinations, only eight combinations
were valid. Two of the combinations can be considered as
equivalent [10]. Thus, seven input equivalence classes were
calculated from our abstract model.

The result of the first step in our test case generation is a
set of abstract test cases. An abstract test case is a sequence
of system states 〈s̄0, . . . , s̄n〉, where s̄i : Vabstract → D is the
valuation function, mapping the (abstract) Boolean system
variables tk to their values s̄i(tk) in the i-th state.

Step 2. Concretization.
While the first step defined abstract test cases that are re-

lated to computations in the abstract test model, the second
step aims at constructing concrete test data.

A concrete test case is a sequence of concrete system
states 〈s0, . . . , sn〉. Each si is a valuation function si :
V ∪ Vabstract → D, where the concrete system variables v,
including the inputs and outputs, as well as the abstraction
variable introduced before, are mapped to concrete values
si(v) ∈ D.

For the concretization of the test cases, parametric dia-
grams were added as an additional description means. The
abstract variables introduced in Step 1 have to be related
to concrete system variables by parametric diagrams. Two
types of constraints can be defined: state invariants and
temporal evolution.

State invariants constrain the concrete system variables
in every state and, therefore, in every test step of the test
case, these invariants have to be fulfilled. In a parametric
diagram a state invariant can be described by a constraint
property. A parametric diagram with m constraint proper-
ties that define state invariants (INV1, . . . , INVm) yields the
invariant:

INV ≡
∧m

j=1 INVj

Invariants in the concrete system are also used to bind
the values of abstract system variables to the concrete guard
conditions they are abstracting.

Example 5. Considering trigger condition t13 from ex-
ample 3 the corresponding parametric diagram is shown in
Figure 4. In this diagram t13 gets bound to its concrete guard
condition.

Given this invariant, and given an abstract test case 〈s̄0, . . . , s̄n〉,
we want to calculate a concrete test case 〈s0, . . . , sn〉 that
uses the same valuations of the abstract system variables
– that is, the same equivalence classes – as prescribed by

the abstract test case. This is encoded by the following for-
mula, where φ[t/x] denotes the formula derived from φ by
exchanging every free occurrence of x by the term t.

n∧
i=0

(∧
t∈Vabstract

si(t) = s̄i(t) ∧ (2)

INV[si(v)/v, v ∈ V ∪ Vabstract]
)

(3)

The above formula can be solved by an SMT solver. The
result is a concrete mapping of variables from V to concrete
values. Using these concrete values, a concrete test case
〈s0, . . . , sn〉 is calculated.

Apart from that, the temporal evolution of system vari-
ables is described by means of parametric diagrams. In con-
trast to an invariant, such constraints describe the change of
values between two test steps. For example it may necessary
to constrain the change of velocity and location due to the
physical laws of acceleration. Figure 2 gives an example for
this kind of constraints. This kind of constraints can best
be described by differential equations.

In our approach we support the definition of linear dif-
ferential equations. These equations can be discretized and
translated to expressions relating pre and post states. These
expressions contain unprimed variable symbols V describing
the variable in the pre-state si, and primed variable sym-
bols V ′ describing the post-state si+1. For example the dif-
ferential equation dv

dt
= a in Figure 2 can be expressed by

the constraint: t′ = t+ ∆t ∧ Vest
′ = Vest + a ·∆t.

All constraint properties describing temporal evolution
(TEMP1,. . . ,TEMPp) can be summarized:

TEMP =
∧p

k=1 TEMPk

We extend the SMT instance to generate concrete test
cases respecting the time-continuous evolution defined by
parametric diagrams as follows:

n∧
i=0

(∧
t∈Vabstract

si(t) = s̄i(t) ∧ (4)

INV[si(v)/v, v ∈ V ∪ Vabstract]
)
∧ (5)

n−1∧
i=0

TEMP[si(v)/v, v ∈ V ∪ Vabstract, (6)

si+1(v)/v′, v′ ∈ V ′ ∪ V ′abstract] (7)

5. EVALUATION
The approach described in the previous sections has been

applied to the TSM function of the ETCS specification [16].
The specification describes the behavior in means of a tran-
sition table with the corresponding conditions for each tran-
sition. Such a specification can easily be modeled in terms
of state machines and parametric diagrams: For every condi-
tion defined in the specification a Boolean variable t3, . . . , t13,
r0, . . . , r3 was introduced, named according to the defini-
tions in [16]. The state machine can easily be deduced from
the transition table using the introduced Boolean variables.
The corresponding state machine of the TSM function is
shown in Figure 3. The concrete conditions are described
and the introduced Boolean variables are bound by means
of parametric diagrams. An excerpt of the parametric dia-
gram of the TSM function is given in Figure 4.

