
Automated Test Case Generation with

SMT-Solving and Abstract Interpretation

Jan Peleska, Elena Vorobev, and Florian Lapschies

Department of Mathematics and Computer Science
University of Bremen, Germany

{jp,elenav,florian}@informatik.uni-bremen.de

Abstract. In this paper we describe an approach for automated model-
based test case and test data generation based on constraint types well
known from bounded model checking. Our main contribution consists of
a demonstration showing how this process can be considerably acceler-
ated by using abstract interpretation techniques for preliminary explo-
rations of the model state space. The techniques described support mod-
els for concurrent synchronous reactive systems under test with clocks
and dense-time.

1 Introduction

Motivation and Overview. In this paper we present results for model-based test
case and test data generation for concurrent real-time systems. The expected
behavior of the system under test is specified by a model whose abstract syntax
representation is used to derive suitable symbolic test cases which are represented
as logical constraints G over model computations. The term “symbolic” is used in
the sense that at this stage no concrete test data exists yet in order to stimulate
a model computation satisfying G. The concrete test data is gained by handling
constraint satisfaction problems (CSPs) of the type

tc(c,G) ≡def

c−1
∧

i=0

Φ(σi, σi+1) ∧ G(σc) (1)

These CSPs are well-known from the field of bounded model checking: σ0 is
a pre-state from where a model exploration should start. Φ(σi, σi+1) denotes the
transition relation, represented as a first order predicate relating pre-states σi

to possible post-states σi+1. G(σc) is a predicate representing the symbolic test
case, so solving tc(c,G) yields test data to satisfy G by performing c transitions
from the pre-state σ0.

In the general case G will not only refer to the target state σc but to the com-
plete computation σ0, . . . , σc. By introducing additional observer components,
however, this more general situation can be reduced to the one captured in (1):
the observer runs concurrently with the model and checks whether G(σ0, . . . , σc)
is satisfied. If this is the case the observer performs an auxiliary transition to a

target location ℓ indicating “G(σ0, . . . , σc) is satisfied”. Then the test case may
be re-formulated to “ℓ shall be reached after c+1 transitions”. In practice, how-
ever, this introduction of observers is only infrequently required, because most
test cases can be identified by means of predicates on a model state σc alone.

For HW/SW integration and system integration testing it is desirable to
find the shortest path from σ0 to a state satisfying G. Therefore it is tried to
consecutively solve tc(1, G), tc(2, G), . . ., and stop as soon as a c has been found
for which solution of tc(c,G) exists. Given a collection of test cases G1, . . . , Gk

it is desirable to find a model computation σ0, . . . , σn where all of these Gi are
covered (not necessarily in a given order). The existence of such a computation
has the advantage that the SUT will be driven into a larger number of internal
states, as when testing only one Gi at a time and resetting the SUT in between,
since this increases the confidence into the SUT reliability. Moreover, SUT resets
are often time consuming when testing integrated HW/SW systems. Therefore
G is usually specified as the disjunction of the remaining goals to be covered,
and every Gi that is reached is removed from this disjunction. If, however, a
test case Gi cannot be covered from a given pre-state σp within an acceptable
number of steps, it is advisable to perform backtracking to a suitable state σp−q

from where it is less time consuming for the SMT solver to reach this goal (recall
that in general, the running time of the SMT solver depends exponentially on
the number c in formula (1), specifying how many times the transition relation
is unrolled). Finding this state represents another challenge, because trying to
solve the CSP from some σp−q where Gi cannot be reached within the given
limit of transitions wastes time to an extent where backtracking no longer offers
any advantage. For tackling CSPs of the type (1) we use an SMT solver which
is sketched in Section 2.

Main Contribution. We present an abstract interpretation algorithm for concur-
rent synchronous real-time models which, given an initial state σ0 and a test case
goal G returns a natural number c0 such that it is guaranteed that no solution
of tc(i, G) exists for 0 < i < c0. Additionally the abstract interpretation yields
boundary conditions to be fulfilled by every solution of tc(j,G), j ≥ c0. These
conditions can be exploited by the SMT solver to speed up the solution process.
To our best knowledge no abstract interpretation algorithms for the concurrent
synchronous real-time system paradigm have been suggested before, in partic-
ular not for the objective of speeding up automated test data generation (see
paragraph on related work below).

The experiments described in Section 5 show that use of the abstract inter-
preter accelerates a solution process of tc(1, G), tc(2, G), . . . by an average factor
of 1.44 just by being able to avoid infeasible tries to solve tc(i, G) for i < c0. If
backtracking is applied the results are even more significant, since the abstract
interpreter is very fast in detecting states from where no solution of tc(i, G) ex-
ists within admissible range of i: here the average acceleration is 3.09. Observe
that the experiments have not been performed on case studies, but on models
developed for real-world testing campaigns in the automotive domain.

While our test automation framework is independent on the concrete model-
ing language1, we sketch an UML2-based modeling formalism in Section 3 which
is suitable to specify the expected behavior of synchronous concurrent real-time
systems, in order to illustrate the main contribution of the paper.

