o
1Z| Technologie-Zentrum Informatik

Testing Operating Systems
with RT-Tester

Jan Peleska,

Oliver Meyer, Johannes Kanefendt and Florian Lapschies
jp@verified.de

University of Bremen and Verified Systems International GmbH, Bremen,
Germany

Airbus — 2007-01-19
2006-11-06

@ Universitat Bremen ”\P%

[
1Z| Technologie-Zentrum Informatik

Overview

Objectives: Perform extensive tests for avionics operating system —
fulfil requirements of RTCA DO-178B for level A applications

> Tests in simulation environment versus on-target testing

> Generic test configuration for operating systems

» RT-Tester test automation system

» Example: ARINC 653 operating system test in Linux simulation
environment with RT-Tester

@ Universitat Bremen

Vi

[
12' Technologie-Zentrum Informatik

Tests in simulation environment versus on-target testing

» On-target tests are required for
» Proving functional correctness of HW/SW integration (c. f. IMA
Bare Module Tests)
> Achieving structural coverage on target HW (certification
requirement)
> On-target tests for embedded systems usually complicate
white-box testing

» On-target tests require separation of (parts of) test equipment
and SUT

@ Universitat Bremen 3

Vi

[
12' Technologie-Zentrum Informatik

Tests in simulation environment versus on-target testing

Simulation environments (PC, work station)
» facilitate white-box testing

» may not be used for certification credit if simulation architecture
differs “too much” from target architecture
> require special care for operating system tests:

» For functional integration testing, conflicts between tested OS
System Under Test OS(SUT-0S) and simulation platform OS
have to be avoided — for example: Scheduler, virtual memory
management and partitioning, interrupt relaying

» Access of SUT-OS to target HW has to be stubbed — in some
cases by access functions to simulation platform HW

@ Universitat Bremen 4

Vi

[
12' Technologie-Zentrum Informatik

Generic test configuration for operating systems

For functional testing:

» The non-existing application layer is replaced by test agents (=
test applications) that exercise the application layer interface
(API) (= APEX) of the SUT-OS

> Test agents

>

>

>

are re-usable

can be remotely controlled by testing environment

can exercise the most general behaviour at the SUT-OS API
which is possible for “real” applications

may possess pre-programmed scenarios for robustness testing and
time-critical API call sequences

@ Universitat Bremen 5

Vi

[
12' Technologie-Zentrum Informatik

Generic test configuration for operating systems

> Testing environment exercises calls to SUT-OS via remote
method invocation to test agents
» SUT-OS is extended by internal test functions for

» Checking internal data structures
» Tracing internal behaviour of SUT-OS kernel functions
» Tracing and storing code coverage information

» Internal test functions can be triggered by test agents via
auxiliary API calls that also recover test results

@ Universitat Bremen

Vi

[
12' Technologie-Zentrum Informatik

Generic test configuration for operating systems

Framework for embedding SUT-OS into simulation platform: This has
been performed by University of Bremen for ARINC 653 operating
system implementation on Linux
» On simulation system boot, memory is exclusively reserved for
SUT-0OS:
> pages locked in memory
> separate memory map managed by SUT-OS kernel
» Simulation platform clock interrupt triggers Linux scheduler and
SUT-OS scheduler in alternation
» Configured SUT-OS processes (=partitions on ARINC 653 OS)
are initialised by SUT-OS init process

@ Universitat Bremen 7 ”\%

[
12' Technologie-Zentrum Informatik

Generic test configuration for operating systems

» On ARINC 653 OS, every partition runs one or more test agents
(= threads of the partition)

» SUT-OS API triggers different trap (software interrupt) which
leads to SUT-OS kernel instead of Linux kernel

> Test agents may combine Linux and SUT-OS API calls since
these are distinguished by different traps

» Communication with testing environment is performed via
TCP/IP socket communication (Linux API)

@ Universitat Bremen

Vi

[
12' Technologie-Zentrum Informatik

Generic test configuration for operating systems

SIMULATION ENVIRONMENT - EXAMPLE: 2-CPU PC WITH LINUX HOST OS

Test Automation Test Agents
System

Linux API Linux API SUT-OS-API

LINUX KERNEL

@ Universitat Bremen

Vi

[
12' Technologie-Zentrum Informatik

Example for On-target testing: Bare Module Tests /
Configured Module Tests of IMA ARINC 653 operating

system

RT_TESTER WA SYSTEM NTEGRATION BENCH
ABSTRACT MACHIE LAYER
=

I I I
AM FOR [EXTERNAL
TALCTRL [DEVICE SIM

I I I
\ COMMUNIGATION CONTROL LAYER

I
INTERFACE MODULE LAYER

SYSTEM UNDER TEST:
IMA MODULE HW

+ OPERATING SYSTEM

+ CONFIGURATION TABLE

IMA DRIVER LAYER

AIRBUS DISTRIBUTED IMA OPERATING

PARTITION 1 PARTITION 2.