As a result, specifying the constraint blocks and creat-
ing the parametric diagram, as well as the state machine,

Normal
/entry
tco=0;
sb=0;
eb=0;

IndicationOverspeed

Warning
/entry
tco=1;

SB
/entry
sb=1;

EB
/entry
eb=1;

[t3][t4]

[t7]

[t10] [t13]

[r0]

[r1||r2][r3]

[r3]
[r3]

Figure 3: State Machine of the TSM

was straightforward, where only the mathematical equations
given in [16] had to be translated to constraint blocks and
some notations had to be slightly modified to be parsed by
our tools. Thus, the modeling effort for this example was
very low and we assume that the modelling effort should
scale very well if other sub functions of this specification
were modeled with the proposed approach.

Model description.
In the TSM function state changes occur as soon as trig-

ger conditions are fulfilled. Under certain trigger conditions
(t3,t4, . . .) the system changes its state machine state cor-
responding to different levels of intervention. t3 is a boolean
expression that evaluates to true, if the current velocity Vest

and the current train front position Dfront exceed the line
indicated by DI in Figure 5. Similarly, t4, t7, t10 and t13 re-
turn true if and only if the train exceeds DP, DW, DSBI or
DEBI respectively. When a new state machine state is en-
tered, the entry-actions write to the output variables tco, sb
and eb. These variables indicate the activation of the trac-
tion cut-off, the service brake and the emergency brake. The
revocation conditions r0, . . . , r3 describe the conditions nec-
essary for the intervention states to be revoked.

The state invariants of our test model are described by
means of a parametric diagram and as an example in Fig-
ure 4 the definition of trigger condition t13 is shown. For
convenience the definition of the other triggering conditions
is omitted.

All these triggering conditions depend on the train veloc-
ity and track relative distance (position). The conditions
can be calculated from the EBD curve, compare Figure 5.
The EBD curve (emergency brake deceleration) maps the
track relative distance to a velocity, assuming a negative
acceleration Asafe, such that zero speed is reached at the
target position (DTarget). The curve can be calculated by
calculation of the braking distance s as shown in Figure 1.
The value of Asafe

3 is a conservative approximation that de-
scribes the least deceleration that the emergency brakes of
the train achieve when fully activated. Because the full ac-
tivation of the emergency brakes needs some time, the curve
DEBI is shifted by a fixed time delay. If the current distance-
velocity-pair describing the train speed and position is right
or above this line, the emergency brakes are triggered. In

3For convenience we used a fixed value for Asafe. According
to the ETCS specification [16] up to seven values can be
defined as a step function dependent on the train speed.

a similar way the other triggering conditions are defined by
shifting the EBD cure by fixed time delays.

The temporal evolution of our test model is described by
the parametric diagram shown in Figure 2. The constraints
in this diagram restrict the time-continuous evolution of the
trains front position and the velocity. Therefore the accel-
eration a of the train is restricted to values in the range
[−10, 2]. If the emergency brakes are activated (the train
is in the state machine state EB), the deceleration must be
higher than prescribed by Asafe. As described in section 4,
the discretized versions of the constraints were used.

In total, our test model used for this evaluation contains
52 constraint properties, including those shown in Figure 1,2
and 4.

Test case generation.
Table 1 gives a summary of our test case generation. The

test case generation was performed on a system with 24
CPU cores running at 2.8 GHz with 16 GB RAM. In the
first step of our test case generation 50 abstract test cases
were calculated, which took less than a second. Then it
took three and a half hours to generate the concrete test
cases from the 50 abstract test cases. The main reason,
that this computationally expensive task, is still applicable
in acceptable time, is that SMT instances for every test case
can be solved in parallel. The test case generation was run
in parallel and on average 16.7 of the 24 CPUs were utilized.

Given that the results from this TSM model can be gen-
eralized to hybrid systems of comparable complexity, the
runtime is acceptable. Yet, the results indicate, that the
utilization of a different computational backend, e.g. ana-
lytical or numerical solvers, should be considered.

For every abstract test case a concrete solution was calcu-
lated. Thus, our model abstraction seems appropriate. This
might not always be the case. If the test case generation of
abstract test cases yields a low percentage of solvable con-
crete test cases, this might be an indicator for inappropriate
abstraction or too restrictive constraints.

number of test cases generated 50
avg. test case length (test steps) 2.84
time for abstract test case genera-
tion

0.8s

time for calculation of concrete test
cases

3.5h

memory for test case generation 8.4 GB

Table 1: Results of the Test Case Generation for the
TSM Model

6. CONCLUSION
We have presented a novel approach to automated model-

based testing of mixed time-discrete and time-continuous
systems. It has been shown that SysML is a suitable for-
malism for creating test models of this kind: time-discrete
control aspects are reflected by state machines, and time-
continuous constraints are represented by constraint blocks
and parametric diagrams. Concrete test cases were gener-
ated in a two-step approach. At first, an abstraction of the
concrete system was constructed, and an input equivalence
class partition strategy with proven fault detection capabil-
ities was applied to generate a test suite of abstract test
cases. The inputs associated with each of these test cases