Related Work. Modeling formalisms for synchronous systems are of consider-
able practical value in the field of safety-critical control systems. The formalism
presented here is based on UML2.0. A more powerful formalism is SCADE [8]
which is widely used in the avionic domain. Our main contribution would work
equally well for the SCADE modeling language, because it does not depend on
the concrete syntax “front-end”, but only on the synchronous paradigm and the
availability of the transition relation.

Our abstract interpretation approach is inspired by Cousot’s work [5, 4] and
uses facts from interval analysis [12]. The Astrée abstract interpreter [6] is spe-
cialized on the analysis of embedded C-code and can also handle the effect of
concurrent access to global program variables. Our abstract interpretation al-
gorithm does not compete with, but is somewhat complementary to Astrée and
its underlying methods: our abstract interpreter aims at the analysis of models
on a more abstract level than C code. Similar to Timed Automata, it takes into
account the valuations of dense-time clocks (“timers”) which is not needed in
the domain where Astrée is applied. Moreover, the modeling formalism used in
this paper follows closely Harel’s Statecharts in the semantics presented in [10]
with synchronous execution of enabled transitions in parallel components, while
Astrée operates on the semantics of a restricted class of C programs, where
concurrency is expressed by interleaving of actions.

The problem of deciding the satisfiability of logical (first order) formulas
where propositions may be constraints of certain background theories is com-
monly referred to as the Satisfiability Modulo Theories (SMT) problem. SMT
solvers have been developed for numerous theories and combinations thereof.
In recent years SMT solvers have become important tools for software verifica-
tion [14]. Like most other state-of-the-art SMT solvers [2, 13] solving these kind
of formulas our SMT solver, SONOLAR, is based on the bit-blasting approach
that translates an SMT formula to a purely propositional formula and lets a SAT
solver decide the satisfiability. Various extensions to pure bit blasting have been
proposed [3, 1, 16] which have inspired the SONOLAR implementation, and our
solver was ranked second in the division for solving closed quantifier-free for-
mulas over fixed-size bit vectors (QF BV) at the Satisfiability Modulo Theories
Competition (SMT COMP 2010).

2 SMT Solver

Our SMT solver SONOLAR follows the bit blasting approach, so Boolean, in-
tegral and floating-point variables are encoded as fixed-width bit vectors, where

1 An algorithm to generate the transition relation Φ from a given abstract syntax
representation of the model suffices in order to support the formalism.

the bit widths are given by the associated data types. Arithmetic and logical op-
erations on these variables are transformed to Boolean constraints that encode
the exact relationship of input and output bits. This allows us to have bit-precise
results in the presence of modular arithmetic.

To this end the SMT formula is first transformed into a directed acyclic for-
mula graph, where each single arithmetic and logical operation is represented as
a single node. Structural hashing ensures that structurally identical terms are
shared among expressions. On this formula graph a series of word-level simpli-
fications like the evaluation of constant expressions, normalizations and term
rewriting is performed. This word-level formula graph is then transformed to a
bit-level, purely propositional And-Inverter Graph (AIG). AIGs are commonly
used among recent bit vector SMT solvers for synthesising propositional for-
mulas [2, 13]. AIGs represent propositional formulas as directed acyclic graphs
(DAGs), where nodes are propositional variables or two-input AND-gates and
edges may be optionally inverted. These AIG nodes are structurally hashed, too,
and allow us to perform simplifications on bit level.

Although a number of competitive SAT solvers accept AIGs as input [15,
11], most SAT solvers require the input to be in CNF. To generate the CNF, for
each node of the AIG a boolean variable is introduced. Each node with possibly
inverted inputs n ⇔ in1 ∧ in2 is then translated to (¬n∨ in1)∧ (¬n∨ in2)∧ (n∨
¬in1 ∨¬in2). For each root of the AIG an additional unit clause containing the
associated variable asserts the corresponding boolean formula to be either true
or false, respectively.

SONOLAR has the capability to be called incrementally. This technique
allows us to add constraints between solver runs and to add constraints that
are only valid for one run (so-called assumptions). The SAT solver can then
re-use conflict clauses learned in previous runs to speed up the following ones.

3 Modeling Formalism

In this section we sketch a modeling formalism for illustration purposes. It is
based on an UML2 profile, and Fig. 1 — 3 present a sample model specifying the
operation of an automotive controller handling turn indication and emergency
flashing. Each model is structured into hierarchic components operating concur-
rently. Fig. 1 shows the SUT interacting with the testing environment TE via
SUT input interfaces (TurnIndLeft,TurnIndRight) (positions (0,0), (1,0), (0,1)
of the turn indicator lever), EmerFlash (=1 if emergency flash button is pressed),
Voltage (percentage of the nominal voltage) and outputs (FlashLeft,FlashRight)
(state of turn indication lamps left and right). The legal ranges of variables are
specified by a model invariant (for example, TurnIndLeft/Right may not both
be 1 in a normal behavior test), and optionally the admissible TE behaviors can
be further restricted by associating nondeterministic timed state machines with
the TE model component.

