
OBJECT CODE VERIFICATION FOR

SAFETY-CRITICAL RAILWAY CONTROL SYSTEMS

Jan Peleska1 and Anne E. Haxthausen2
1Universität Bremen, TZI
Address: TZI, P.O. Box 330440, D-28334 Bremen, Germany
Phone: +49-421-218-7092, Fax: +49-421-218-3054 , E-Mail: jp@tzi.de
2Technical University of Denmark, Informatics and Mathematical Modelling
Address: IMM/DTU, building 322, DK–2800 Kgs.Lyngby, Denmark
Phone: +45-45-257510, Fax: +45-45-930074 , E-Mail: ah@imm.dtu.dk

Abstract: In this article we describe a method for fully automated object code
verification, applicable to railway control systems developed within a framework
previously proposed by the authors. This allows us to apply arbitrary off-the-
shelf compilers in a safety-critical context without having to perform expensive
compiler validations. Within the restrictions of the framework, the object code
verification is less complex than the general problem which has been already
been investigated by other authors. Therefore it can be performed quite effi-
ciently: High-level code M written in SystemC, C or C++ and the associated
assembler code A generated by the compiler are both lifted to transition system
models T (M), T (A), respectively, representing their behaviour. A generic the-
ory containing equivalence preserving transformations on transition systems is
elaborated and proven. Using a pattern matching system on these behavioural
models, the transformations are applied with a strategy to transform T (M) into
T (A) or vice versa. If the transformation succeeds, this establishes behavioural
equivalence between M and A.

Keywords: Verification tools, object code verification, railway control systems

1 . INTRODUCTION

Motivation. In this article, we de-
scribe a method for fully automated
object code verification, applicable
for railway control systems developed
within a development framework pre-
viously proposed by the authors. The
work presented in this article rep-
resents new results obtained within
a joint effort of several authors in
the field of domain-specific descrip-
tion formalisms, model-based devel-
opment, formal verification and au-
tomated HW/SW integration testing
for embedded railway control systems,
previously published in (Peleska et
al., 2004; Haxthausen and Peleska,
2000; Haxthausen and Peleska, 2002;
Berkenkötter, 2006) and further refer-
ences given in these publications.

Automated object code verifica-
tion for railway control systems is
motivated by the fact that applica-

ble standards for these safety-critical
applications, in particular (European
Committee for Electrotechnical Stan-
dardization, 2001), require a substan-
tial justification with respect to the
consistency between high-level soft-
ware code (e. g. C/C++ programs)
and the object code generated by the
associated compilers. The conven-
tional way for this is to validate the
compiler. This validation, however,
is very time-consuming and has to
be performed again whenever mod-
ifications of the compiler – such as
optimisations or the introduction of
new pragmas – have been performed.
Moreover, these validations are still
far from being formal proofs, so er-
rors may still be present in validated
compilers. Strategies for fully formal
compiler verification have been elabo-
rated by several authors – see (Goos
and Zimmermann, 1999) and the ref-
erences listed there. According to

our knowledge, however, formally ver-
ified compilers for the development
of railway control systems of high-
est criticality level (Safety Integrity
Level SIL-4) (European Committee
for Electrotechnical Standardization,
2001) are currently not used in prac-
tice.

The object code verification ap-
proach is complementary to compiler
verification: An arbitrary compiler is
used, and instead of a compiler valida-
tion, the generated object code is ver-
ified against its “specification”, that
is, the associated high-level code. At
first glance, object code verification
has a draw-back when compared to
compiler verification: While the lat-
ter is done “once and for all”, object
code verification has to be performed
whenever a newly compiled program
is “finalised” to become operational in
the target environment. But indus-
trial practice shows that compiler up-
dates occur quite frequently, so that
a considerable number of non-trivial
re-verifications have to be performed.
In contrast to that, object code ver-
ification can be fully automated and
reasonably fast, if the compiled code
originates from high-level programs
strictly adhering to certain program-
ming patterns. While this assump-
tion is certainly not true for arbitrary,
manually written, and, in particular,
object-oriented code, observation of
these patterns can be easily enforced
for high-level source code generated
from abstract specification models in
an automatic way.

Related Work. Code validation –
that is, the investigation of implemen-
tation relations between high-level
and low-level programming code – has
been investigated by several authors,
see (Pnueli et al., 1998) for an ap-
proach that has influenced our work in
a considerable way. While our results
have a similar formal basis – for ex-
ample, our notion of I/O-equivalence
introduced in Section 4 is a special-
isation of the “correct implementa-
tion relation” defined in (Pnueli et
al., 1998) – we exploit the specific re-
strictions of our model-based develop-
ment framework in order to simplify
the equivalence proofs in a consider-
able way. In particular, our restric-
tion to integer data types – which is
possible and suitable for the railway
domain but would not be acceptable
in other application areas – and the

utilisation of a simple programming
model (Section 3) lead to mechanised
proof techniques which can be based
on pattern matching and an associ-
ated generic theory describing equiv-
alence preserving transformations for
these patterns (Section 4).