TEST APPLICATION LAYER

@ Universitat Bremen 10

Vi

[
12' Technologie-Zentrum Informatik

RT-Tester test automation system

» Distributed simulation and test system
» Abstract machines/Interface modules run in parallel to perform

» Simulations
» Automated on-the-fly checking
» Stimulation of SUT

> Interface abstraction by means of channels and vectors
» Hard real-time capabilities

> Single-CPU, Multi-CPU and cluster hardware configurations
available

» Supports all testing phases — from unit tests to system
integration tests

» Provides powerful test automation mechanisms

@ Universitat Bremen 11

Vi

Ll
1Z| Technologie-Zentrum Informatik

Software Integration Test with RT-Tester

AML
AM-1 AM-2 | ... AM-n
cCL
IFML
IFM-1 IFM-2 | - .. |IFM-k

@ Universitat Bremen

12

Vi

[
1Z| Technologie-Zentrum Informatik

Remote Method Invocation For Test Control

RT-Tester Executable Test Procedure

Global Variables System Under Test
(Tasks or Units)
x_ctype x;
Abstract Machine (AM)
Checker

AM Stub Handler

RT-Tester Link]

T

AM Link Handler

@ Universitat Bremen 13

[
12' Technologie-Zentrum Informatik

Module Test Configuration

Test Driver Test-Input Dat
(Test Harness) le est-input Pata

—

Test Driver controls test execution,
provides input data, stores outputs

of Unit Under Test
—{ Unit Interface }-

Unit Under Test consists of one
Unit Under Test [€ C function which is called by the
test driver. The UUT may call
other functions which are linked

as stubs or original functions of the
System Under Test.

Interf. Unit 1 }~ Interf. Unit 2 Interf. Unit 3
Test-Stub 1 Test-Stub 2 Original
Unit of SUT
4]

> Interf. Unit 4

Test Stubs replace "real" units of the system under test,
stubs provide same interface as real units

@ Universitat Bremen

14

Ll
1Z| Technologie-Zentrum Informatik

Test Cases, Test Data Generation Framework

Test
Strategy

Symbolic Test Trace Generator

getSymbolicTrace()

Model

Abstraction

Constraint
Generator

followEdge()
backtrack()

Symbolic
Interpreter

execute()
getConstraint()

Constraint Solvers

@ Universitat Bremen

Concrete
Model

(Complete
Intermediate
Model

solve()

fixSolution()

Representation)

| . Concrete
Test Trace

getSolution()

15

Vi

[
12' Technologie-Zentrum Informatik

SUT: Time-Discrete Input-Output Hybrid Systems

@ Universitat Bremen

Initial conditions
Init(h) = true,
VI € Loc — {h} : Init(]) = false

Transition labels a, ..., k:
a=(h,true,
((x1,x2), (in1, in2)), h2)

d: (h,x1 < exp(x1 - x2),
((X17X2)7 (X12 ' Sin(X2)7 X2))a I4)

16

Vi

[
1Z| Technologie-Zentrum Informatik

Symbolic Test Case Tree STCT

h
(15,5) (13,5) (l6,8) (/6,9) (I, 11)

(I6,6) (s, 7) (h,7)
(Iﬁvlo)

@ Universitat Bremen 17

Vi

Ll
12' Technologie-Zentrum Informatik

Reachability Trees for MCDC Coverage

. TS &5 oS ExccesedEs S
s &5 S = =5 = =% s> = <55 HesaX =5
&= = ceosE> =5 E= <5 = &S =5
= eped == = = = =5
=5 == == =
= = ==
= ==

@ Universitat Bremen

Vi

18

Ll
1Z| Technologie-Zentrum Informatik

Example: ARINC 653 operating system test in Linux
simulation environment with RT-Tester

Test examples for
» ARINC 653 semaphore mechanism
» ARINC 653 memory management
> Code coverage analysis

» Test case coverage

@ Universitat Bremen 19

Vi