In our example the SUT is further structured into sub-components FLASH -
and and OUTPUT CTRL. The former controls the decision whether or not to

OUTPUT_CTRLFLASH_CTRLTurnIndRight

Voltage

TurnIndLeft Left

Right

FlashLeft

FlashRight

SUT

EmerFlash

TE

INV =

SYSTEM

TE

not (TurnIndRight and TurnIndLeft)

Fig. 1. Complete system consisting of TE and SUT.

activate the turn indication lamps on the left-hand, right-hand or both sides.
The latter controls the flashing cycles and automatically switches the lamps off
if the actual voltage is less or equal 80% of the nominal voltage. This behavior
is encoded by means of state machines S1, S2 as shown in Fig. 2 and 3.

While the EmerFlash button is not pressed, state machine S1 resides in
control state EMER OFF, where the state of the turn indicator lever is sim-
ply passed on to OUTPUT CTRL via internal variables Left and Right, which
is expressed by the do-action and its associated assignments. As soon as the
EmerFlash button is pressed a state machine transition to basic control state
EMER ACTIVE is performed, where both Left and Right are switched to 1.
The state machine transitions inside higher-level control state EMER ON cope
with the situation where the turn indicator lever state changes while emer-
gency flashing is active: turn indication overrides emergency flashing (state
TURN IND OVERRIDE). When resetting the turn indication lever, emergency
flashing is resumed.

State machine S2 reacts on the status of Left, Right and Voltage. As long as
Voltage > 80, non-zero states of Left and Right lead to flash cycles with periods
of 560 time units. This is controlled by a clock variable t which is reset in basic
control states ON and OFF and leads to state machine transitions as soon as
the guards t ≥ 340 or t ≥ 220 become true. Semantically the clock is encoded as
an ordinary real-valued variable, and each clock reset corresponds to storing the
current model execution time t̂ in t. The guard conditions are then internally
evaluated as conditions t̂ ≥ t + 340 and t̂ ≥ t + 220, respectively.

The behavioral semantics of concurrent components is synchronous: both
state machines evaluate the same pre-state. If the guard conditions of some
transitions between control states evaluate to true a discrete model transition is
performed by deterministically and simultaneously firing the enabled transitions
with the highest priority in each component. The effect of each state machine
transition may consist in a change of control states accompanied by a write to
internal variables and outputs, while inputs remain unchanged. For calculating
these write effects all expressions on the right-hand sides of assignments are
evaluated in the pre-state, so that no evaluation order has to be considered. On
the other hand, synchronous assignments performed by concurrent components

to the same variables have to be consistent, otherwise a racing condition occurs
which has to be fixed in order to gain a valid model. Only if discrete state ma-
chine transitions are disabled, a delay model transition is performed: the model
execution time t̂ is advanced by a positive amount, but at most as up to a value
where the next timer condition might become true. New values may be placed
on the input interfaces, otherwise the model state remains unchanged.

[(TurnIndLeft or TurnIndRight)
 and
 (TurnIndLeft != Left1 or
 TurnIndRight != Right1)]

Left = TurnIndLeft;

[(Left1 or Right1) and

[EmerFlash]
EMER_OFF

EMER_ON

EMER_ACTIVE

TURN_IND_OVERRIDE

entry/ Left = TurnIndLeft;
Right = TurnIndRight;

entry/ Left = 1;
Right = 1;
Left1 = TunrIndLeft;
Right1 = TurnIndRight;

[not EmerFlash]

not (TurnIndLeft or
 TurnIndRight)]

do/

[not (TurnIndLeft or TurnIndRight)]

Right = TurnIndRight;

S1

Fig. 2. Statechart S1 associated with component FLASH CTRL, controlling decisions
“flash left” and “flash right”.

4 Abstract Interpretation

In this section the detailed specification of the abstract interpretation algorithm
is presented. The exposition requires some basic knowledge about lattices and
Galois connections, for details readers are referred to [7].

Abstract Domains. Abstract interpretation performs over-approximation on pos-
sible model computations. For this approximation we map the concrete data
types of state space components to so-called abstract domains which are lat-
tices suitable for approximating concrete value sets for each state component.
(1) The basic control states ℓ ∈ Loc(s) of each state machine s in the model
have concrete data type Boolean, σ(ℓ) = 1 signifying that the state machine
resides in ℓ when the system is in state σ. We use the power set lattice 2Loc(s) as
the associated abstract domain: an element {ℓ1, . . . , ℓk} ∈ 2Loc(s) represents the
knowledge that the state machine currently resides in one of the basic control
state ℓ1, . . . , ℓk. We use symbol ℓs

A to denote this set-valued control state ab-
straction for state machine s. (2) Model variables of type Boolean are mapped

IDLE

FLASHING

ON OFF

entry/

do/

t = 0;
FlashLeft = Left;
FlashRight = Right;

FlashLeft = Left;
FlashRight = Right;

[not (Left or Right) or Voltage <= 80]

[t >= 340]