The I/O transition systems serv-
ing as behavioural models in this ar-
ticle have a rather wide application
range, see (Badban et al., 2006) for an
example from the field of automated
hybrid systems testing.

Paper Overview. In order to make
this article sufficiently self-contained,
we give an overview of the complete
model-based development and veri-
fication approach in the context of
which the object code verification is
taking place in Section 2. In Sec-
tion 3 we introduce the controller
model from which the object code is
generated. Furthermore, in Section 4,
we introduce some theoretical founda-
tions needed for the object code veri-
fication. Then in Section 5 a descrip-
tion of our method for object code ver-
ification is given. Section 6 presents
the conclusion.

2 . MODEL DEVELOPMENT
AND VERIFICATION

APPROACH

Our general strategy for model-driven
development and automated verifica-
tion and testing of railway control sys-
tems is to go through the following
steps illustrated in Figure 1:

1. Domain-specific model cre-
ation and verification: The rail-
way specialists describe domain-
specific details (like station geogra-
phy and train routes) of the sys-
tem to be developed in a domain-
specific formalism which is encoded as
a UML 2.0 profile (Haxthausen and
Peleska, 2002; Berkenkötter, 2006).
The profile has a formally defined
static semantics, so that each concrete
model D – expressed as an object di-
agram generated within the rules of
the profile – can be verified against
constraints specifying the rules for
models which are admissible with re-
spect to syntax and static semantics.

2. Controller model genera-
tion: The domain-specific model D
is automatically transformed into

Domain of Control
(Physical Model)

UML2.0 / RCSD Profile

Controller Generic Re−Usable Library

Verification
Conditions

Design Patterns

Safety−
related
Verification
Conditions

Φ

Verification of
Safety Properties

Verification
Condition
Generation

Intermediate Model Level − IO−Safe Transition Systems (SystemC)

Configuration
Data

Pattern
Instance

Shared
Variable
Interface

Data Code

Machine Code / Data Level

Integrated Hardware

and

Software

Formal Controller Model

Test
HW/SW Integration

Model Transformation

Model compilation/linkage
Abstraction &
Equivalence
Check

HW/SW Integration

Physical Model
Formal

Fig. 1. Model-driven development and verification steps.

a behavioural controller model M
with transition system semantics, ex-
pressed in SystemC (Peleska et al.,
2004). To be more specific, the con-
troller model M is a generic design
pattern instantiated with configura-
tion data obtained from the domain-
specific model D.

3. Controller model verification:
Together with the controller model
M, a behavioural physical model P
(describing in SystemC how physical
devices like signals are behaving) and
a set of verification obligations Φ are
generated. Next it is verified that
the verification obligations Φ imply
that the controller model M in con-
current combination with the physi-
cal model P is guaranteed to fulfil its
safety properties (as, for example, the
requirement that trains should never
meet within a track segment or on
a point). Finally, the obligations Φ
are discharged by means of an induc-
tive proof strategy, where the induc-
tion step is performed using bounded
model checking techniques (Peleska et
al., 2004).

4. Code generation: The con-
troller model M and its configuration
data are compiled into object code
and data with conventional C/C++
compilers. This results in an assem-
bler “model” A. Since the SystemC
model conforms to a number of cod-
ing patterns and interface restrictions
which can be easily enforced on typi-
cal controller hardware and since com-
piler optimisations are not used for
safety-critical applications, A also ad-
heres to a set of simple “low-level pat-
terns”.

5. Code verification: The assem-
bler “model” A is verified to be be-
havioural equivalent to the controller
model M. Section 5 explains how
that is done.

6. Hardware/Software Integra-
tion and Test: Finally the correct-
ness of the hardware/software integra-
tion is automatically tested, following
the concepts described in (Badban et
al., 2006).

3 . CONTROLLER MODEL

In this section we give a short
overview of the controller model M
specified using SystemC and explain
it behaviour in an intuitive way. The
precise behavioural model semantics
will be introduced in Section 5 be-
low. More details about the model
and its associated safety verification
have been described in (Peleska et
al., 2004).

Interfaces. Controller M monitors
the outputs of track elements whose
state is updated and relayed to M by
means of shared variable arrays (lo-
cated, for example, in a DMA area
where the interface controller may
place the data), such as actsig[i]
(the actual state of signal i , en-
coded by integral numbers represent-
ing HALT and GO), actpt[j] (ac-
tual state of point j) , actsens[k]
(the actual state of sensor k , indi-
cating HI if a train passes and LO
otherwise), and req[r] (request of a
train to enter route r). The controller
acts on signals and points by send-
ing control commands on output ar-
rays reqsig[i] (requested – poten-
tially new – state of signal i) and
reqpt[j] (requested state of point j).