{t13 = v > (vm +DVebi) ∨Df > De}

DVebi =

7.5 if vm ≤ 110

0.075vm − 0.75 if 110 ≤ vm ≤ 210

15 if 210 ≤ vm

{DEBI = De − Tbev}

{DEBD = Dt − s}

Dfront

Dtarget

s

vmrsp

Tbe

vest

Df

v v

vm

vm

Dt

s

Tbe

DVebi

DVebi

De

DEBI

De

DEBD

Figure 4: Parametric Diagram of the TSM

are sequences of input equivalence classes. For the second
step, concrete solutions for each of these abstract test cases
were generated. For this purpose, each abstract test case is
transformed into constraints over concrete model variables,
and the additional constraints coming from time-continuous
conditions specified in constraint blocks are taken into ac-
count as well.

Using an SMT solver that is capable of processing floating
point arithmetics, it was shown that the approach is suit-
able for practical application. To this end, tests for a safety-
relevant control function of the ETCS onboard controller
have been generated in an automated way. The results show
that MBT is feasible for hybrid systems that are comparable
to the complexity of this real-world example. The model-
based test generation and execution process has been imple-
mented in an experimental version of an industrial-strength
testing tool. As mentioned, we are currently exploring nu-
merical solvers or computer algebra systems to get a better
performance and to support more complex mathematical ex-
pressions.

7. REFERENCES
[1] S. Ali, M. Iqbal, A. Arcuri, and L. Briand. A

Search-Based OCL Constraint Solver for Model-Based
Test Data Generation. In 2011 11th International
Conference on Quality Software (QSIC), pages 41–50,
July 2011.

[2] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur,
F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky. Hierarchical hybrid modeling of
embedded systems. Lecture Notes in Computer
Science, 2211:14–31, 2001.

Velocity

Distance

DTarget

EBD-Curve

DEBI

DSBI

DW

DP

DI

Figure 5: Braking Curves of the TSM

[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold,
P. McMinn, A. Bertolino, J. Jenny Li, and H. Zhu. An
orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and
Software, 86(8):1978–2001, Aug. 2013.

[4] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. A Subset of Precise UML
for Model-based Testing. In Proceedings of the 3rd
International Workshop on Advances in Model-based
Testing, A-MOST ’07, pages 95–104, New York, NY,
USA, 2007. ACM.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[6] D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, October
1996.

[7] T. Henzinger. The theory of hybrid automata. In
Proceedings of the 11th Annual Symposium on Logic in
Computer Science, pages 278–292. IEEE Computer
Society Press, 1996.

[8] R. M. Hierons. Testing from a nondeterministic finite
state machine using adaptive state counting. IEEE
Trans. Computers, 53(10):1330–1342, 2004.

[9] C. Hilken, J. Peleska, and R. Wille. A Unified
Formulation of Behavioral Semantics for SysML
Models. pages 263–271, Feb. 2015.

[10] W.-l. Huang and J. Peleska. Complete model-based
equivalence class testing. International Journal on
Software Tools for Technology Transfer, pages 1–19,
Nov. 2014.

[11] F. Hübner, W.-l. Huang, and J. Peleska. Experimental
Evaluation of a Novel Equivalence Class Partition
Testing Strategy. In J. C. Blanchette and
N. Kosmatov, editors, Tests and Proofs, number 9154
in Lecture Notes in Computer Science, pages 155–172.
Springer International Publishing, July 2015.

[12] Object Management Group. OMG Systems Modeling
Language (OMG SysMLTM), Version 1.4. Technical
report, Object Management Group, 2015.
http://www.omg.org/spec/SysML/1.4.

[13] J. Peleska. Industrial-strength model-based testing -
state of the art and current challenges. In A. K.
Petrenko and H. Schlingloff, editors, Proceedings
Eighth Workshop on Model-Based Testing, Rome,
Italy, 17th March 2013, volume 111 of Electronic

Proceedings in Theoretical Computer Science, pages
3–28. Open Publishing Association, 2013.

[14] A. Petrenko, A. Simao, and J. C. Maldonado.
Model-based testing of software and systems: Recent
advances and challenges. Int. J. Softw. Tools Technol.
Transf., 14(4):383–386, Aug. 2012.

[15] A. Petrenko and N. Yevtushenko. Adaptive testing of
nondeterministic systems with fsm. In 2014 IEEE 15th
International Symposium on High-Assurance Systems
Engineering (HASE), pages 224–28, 2014.

[16] UNISIG. ERTMS/ETCS System Requirements
Specification, Chapter 3, Principles, volume
Subset-026-3, chapter 3. February 2012. Issue 3.3.0.

[17] M. Utting, A. Pretschner, and B. Legeard. A
taxonomy of model-based testing approaches. Software
Testing, Verification and Reliability, 22(5):297–312,
Aug. 2012.