[t >= 220]

entry/ t = 0;
FlashLeft = 0;
FlashRight = 0;

entry/ FlashLeft = 0;
FlashRight = 0;

S2

[(Left or Right) and Voltage > 80]

Fig. 3. Statechart S2 associated with component OUTPUT CTRL managing indica-
tion lights and associated flash cycles.

to the lattice L(B) = {⊥, 0, 1,⊤} with ⊥ ⊑ 0, 1 ⊑ ⊤ and 0, 1 incomparable.
Floating point and integer types are mapped to their associated interval lat-
tices. Recall that the lattice join operation is defined by [x0, x1] ⊔ [y0, y1] =def
[min(x0, y0),max(x1, y1)] for interval lattices, and that the meet operation is just
set intersection, [x0, x1] ⊓ [y0, y1] =def [x0, x1] ∩ [y0, y1]. Model execution time t̂

and timer variables are abstracted to intervals over non-negative reals.

Galois Connection. A set U =def {σ1, . . . , σn} of concrete model states is
mapped to its abstraction σA =def U⊲ by setting σA(x) = [min({σ(x) | σ ∈
U}),max({σ(x) | σ ∈ U}) for integer and float variable symbols x. For Booleans
b we define σA(b) = ⊤ if {σ(b) | σ ∈ U} = {0, 1}, σA(b) = 0 if {σ(b) | σ ∈
U} = {0} and σA(b) = 1 if {σ(b) | σ ∈ U} = {1}. Furthermore, σA(ℓs

A) = {ℓ ∈
Loc(s) | ∃σ ∈ U : σ(ℓ) = 1} for the abstracted locations ℓs

A of state machines s.
Conversely, each abstract state σA may be mapped to a set of concrete states
by means of the mapping

σA
⊳ =def {σ | ∀ b : σ(b) ⊑ σA(b) ∧ ∀ x : σ(x) ∈ σA(x) ∧

∀s : ∀ ℓ ∈ Loc(s) : σ(ℓ) = 1 ⇔ ℓ ∈ σA(ℓs
A)}

where b denotes Booleans, s state machines and x floating point and integer
model variables. The pair of mappings ⊲, ⊳ represents a Galois connection and
its characteristic property a⊲ ⊑2 b ⇔ a ⊑1 b⊳ ensures that the algorithm intro-
duced below really computes an over-approximation of all possible computation
states.

Goal of the Abstract Interpretation Algorithm. The abstract interpretation al-
gorithm starts from the abstraction σ0

A = {σ0}
⊲

of a concrete pre-state σ0 and
calculates a single bounded abstract computation sequence 〈σ0

A, . . . , σc
A〉 such

that each concrete computation 〈σ0, . . . , σc〉 starting in σ0 is approximated by
the abstract sequence in the sense that

∀i ∈ {0, . . . , c} : σi ∈ σi
A

⊳

Now suppose that the test case goal G is fulfilled in state σc of the concrete
computation. Interpreted as a Boolean function on the state space, predicate G

may be lifted to the abstract domain by defining

[G](σA) =

1 if ∀σ ∈ σA
⊳ : G(σ) = 1

0 if ∀σ ∈ σA
⊳ : G(σ) = 0

⊤ otherwise

Since σc ∈ σc
A

⊳ and G(σc) = 1, evaluation of [G](σc
A) will result in 1 or ⊤,

that is, 1 ⊑ [G](σc
A). Conversely, G will not hold in any σi as long as [G](σi

A) = 0.
Therefore the objective of the abstract interpretation algorithm is to return the
smallest c0 ≥ 0 such that 1 ⊑ [G](σc0

A) holds. Given this c0 the SMT solver can
try to solve the test case constraint satisfaction problems tc(c,G) specified in
(1) with c = c0, c0 + 1, . . ., and without having to investigate the feasibility of
tc(m,G) for m < c0. Since the abstract interpreter operates significantly faster
than the SMT solver, a considerable speed-up can be expected from the fact
that the solver skips these tc(m,G).

Abstract Interpretation Algorithm – Introductory Example. To give an intuitive
idea of the abstract interpretation algorithm specified formally further below,
we assume that our sample system is initialized in a state σ with σ(t̂) = 0
and σ(TurnIndLeft/Right) = 0, σ(EmerFlash) = 1, σ(Voltage) = 85 and all
internal variable and output valuations equal to zero. Suppose further that
our test objective is to cover the condition G ≡ S1.ACTIVE.OVERRIDE ∧
S2.FLASHING.OFF starting from this given initial system state. If the abstract
interpretation function exploreGoal() is called with c = 6 then the algorithm
explores abstract interpretation states as shown in the table below, where the
columns have the following meaning: TT = transition type (DIScrete or DELay
or both (DD)); Si = sets of possible control states state machines S1, S2 reside
in; TIL, TIR, E, V = input valuations for TurnIndLeft,. . . ,Voltage; L, R, L1,

R1 = valuations of model variables Left,. . . ,Right1; t,̂t = valuations of timer
variable t and current execution time t̂; FL, FR valuation of outputs FlashLeft,
FlashRight.