Behaviour. The main task of the
controller is to switch points and sig-
nals in such a way that route requests
of trains are granted without impair-
ing the safety of the railway network.
This is achieved by (1) keeping track
of assigned routes, using internal state
variables of M, (2) evaluating con-
flicts of requested routes with others
currently assigned, (3) monitoring the
consistency between requested and ac-
tual state of track elements and (4)
by setting the points associated with
an assigned route appropriately before
granting it to a train by setting the as-
sociated signal to GO.

Programming Model. The Sys-
temC controller models M are imple-
mented using a main loop, so that
each execution cycle has four phases:
In the input phase all current values
of input signals are copied to (global)
shadow variables, in the processing
phase signals are neither read nor up-
dated, but global or local variables
are processed. In the wait phase the
system “spins” in an active wait loop

without side effects, and in the out-
put phase the states of global vari-
ables shadowing outputs are copied
to the corresponding output signals.
The objective of the wait phase is to
ensure constant loop frequency

f = 1
∆(in)+∆(proc)+∆(wait)+∆(out)]

[Hz]

The durations ∆(in) and ∆(out) of
input and output phases, respec-
tively, may be assumed to be con-
stant values, since on machine level
they consist of a constant number
of address calculations and move op-
erations (caching effects can be ne-
glected). The duration of the pro-
cessing phase, however, may vary in
each loop, so that the objective of the
wait period is to ensure an approx-
imately constant value for const =
∆(proc) + ∆(wait). An excessive du-
ration of ∆(proc) > const would lead
to a fail-safe halt of the system, so
that we can rely on the system to ei-
ther process main loop cycles in con-
stant time or to stop. The wait phase
is implemented using the time stamp
counter of the CPU. For the remain-
der of this article this phase will ig-
nored.

4 . THEORETICAL
FOUNDATIONS

In this section we will introduce I/O-
safe transitions systems (IOTS), an
associated equivalence relation and a
generic theory containing theorems
on equivalence-preserving transforma-
tions of IOTS. As will be shown in
Section 5 below, IOTS serve as be-
havioural models for both SystemC
programs and their associated assem-
bler programs. By application of the
generic theory, I/O-equivalence be-
tween SystemC and assembler pro-
grams can be established in a straight-
forward way.

4.1 I/O-Safe Transition Sys-
tems

An IOTS is defined as a quadru-
ple T = (Loc, Init , V ,Trans). The
set of locations Loc is partitioned
into pairwise disjoint subsets Loc =
LocI ∪ LocO ∪LocP called input, out-
put and processing locations, respec-
tively. The variable space V is par-
titioned into mutually disjoint sub-
sets V = VI ∪ VO ∪ VP called in-
put, output and processing variables,

respectively. VP is further parti-
tioned into mutually disjoint subsets
VP = VL ∪ VG ∪ VC called local
and global variables and global con-
stants. Init ∈ Loc denotes the ini-
tial location of T . The set Trans
of transitions consists of quadruples
from Loc×Guard×Assign×Loc where
Guard is the set of transition guards
and consists of all quantifier-free pred-
icates over VP ∪ {false, true}. Ob-
serve that this implies that input or
output variables never occur in guard
conditions. The set of assignments
Assign is defined as the collection of
all pairs ~x := ~t where ~x is a vector
of variables from V − VI and ~t is a
vector of terms over V with the same
dimension as ~x . Now input locations
l ∈ LocI are distinguished by the fact
that all transitions entering l have as-
signments that only read from input
variables x ∈ VI and only change lo-
cals and globals from VG ∪ VL. Pro-
cessing locations l ∈ LocP have in-
coming transitions with guards and
assignments that only read processing
variables (from VP) and only change
global and local variables (from VG ∪
VL). Output locations l ∈ LocO have
incoming transitions with guards and
assignments only reading from VP
and assigning to VO .

As a consequence of these defini-
tions, when running (see below) the
IOTS T , concurrent changes of in-
put variables do not affect the en-
abling (evaluation of guards g) and ef-

fect (of assignments ~x := ~t) of tran-

sitions (l , g , ~x := ~t , l ′) into process-
ing and output locations (i.e. when
l ′ ∈ LocO ∪ LocP .)

A run of T is a sequence of pairs
〈(l0, σ0), (l1, σ1) . . .〉 of locations and
valuations σi : V → D which satis-
fies the properties (1) l0 = Init and

(2) ∀ i ≥ 0 : ∃(l , g , ~x := ~t , l ′) ∈
Trans : l = li , l ′ = li+1, σi (g) =

true, σi+1(~x) = σi (~t), where σi (g),

σi (~x) and σi (~t) are the canonic ex-
tensions of valuations to guard expres-
sions, vectors and terms, respectively.
Since IOTS never assign to input vari-
ables, the σi are undetermined with
respect to input variable valuations.
This models the behaviour of an un-
restricted system environment which
may place any input value at any
time. Let Run(T) denote the set of
all runs of IOTS T .