The abstract interpretation algorithm starts by mapping the concrete initial
state into its abstract counterpart; the result is displayed in row 0 of the table
below: control states are mapped to singleton sets because there is no uncertainty
which locations are active. Boolean values are represented in L(B) in the same
way, and numeric values are mapped to their single-point interval counterparts.
As a result of the initial state valuation only discrete transitions are possible
until abstract state 2 is reached, from where only a delay transition may occur.
After the delay the inputs may assume arbitrary values, so they are marked by
⊤. Moreover, the model time t̂ may have been increased by some positive amount

less or equal 340, where the next timer is bound to elapse. The next transition
leading to abstract state 4 may be discrete or a delay, and – due to the full-
range input valuations – all guards depending on inputs evaluate to ⊤. As a
consequence abstract state 4 admits arbitrary control states, and [G] evaluates
to ⊤, so this is the first state where a solution for G may be found. The abstract
interpretation algorithm returns with c0 = 4 and also provides a constraint

β ≡ ACT1 ∧ IDLE1 ∧ t1 = 0 ∧ t̂1 = 0 ∧
ACT2 ∧ ON2 ∧ t2 = 0 ∧ t̂2 = 0 ∧
ACT3 ∧ ON3 ∧ t3 = 0 ∧ t̂3 ∈ (0, 340] ∧
t4 ∈ [0, 340] ∧ t̂4 ∈ (0, 679]

indicating the restrictions valid at each concrete computation step. This may be
used by the SMT solver to reduce the search space.

TT S1 S2 TIL TIR E V L R L1 R1 t t̂ FL FR

0. {OFF} {IDLE} 0 0 1 [85,85] 0 0 0 0 [0,0] [0,0] 0 0
1. DIS {ACT} {IDLE} 0 0 1 [85,85] 1 1 0 0 [0,0] [0,0] 0 0
2. DIS {ACT} {ON} 0 0 1 [85,85] 1 1 0 0 [0,0] [0,0] 1 1
3. DEL {ACT} {ON} ⊤ ⊤ ⊤ [0,100] 1 1 0 0 [0,0] (0,340] 1 1
4. DD {OFF,

ACT,
OVR}

{IDLE,
ON,
OFF}

⊤ ⊤ ⊤ [0,100] ⊤ ⊤ 0 0 [0,340] (0,679] ⊤ ⊤

Main Function. The top-level function of the abstract interpretation algorithm
operates as specified in Fig. 4. Function exploreGoal() is invoked on the current
concrete system state σ, and inputs the test case goal G according to Formula (1).
Integer c > 0 denotes the limit of interpretation steps to be performed. Output β

represents a constraint to be constructed by the function. On function return, β

contains restrictions about the possible computations states leading to a solution.
This auxiliary information may be used by the SMT solver to restrict the search
space. The assignment σA := {σ}

⊲
creates the abstract start state associated

with input σ. In each loop cycle i an abstract interpretation step is performed
by means of procedure call absInt(σA, σ′

A), creating a new abstract state σ′
A.

The knowledge that each concrete computation state σi is contained in σ′
A

⊳
is

exploited by adding conjuncts to constraint β, restricting the possible valuations
of σi: for each state machine s the disjunction of all possible basic control states
ℓ the machine may reside in are added as a conjunct to β. Observe that index
i adds version information to the basic location identifier ℓ, since this applies
to the ith computation state reachable from start state σ. Further restrictions
added to β are the bounds for the model execution time t̂ in step i and intervals
for admissible variable values in this step.

Condition (1 ⊑ [G](σ′
A)) is evaluated to check whether there is a chance of

solving the test case goal in step i. If this is the case the function returns with
value i as the first possible computation step number where G may become true,
and β contains the restrictions accumulated up to step i. If [G](σ′

A) evaluates
to 0, the next interpretation cycle is prepared. If limit c is reached without
encountering an abstract state satisfying (1 ⊑ [G](σ′

A)) the function returns
with code -1.

function exploreGoal(σ : S, G : BExpr, c : N,out β : BExpr) : Z

begin

i := 1; σA := {σ}⊲ ; β := 1; r := −1;
while i ≤ c do

absInt(σA, σ′

A);
foreach s ∈ SM do β := β ∧ (

∨

ℓ∈σ′

A
(ℓs

A
)
ℓi); enddo

β := β ∧ t̂i ∈ σ′

A(t̂) ∧ (
∧

x∈I
xi ∈ σ′

A(x)) ∧ (
∧

v∈L∪O
vi ∈ σ′

A(v));

if (1 ⊑ [G](σ′

A)) then r := i; break; endif

σA := σ′

A; i := i + 1;
enddo

exploreGoal := r;
end

Fig. 4. Top-level procedure of the state space exploration by means of abstract inter-
pretation. Sets I, L, O denote input, local and output variables, respectively.

Abstract Interpretation Step Procedure. Fig. 5 shows the procedure absInt() for
performing one abstract interpretation step: if the trigger condition for discrete
transitions evaluates to 1 in the current abstract state σA then only an abstract
interpretation of possible discrete transitions takes place. If the condition for a
discrete model transition to be enabled, [triggerD](σA), is guaranteed to be false,
only a delay can occur. In that case, function absIntTime() (Fig. 6) calculates
the boundaries of the new execution time stamp t̂, and the abstractions of all
input values x are set to their maximal ranges Dx

⊲ ∈ L(Dx)2. If [triggerD](σA)
evaluates to ⊤, both discrete and delay transitions have to be taken into account
and, consequently, the potential post-state is the maximum σ1

A ⊔σ2
A of the post-

states resulting from these two transition types.

Abstraction of Delay Transitions. The calculation of the time bounds for a delay
transition is subtle, as can be seen in Fig. 6: The maximal delay may be infinite
if no active timer is being observed in the current system state abstracted by σA.
Therefore the variable limit which is used to store intermediate and final upper
bounds of the time growth is initialised by ∞3. If some timers are active, the
delay is limited by the shortest value at which some state machine is guaranteed
to fire a discrete transition. Therefore a loop over all state machines indexed
by i ∈ 1, . . . , p is performed, and the maximal delay which may occur in one
state machine is stored in smLimit. To determine smLimit, the minimal delay

2 Dx denotes the concrete data type of x. Operator ⊕ used in Fig. 5 denotes functional
overriding: function f ⊕ {x 7→ y} coincides with f(z) for all arguments z 6= x, but
maps x to y.

3 In concrete test equipment implementations some suitable value greater than the
longest timeout value defined in the SUT model is used instead of ∞, in order to
guarantee new stimuli from test equipment to SUT within a reasonable amount of
time.

locLimit for each location the state machine may currently reside in, where a
timed transition guard is guaranteed to become true is determined. The smallest
smLimit-value calculated over all state machines is the global upper bound limit
to be returned as the upper bound of the new t̂-value4, because at least one state
machine is guaranteed to fire a discrete transition until limit. Since some time
has to pass during delay transitions, the lower bound of the new t̂-value has to
be greater than the old lower bound σA(t̂).

procedure absInt(σA : L(S),out σ′

A : L(S))
begin

if [triggerD](σA) = 1 then

absIntDisc(σA, σ′

A);
elseif [triggerD](σA) = 0 then

σ′

A := σA ⊕ {t̂ 7→ absIntTime(σA)} ⊕ {x 7→ Dx
⊲ | x ∈ I};

else

absIntDisc(σA, σ1
A);

σ2
A := σA ⊕ {t̂ 7→ absIntTime(σA)} ⊕ {x 7→ Dx

⊲ | x ∈ I};
σ′

A := σ1
A ⊔ σ2

A;
endif

end

Fig. 5. Single step abstract interpreter.

Abstraction of Discrete Transitions. The abstract interpretation of a discrete
transitions is specified in Fig. 7. A partial auxiliary function ζ : V 6→

⋃

w∈V L(Dw)
is used for intermediate recordings of assignments to abstracted variables. For
each basic control state ℓ0 a state machine may potentially reside in, all em-
anating transitions from ℓ0 and its higher-level locations are investigated. If a
transition τ may fire, that is, if its abstracted trigger condition triggersi

(τ) eval-
uates to 1 or ⊤ in the pre-state σA, a copy σ1

A of the pre-state is first contracted,
using the knowledge that triggersi

(τ) must have evaluated to 1 in order to get
the effect of τ5.

This effect on the abstracted state space is then calculated by procedure
absIntTransEffect() which records these results by changing ζ: Suppose the effect
of the transition comprises a value assignment w := expr. If w is not yet in the
domain of ζ, this means that it is the first potential write to w during this
abstracted discrete transition. Therefore ζ’s domain is extended by setting ζ :=

4 For variables x interpreted in an interval lattice we use σA(x) and σA(x) to denote
the lower and upper bounds of their interval valuation, respectively.

5 For interval lattices we have natural contractors for arithmetic constraints: for ex-
ample in L(Z), C<(x < y; [x, x], [y, y]) =def ([x, min(x, y − 1)], [max(x + 1, y), y])
defines contractions for x and y under the hypothesis that x < y evaluated to true.

function absIntTime(σA : L(S)) : IR+

begin

limit := ∞;
foreach i ∈ {1, . . . , p} do

smLimit := σA(t̂);

foreach ℓ0 ∈ σA(ℓi
A) do

locLimit := ∞;
foreach ℓ ∈ ℓ0..si, (ℓ, g, a, ℓ′) ∈ ωsi

(ℓ) do

if (∃g′, t, x : g ≡ (t̂ ≥ x + t ∧ g′)) ∧ [g′](σA) = 1 then

m := σA(x) + σA(t);
if m < locLimit then locLimit := m; endif

endif

enddo

if locLimit > smLimit then smLimit := locLimit; endif

enddo

if smLimit < limit then limit := smLimit; endif

enddo

absIntTime := (σA(t̂), limit];

end

Fig. 6. Function calculating the maximal time interval associated with a delay transi-
tion.