An IOTS T is called deter-

ministic if in every possible run
〈(l0, σ0), (l1, σ1) . . .〉 ∈ Run(T) only
one transition is enabled at a time:

∀ i ∈ N0 :
∀(li , g , a, l), (li , g ′, a′, l ′) ∈ Trans :

σi (g) = true ∧ σi (g ′) = true ⇒
(li , g , a, l) = (li , g ′, a′, l ′)

Since IOTS will serve as behavioural
models for deterministic programs we
will restrict ourselves to deterministic
IOTS in this paper.

4.2 I/O-Equivalence

Given a run r ∈ Run(T), we de-
fine rIO as the restriction of r to
input and output locations, and re-
strict each valuation σ occurring in
such a location to σ |(VI ∪VO). Let

ρ : V 1
I ∪ V 1

O → V 2
I ∪ V 2

O be a bijec-
tive mapping between I/O variables of
two IOTS T 1,T 2 such that input vari-
ables are mapped to inputs and out-
puts to outputs (that is, ρ(V 1

I) = V 2
I

and, since ρ is one-one and onto, also
ρ(V 1

O) = V 2
O). Given ρ we can define

I/O equivalence between runs r1 of
T 1 and r2 of T 2: We write r1 ∼ρ r2

if their restrictions

r i
IO = 〈(l ij , σi

j |(V i
I
∪V i

O
)) |

0 ≤ j < #r i
IO〉

i = 1, 2

satisfy the following conditions: (1)
Both restrictions have the same
length, written #r1

IO = #r2
IO , (2)

input/output locations occur in the
same order, that is,

∀ 0 ≤ j < #r1
IO : l1j ∈ Loc1

I ⇔ l2j ∈ Loc2
I

and (3) input and output valuations
are ρ-equivalent in the sense that

∀ 0 ≤ j < #r1
IO :

σ1
j |(V 1

I
∪V 1

O
)= σ2

j ◦ ρ

We can now define the ρ-
equivalence of T 1, T 2 (written T 1 ∼ρ

T 2) by requiring a bijective mapping
γ between runs of T 1 and T 2 such
that

∀ r1 ∈ Run(T 1) : γ(r1) ∼ρ r1

Since ρ and γ are required to be bijec-
tive it is trivial to see that ∼ρ is an

equivalence relation for ρ = id (the
identity on VI ∪VO). In this case we
drop the suffix id and write T 1 ∼ T 2

instead of T 1 ∼id T 2). For arbitrary
bijections ρ1, ρ2 we have a generalised
transitivity property in the sense that

T 1 ∼ρ1
T 2 ∧ T 2 ∼ρ2

T 3

⇒ T 1 ∼ρ2◦ρ1
T 3

4.3 Generic Theory on I/O-
Equivalence

In this section theorems on IOTS
transformations preserving I/O-
equivalence will be established. These
theorems are generic in the sense that
they are universally quantified over
variable names, guard conditions and
location names and over the occur-
rence of certain patterns of locations
and associated transitions; hence our
utilisation of the term ‘generic theory’
for the collection of these theorems.

In the theorems an corollaries
below, we refer to IOTS T i =
(Loci , Init i , V i ,Transi), i = 1, 2.

Theorem 1 The following state-
ment is generic in locations l0, l1,
variable symbols x , y , i , aux0, aux1
and guards g.

Let τ0 = (l0, g , x [i] := y [i], l1) ∈
Trans1. Assume that on all T 1-paths
emanating from l1 auxi ∈ V 1

L , i =
0, 1 are first written to in an assign-
ment before being used in a guard or
a right-hand side assignment term.
Then, using fresh location symbols
l0,j 6∈ Loc1, j = 0, 1, 2, construct T 2

as follows:
(1) Loc2 = Loc1 ∪ {l0,0, l0,1, l0,2},
(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1 − {τ0}) ∪ T2

with

T2 = {(l0, g , aux0 := i , l0,0),
(l0,0, true, aux1 := i , l0,1),
(l0,1, true, aux1 := y [aux1], l0,2),
(l0,2, true, x [aux0] := aux1, l1)}

Then T 1 ∼ T 2.

Proof. Given r1 ∈ Run(T 1), we will
construct r2 ∈ Run(T 2) such that
r1 ∼ r2. To this end, r1 is partitioned
into

r1 = u1
0 ⌢ w1

0 ⌢ u1
1 ⌢ w1

1 ⌢ . . .

such that the location-valuation pairs
in u1

i never visit l0, whereas the seg-

ments w1
j = 〈 (l0, σj ,0), (mj , σj) 〉 start

in location l0 and perform transitions
into any post-location of l0. In partic-
ular, l1 is such a possible post-location
m, and it is possible that several con-
secutive w1

j ,w1
j+1, . . . occur in r1 if

the post-location of mj is again l0 (a
u1
j segment may be empty). Our goal

is to construct segments w j
2 such that

r2 = u1
0 ⌢ w2

0 ⌢ u1
1 ⌢ w2

1 ⌢ . . .

is in Run(T2) and I/O-equivalent to
r1: Since u1

0 does not visit location
l0, it can be performed by T2 as well.
It remains to show the existence of
w2

0 such that u1
0 ⌢ w1

0 leaves T1 in

the same state as u1
0 ⌢ w2

0 leaves T2.
This existence is shown independently
of the position j of w2

j , so that the

equivalence r1 ∼ r2 follows by induc-
tion.

To construct w2
0 , two cases

are distinguished for w1
0 =

〈(l0, σ0,0), (m0, σ0)〉:
Case 1 – σ0,0(g) = false ∨ m0 6=

l1: In this situation, the transition τ
associated with w1

0 cannot be τ0. As a

consequence, τ ∈ Trans2 by construc-
tion T2, so we can choose w2

0 = w1
0

and there is nothing more to prove.
Case 2 – σ0,0(g) = true∧m0 = l1:

Since T 1 is deterministic, w1
0 must be

the effect of transition τ0. As a con-
sequence,

(m0, σ0) = (l1, σ0,0⊕
{x [σ0,0(i)] 7→ σ0,0(y [σ0,0(i)])})

We define

w2
0 = 〈(l0, σ0,0), (l0,0, σ0,1),
(l0,1, σ0,2), (l0,2, σ0,3)(l1, σ0,4)〉

and set valuations σ0,i , i = 1, 2, 3, 4 so
that they reflect the effect of the new
transitions introduced in T2:

σ0,1 = σ0,0 ⊕ {aux0 7→ σ0,0(i)},
σ0,2 = σ0,0 ⊕ {aux0 7→ σ0,0(i),

aux1 7→ σ0,0(i)},
σ0,3 = σ0,0 ⊕ {aux0 7→ σ0,0(i),

aux1 7→ σ0,0(y [σ0,0(i)]}
σ0,4 = σ0,0 ⊕ {aux0 7→ σ0,0(i),

aux1 7→ σ0,0(y [σ0,0(i)],
x [σ0,0(i)] 7→ σ0,0(y [σ0,0(i)])}

Now w2
0 is well-defined by definition

of T2 and the σ0,j . Moreover, σ0 |X=

σ0,4 |X with X = V 1 − {aux0, aux1}.
Since auxi ∈ V 1

L and since each of
the new locations has only one en-
tering transition, the l0,0, l0,1, l0,2 are
processing locations, so u1

0 ⌢ w1
0

and u1
0 ⌢ w2

0 still traverse the same
sequence of input/output locations,
and all valuations of I/O variables are
identical in both sequences. Finally,
since post-states of l1 always write
to auxi before reading them, the dif-
fering valuations of σ0 and σ0,4 on
{aux0, aux1} do not have any effect.
As a consequence, u1

0 ⌢ w1
0 ∼ u1

0 ⌢

w2
0 and both runs can be extended in

an equivalent way, either by a non-
empty u1

1 or by w1
1 and an analo-

gously constructed w2
1 . Since this pro-

cess can be extended inductively, this
establishes the existence of r2 with
r1 ∼ r2.

Conversely, given r2 ∈ Run(T 2),
an equivalent run r1 ∈ Run(T 1) is
constructed as follows: r2 is parti-
tioned as defined above. Only the
w2

j = 〈 (l0, σj ,0), . . . 〉 with σj ,0(g) =

true have to be considered. Since T 1

and therefore, by construction, also
T 2 are deterministic, w2

j must tra-

verse l0, l0,0, l0,1, l0,2, l1 in this situa-
tion. Since the auxi are first written
to from variables whose valuations are
identical in r2 and r1 at correspond-
ing locations, the existence of a frag-
ment w1

j = 〈 (l0, σj ,0), (l1, σj)〉 with

σj |X= σ0,4 |X follows. This com-
pletes the proof. 2

The following corollaries are im-
mediate consequences from Theo-
rem 1 and its proof, when simplifying
the above theorem to variables x , y
without indexes.

Corollary 1 The following state-
ment is generic in locations l0, l1,
variable symbols x , y , aux0 and guards
g.
Let τ0 = (l0, g , x := y , l1) ∈ Trans1.
Assume that on all T 1-paths emanat-
ing from l1 aux0 ∈ V 1

L is first writ-
ten to in an assignment before being
used in a guard or a right-hand side
assignment term. Then, using a fresh
location symbol l0,0 6∈ Loc1, construct
T 2 as follows:

(1) Loc2 = Loc1 ∪ {l0,0},
(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1 − {τ0}) ∪ T2

with

T2 = {(l0, g , aux0 := y , l0,0),
(l0,0, true, x := aux0, l1)}

Then T 1 ∼ T 2. 2

Corollary 2 The following state-
ment is generic in locations l0, l1,
variable symbols x , y ,aux0 and guards
g.
Let τ0 = (l0, g , x := x + 1, l1) ∈
Trans1. Assume that on all T 1-paths
emanating from l1 aux0 ∈ V 1

L is first
written to in an assignment before be-
ing used in a guard or a right-hand
side assignment term. Then, using
fresh location symbols l0,j 6∈ Loc1, j =
0, 1, construct T 2 as follows:
(1) Loc2 = Loc1 ∪ {l0,0, l0,1},
(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1 − {τ0}) ∪ T2

with

T2 = {(l0, g , aux0 := x , l0,0),
(l0,0, true, aux0 := aux0 + 1, l0,1)}
(l0,1, true, x := aux0, l1)}

Then T 1 ∼ T 2. 2

The next theorem indicates how
unconditional assignment-free jumps
between processing locations can be
eliminated.