ζ⊕{w 7→ [expr](σ1
A)}, where [expr] is the lifted version of the assignment’s right-

hand side expression. The abstract expression evaluation is performed on the
contracted abstract state σ1

A. If w is already in dom ζ, this means that another
transition might also write to w. In order to approximate the discrete transition
effects in a conservative manner, we build the join of both potential effects, that
is, we set ζ := ζ ⊕ {w 7→ ζ(w) ⊔ [expr](σ1

A)}. Finally, absIntTransEffect() adds
the target basic control state associated with τ to the set qi of potential target
locations. This join of potential write results and target locations ensures that
all potential concrete target states σi are really contained in σ′

A
⊳

.

If no transition emanating from a location in ℓ0..si is guaranteed to fire,
that is, triggersi

(τ) ∈ {0,⊤} for all of these τ and therefore leave = 0, the do
actions associated with the locations in ℓ0..si may be executed. Their effect on
the abstract state space is calculated by absIntDoEffect() which works similar
to absIntTransEffect(), but adds the source location ℓ0 to qi and operates on
a copy of the source state contracted with the knowledge that all transition
triggers must have evaluated to 0, in order to get the effect of these do-actions.
At the end of procedure absIntDisc() the new abstract state σ′

A is constructed
by changing the pre-state σA with respect to the new sets of potentially active
basic control states and the new abstract valuations of variables that have been
potentially written to during the abstract interpretation step.

procedure absIntDisc(σA : L(S),out σ′

A : L(S))
begin

ζ := ∅; (q1, . . . , qp) := (∅, . . . , ∅);
foreach i ∈ {1, . . . , p} do

foreach ℓ0 ∈ σA(ℓi
A) do

leave := 0;
foreach ℓ ∈ ℓ0..si, τ ∈ ωsi

(ℓ), τ ordered by priority do

if 1 ⊑ [triggersi
(τ)](σA) then

σ1
A := σA; C(triggersi

(τ), σ1
A);

absIntTransEffect(σ1
A, τ, ζ, qi);

if 1 = [triggersi
(τ)](σA) then leave := 1; break; endif

endif

enddo

if ¬leave then

σ2
A := σA; C(

∧

ℓ∈ℓ0..si, τ∈ωsi
(ℓ)

¬triggersi
(τ), σ2

A);

absIntDoEffect(σ2
A, ℓ0, ζ, qi);

endif

enddo

enddo

σ′

A := σA ⊕ {ei 7→ qi | i = 1, . . . , p} ⊕ {w 7→ ζ(w) | w ∈ dom ζ};
end

Fig. 7. Discrete transition abstract interpreter.

5 Conclusion and Evaluation Results

The evaluation of the combined abstract interpretation, SMT-solving and back-
tracking approach has been performed using five real-world test models for the
system test of automotive control functions which are intellectual property of
Daimler6: (1) Model TURNIND specifies all automotive functions acting on
the turn indication lights, such as turn indication and emergency flashing. (2)
Models STOP-START and (3) STOP START SYS specify the behavior of the
stop-start mechanism controlling automated engine cutoff when stopping at red
lights on HW/SW integration and system integration level, respectively. (4)
Model POWERWINDOW specifies the functionality of the electronic window
regulation, including detection of and reaction on blocking window states, and
specialized functions like automated opening of windows for the purpose of ven-
tilation in crash situations and automated closing of windows when entering
tunnels. (5) Model POWERTRUNK describes the functionality of the electronic
closing mechanism of the trunk lid. Although none of these models involves
floating-point arithmetic our system is capable of handling these.

6 It is currently discussed with Daimler, whether at least one of these models may be
published because this would represent valuable information for tool benchmarking.
We hope that this will be the case by the time of the NFM2011 conference.

For the evaluation, coverage goals were defined for each model. These goals
consisted in specific state machine transitions to be reached, which was equiva-
lent to coverage of certain requirements. Then the test case/test data generation
was activated with different techniques, and the execution times have been mea-
sured and inserted into the table shown in Fig. 8. This table shows considerable
performance improvements for the situations where abstract interpretation is
used, with very few outliers where the abstract interpretation leads to a slow-
down. Without backtracking the generator was 1.44 times faster on average when
using the abstract interpreter. The results were even better with backtracking
enabled: with abstract interpretation we observed an average acceleration by a
factor of 3.09. This dramatic speed-up when using the abstract interpreter in
combination with backtracking can largely be attributed to the fact that the
abstract interpreter is very fast at immediately discarding backtracking points
from which no new goals can be covered, whereas the solver would spend a lot
of time to do so.

While in our current approach the algorithm stops unrolling the transition
relation as soon as at least one goal can be satisfied it is generally desirable to
satisfy as many goals as possible within a sequence of transitions. Therefore we
plan to explore the possibility to extend the present constraint satisfaction prob-
lem to an optimization problem that aims to maximize the number of satisfied
goals. The necessary means to achieve this are provided by Partial MAX-SAT
techniques [9].