Theorem 2 Let l0, l1, l2 ∈ Loc1
P

and τ0 = (l0, g , a, l1), τ1 =
(l1, true, ε, l2) ∈ Trans1, where
ε denotes the empty assignment
(“NOOP”). Assume that τi are the
only transitions emanating from
li , i = 0, 1. Then construct T 2 as
follows:
(1) Loc2 = Loc1 − {l1},
(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1−{τ0, τ1})∪T2

with T2 = {(l0, g , a, l2)}.
Then T 1 ∼ T 2. 2

The following theorem will be
used in the next section to show that
transitions with guard conditions of
type x < c with constant values c can
be equivalently modelled using zero
flag and sign flag as in compare/jump
instruction pairs used on assembler
level.

Theorem 3 Let τ0 = (l0, x ≤
c, a, l1), τ1 = (l0, x > c, b, l2) ∈
Trans1 with constant value c. As-
sume that on all T 1-paths emanating
from l1, l2 variables aux0,ZF ,SF ∈
V 1

L are first written to in an assign-
ment before being used in a guard or
a right-hand side assignment term.
Then, using fresh location symbols
l0,j 6∈ Loc1, j = 0, 1, construct T 2 as
follows:
(1) Loc2 = Loc1 ∪ {l0,0, l0,1},
(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1−{τ0, τ1})∪T2

with

T2 = {(l0, true, aux0 := x , l0,0),
(l0,0, true,
(ZF ,SF) := (aux0 = c, aux0 < c),
l0,1),

(l0,1,ZF ∨ SF , a, l1),
(l0,1,¬(ZF ∨ SF), b, l2)}

Then T 1 ∼ T 2. 2

The following theorem is used
to prove that indexed loops of type
for(i=0;i<c;i++)S; can be equiv-
alently modelled by compares and
jumps as used on assembler level.

Theorem 4 Suppose that S is a re-
gion of T 1 with locations and associ-
ated transitions, so that the only tran-
sition entering S is τ0 = (l0, i ≤
c, ε, l1) ∈ Trans1 (c a constant) and
the only transition leaving S is τ1 =
(l2, true, i := i + 1, l0) ∈ Trans1. As-
sume further that τ2 = (l0, i > c, ε, l3)
and τ3 = (l4, true, i := 0, l0) are in
Trans1. Finally assume that in S
and on all post-states of l3 variables
aux0, ZF ,SF ∈ V 1

L are first written
to in an assignment before being used
in a guard or a right-hand side assign-
ment term.

Then, using fresh location sym-
bols l0,j 6∈ Loc1, 0 ≤ j ≤ 4 construct

T 2 as follows:
(1) Loc2 = Loc1 ∪ {l0,j | 0 ≤ j ≤ 4},

(2) Init2 = Init1, (3) V 2 = V 1,
(4) Trans2 = (Trans1 −

{τ0, τ1, τ2, τ3}) ∪ T2 with

T2 = {(l4, true, i := 0, l0,0),
(l0,0, true, ε, l0),
(l0, true, aux0 := i , l0,1),
(l0,1,
(ZF , SF) := (aux0 = c,aux0 < c),
l0,2),

(l0,2, ZF ∨ SF , ε, l1),
(l0,2,¬(ZV ∨ SF), ε, l3),
(l2, true, aux0 := i , l0,3),
(l0,3, true, aux0 := aux0 + 1, l0,4),
(l0,4, true, i := aux0, l0)}

Then T 1 ∼ T 2.

Proof. The theorem follows directly
from application of theorems 2, 3 and
Corollary 2. The effect of these appli-
cations is shown in Fig. 2. 2

5 . OBJECT CODE
VERIFICATION

In this section we will describe our
method for object code verification.
First we give an overview of the
method and then we give the details.

5.1 Overview

Each time the code generator g is ap-
plied to a SystemC model M resulting
in an assembler program A = g(M),
we must prove that A = g(M) is a
correct implementation of M.

To define what correct implemen-
tation means, first, in Subsections 5.2
and 5.3, we explain how one can lift
M and A = g(M) to IOTS models
T (M) and T (A) using semantic rules,
and in Subsection 5.4 we explain how
a mapping αM

IO between I/O variables
of T (A) and T (M) can be induced.

Having this in hand, we can give
the definition:

Definition 1 An assembler program
A = g(M) is a correct implemen-
tation of a SystemC model M if
T (A) ∼

α
M

IO
T (M)

In Subsection 5.5 our strategy
to prove such an equivalence is ex-
plained.

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

?

?

-

?
..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

-

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

?

?

?

-

?
..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

?

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

?
6

6

-

i := 0

l1

S

l0

l3

l4

l2

i := i + 1

aux0 := i

l0

l4

l0,0

i := 0

l2

S

l1

l0,1

l3

l0,2

i := i + 1

(ZF , SF) := (aux0 = c,aux0 < c)

[i > c]
l1

[i ≤ c]

S

l0

l3

l2

i := i + 1

l4

l0,0

i := 0

aux0 := i

l0

l4

l0,0

i := 0

l2

S

l1

l0,1

l3

l0,2

l0,4

l0,3

(ZF ,SF) :=

aux0 := i

aux0 := aux0 + 1

i := aux0

(aux0 = c,
aux0 < c)

(a) Initial configuration T 1 (b) Transformation from Theorem 2

(c) Transformation
from Theorem 3

(d) Transformation
from Corollary 2

[¬(ZF ∨ SF)]

[i ≤ c]

[i > c]

[ZF ∨ SF] [ZF ∨ SF]

[¬(ZF ∨ SF)]

Fig. 2. I/O-equivalence preserving transformations in Theorem 4.

5.2 Semantics of SystemC
models

While the semantic of general Sys-
temC models is far more com-
plex (Müller et al., 2003), the be-
havioural semantics of SystemC pro-
grams observing the programming
model above can be quite easily de-
scribed using the I/O-safe transition
systems introduced in Section 4 as be-
havioural model.

Hence, the behaviour of a gen-
erated SystemC program M ob-
serving the programming model
described above can be repre-
sented as an IOTS model T (M) =
(LocM, InitM,V M,TransM).

The set of variables VM = VM
I ∪

VM
O ∪ VM

P with VM
P = VM

G ∪

VM
C ∪ V M

L contains the following

variable symbols: VM
I contains the

signals the controller uses to read
the state of hardware devices, e.g.
actpt[n] (actual state of point num-
ber n). VM

O contains signals the con-
troller uses to send requests to hard-
ware devices, e.g. reqpt[n] (for send-
ing requested state to point number
n). VM

G contains a shadow variable
for each input and output variable,
e.g. actptNext[n] and reqptNext[n]
and defines internal state, such as ar-
ray res[n] that keeps track of the
reservation status of route number n.
VM

C contains some constants like con-
flict table entries conflict[n] used
internally in the processing phase.
VM

L contains some local variables
i, r, ... that are used as loop coun-
ters and temporary variables.

The set of locations LocM for pro-
gram M is constructed by associating
a label with every SystemC state-
ment. The set of transitions TransM

is now constructed by providing IOTS
interpretations for each statement.
(1) An assignment l:x = e; labelled
l and followed by a statement la-
belled with l ′ leads to transition
(l , true, x := e, l ′). (2) A jump state-
ment l:goto L; leads to the tran-
sition (l , true, ε,L). (3) A guarded
statement l:if(b){ls:s;} followed
by a statement labelled with l ′ leads
to the transitions associated with ls:s
as well as the following transitions:
(l , b, ε, ls) and (l ,¬b, ε, l ′). Moreover,
all exit transitions of ls:s are con-
nected to l ′. (4) A for statement

l:for (i=0; i < c ;i++){ls:s;}
followed by a statement labelled with
l ′ leads to the transitions associ-
ated with s as well as the follow-
ing transitions: (l , true, i := 0, lc),
(lc, i >= c, ε, l ′), (lc, i < c, ε, ls),
(li , true, i := i + 1, lc), where lc and
li are some labels not used elsewhere,
and all transitions leaving s are con-
nected to target location li .

In this way the input phase of M
leads to input and processing loca-
tions, the processing phase leads to
processing locations and the output
phase gives leads to output and pro-
cessing locations.

5.3 Semantics of assembler pro-
grams

Any assembler program A generated
by applying a conventional C/C++
compiler to a SystemC controller
model M (that has been generated
from a domain-specific model D) ad-
heres to a set of simple “low-level pat-
terns”. (This follows from the fact
that the controller model M adheres
to a number of coding patterns and in-
terface restrictions.) For instance, the
A program consists of a control loop
that corresponds to the main loop of
the SystemC program M.