Model/Config #gt #s ds (#gr) dsa (#gr) dsb (#gr) dsba (#gr)

TURNIND/1 15 35 5.49 (3) 2.95 (3) 18.06 (3) 3.45 (3)
TURNIND/2 27 35 53.26 (7) 20.91 (7) 82.21 (7) 22.08 (7)
TURNIND/3 46 35 11.68 (8) 7.67 (8) 45.15 (8) 9.70 (8)
TURNIND/4 9 35 5.30 (2) 3.17 (2) 21.39 (2) 3.81 (2)
TURNIND/5 17 35 5.19 (3) 2.94 (3) 18.08 (3) 3.56 (3)
TURNIND/6 11 35 5.32 (2) 2.54 (2) 17.43 (2) 3.02 (2)
POWERTRUNK/1 2 50 55.68 (1) 67.90 (2) 109.93 (2) 67.71 (2)
POWERWINDOW/1 58 40 27.99 (9) 18.18 (9) 89.15 (9) 21.58 (9)
STOP-START/1 13 50 269.62 (3) 376.01 (3) 436.06 (13) 546.09 (13)
STOP-START/2 9 50 3.23 (9) 5.83 (9) 3.20 (9) 5.83 (9)
STOP-START/3 19 50 378.67 (15) 434.45 (15) 619.66 (15) 451.08 (15)
STOP-START/4 28 50 10.93 (17) 10.19 (17) 69.99 (17) 14.07 (17)
STOP-START/5 32 50 6.59 (7) 2.96 (7) 18.44 (7) 3.72 (7)
STOP-START/6 36 50 6.60 (7) 2.96 (7) 18.40 (7) 3.71 (7)
STOP-START/7 36 50 217.12 (36) 191.28 (36) 217.58 (36) 191.39 (36)
STOP-START/8 28 50 998.58 (28) 478.49 (28) 995.35 (28) 477.65 (28)
STOP-START/9 4 50 340.88 (4) 365.99 (4) 341.35 (4) 367.15 (4)
STOP-START/10 12 50 331.50 (8) 358.51 (8) 479.75 (8) 356.80 (8)
STOP-START/11 26 50 337.62 (18) 302.26 (18) 508.46 (18) 315.20 (18)
STOP START SYS/1 21 50 588.45 (10) 523.12 (10) 833.10 (21) 648.90 (21)

#gt: number of goals to be covered, #s: maximal number of transition steps, ds:
execution duration [s] with solver, dsa: execution duration [s] with solver and abstract
interpretation, dsb: execution duration [s] with solver and backtracking, dsba: execution
duration [s] with solver, abstract interpretation and backtracking, #gr: number of
covered goals

Fig. 8. Test generation results.

References

1. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of FMCAD 2009. pp. 69–76. IEEE (2009)

2. Brummayer, R.: Efficient SMT Solving for Bit-Vectors and the Extensional Theory
of Arrays. Ph.D. thesis, Johannes Kepler University Linz, Austria (November 2009)

3. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Proceedings of TACAS 2007.
Lecture Notes in Computer Science, vol. 4424, pp. 358–372. Springer (2007)

4. Cousot, P.: Abstract interpretation: Theory and practice (11–13 April 2000)
5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 238–252. ACM Press, New York, NY, Los Angeles,
California (1977)

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D., Rival, X.:
Combination of abstractions in the Astrée static analyzer. In: Okada, M., Satoh,
I. (eds.) Eleventh Annual Asian Computing Science Conference (ASIAN’06). pp.
1–24. Springer, Berlin, Tokyo, Japan, LNCS (Dec 6–8 2006), (to appear)

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press (2002)

8. Esterel Technologies: SCADE Suite Product Description,
http://www.estereltechnologies.com

9. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A., Gomes, C.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2006, Lecture Notes
in Computer Science, vol. 4121, pp. 252–265. Springer Berlin / Heidelberg (2006)

10. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Transactions
on Software Engineering and Methodology 5(4), 293–333 (October 1996)

11. Jain, H., Clarke, E.M.: Efficient SAT Solving for Non-Clausal Formulas using
DPLL, Graphs, and Watched Cuts. In: 46th Design Automation Conference (DAC)
(2009)

12. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer-
Verlag, London (2001)

13. Jung, J., Sülflow, A., Wille, R., Drechsler, R.: SWORD v1.0. Tech. rep. (2009),
sMTCOMP 2009: System Description

14. Ranise, S., Tinelli, C.: Satisfiability modulo theories. TRENDS and
CONTROVERSIES–IEEE Magazine on Intelligent Systems 21(6), 71–81
(2006)

15. Sörensson, N.: MiniSat 2.2 and MiniSat++ 1.1. Tech. rep. (2010), SAT-Race 2010:
Solver Descriptions

16. Wille, R., Fey, G., Große, D., Eggersglüß, S., Drechsler, R.: SWORD: A SAT like
Prover Using Word Level Information. In: Proceedings of VLSI-SoC 2007. pp. 88–
93 (2007)