Assembler programs A can also be
given a semantics in terms of an IOTS
T (A) = (LocA, InitA,V A,TransA):
The set of variables V A = VA

I ∪

VA
O ∪VA

P contains the following vari-
able symbols:

VA
I = {x(, n, 4) | x [n] ∈ V M

I }

VA
O = {x(, n, 4) | x [n] ∈ V M

O }

VA
P = VA

G ∪ VA
C ∪ VA

L

VA
G = {x(, n, 4) | x [n] ∈ V M

G }

VA
C = {x(, n, 4) | x [n] ∈ V M

C }

VA
L = VM

L ∪

REGS ∪ FLAGS ∪ SADDR

All variables in V A except the local
variables are represented as arrays.
Expression actpt(,n,4) (where n is
a constant), for example, denotes the
contents of the 4-bytes memory cell
at memory byte address actpt+ 4 · n.
In analogy to the SystemC variable
concept, the processing variables VA

P
of the assembler program are also

structured into global state vari-
ables, globally accessible constants
and local variables. The latter, how-
ever, contain assembler-specific sym-
bols in addition to the normal locals
i , j , r , . . . used for counters and for
storage of intermediate values: Set
REGS contains all symbols denoting
registers, such as %eax, %edx,
Set FLAGS contains the symbols
ZF, SF, PF, ... for zero flag, sign
flag, parity flag and others. The set
SADDR contains stack address sym-
bols used for auxiliary variables, writ-
ten as -n(%ebp) where the %ebp reg-
ister contains the stack base pointer
and -n the offset from the base1. Val-
uations σA : V A → D return the
contents of the 4-bytes memory cells
associated with address symbols like
actpt(,n,4), -n(%ebp), i, j, ...
and registers. All flags evaluate to 0
or 1.

It is easy to see that there is a 1-
1 relationship between variable sym-
bols in VA and VM, except for the
local variables, where VA has addi-
tional variable symbols. Let αM

IO :

VA
I ∪ VA

O → V M
I ∪ VM

O denote the
bijection between I/O variables in A
and M: It maps variables of the form
x(, n, 4) to variables of the form x[n].

The set of locations LocA for pro-
gram A is constructed by associating
a label with every instruction of the
assembler code.

The set of transitions TransA is
now constructed by providing IOTS
interpretations for each instruction.
(1) A l:movl a, b-instruction (move
contents of a to b2) labelled by l
and followed by an instruction la-
belled l ′ results in IOTS transition
(l , true, b := a, l ′). (2) A l:jmp Lx-
instruction (unconditional jump to la-
bel Lx) leads to (l , true, ε,Lx), where
ε denotes the empty assignment which
does not change any variable valua-
tion. (3) The l:cmpl a,b-instruction
(compare a,b and set zero flag if a = b
and sign flag if a > b) followed by
an instruction labelled with l ′ leads
to transition (l , true, (ZF, SF) := (a =

b, a > b), l ′). (4) The l:jle Lx-
instruction (conditional jump to Lx,
jump if previous compare evalu-
ated to “less or equal”), followed
by an instruction labelled with l ′,
gives rise to transitions (l ,¬(ZF ∨
SF), ε, l ′) and (l ,ZF ∨ SF , ε,Lx). (5)
The l:incl i-instruction (increment
i by 1) followed by an instruction la-
belled with l ′, gives rise to transi-
tion (l , true, (i , ZF , SF) := (i +1, i =
−1, i < −1), l ′)3. Further assembler
instructions yield IOTS transitions in
an analogous way.

In the semantics we have ignored
the overflow flag OF, as it can be
proved that overflow will never hap-
pen. (The generated instructions that
potentially could give overflow are
of the form l:incl i coming from
loop increments in M, but the up-
per bound of these are some constants
that are far smaller than the range
values for i+1.)

5.4 Abstraction mappings

As previously noted there is a 1-1 cor-
respondence between SystemC sym-
bols in VM and assembler symbols in
VA, except that VA contains addi-
tional local variables: flags, registers
and stack addresses.

We now define a set of variable
symbols V M

+

that extends VM with
local variable symbols corresponding
to the additional flags, registers and
stack addresses in VA:

VM
+

= VM
+

I ∪ VM
+

O ∪ VM
+

P

VM
+

I = VM
I

VM
+

O = VM
O

VM
+

P = VM
+

G ∪ VM
+

C ∪ VM
+

L

VM
+

G = VM
G

VM
+

C = VM
C

VM
+

L = VM
L ∪ REGS ∪

CFLAGS ∪ SADDR

CFLAGS = {eax , ...}

1Recall that the stack grows towards lower addresses.
2We use notational conventions of the GNU assembler; source operands are

denoted on the left-hand side, target operands on the right-hand side.
3We will ignore the assignments to ZF ,SF in the following paragraphs and

figures, since their values after increment instructions have no impact on the
execution of A.

We then define a map αM

from VA to VM
+

: The array el-
ements x(,n,4) in VA − V A

L are
mapped to SystemC array elements
αM(x(,n,4)) = x[n]. It is the iden-
tity for variable symbols in VA

L −
FLAGS . Flags %n in FLAGS are
mapped to flags n, e.g. αM(%eax) =
eax.

Clearly αM is a bijection that
preserves the status of variables (in-
put/outpout/processing), and its re-
striction to I/O variables is equal to
αM

IO defined in Section 5.3: αM |

VA
I ∪ V A

O = αM
IO .

5.5 Equivalence proof

A mechanised proof is automatically
performed, making use of the generic
theory introduced in Section 4, that is,
a collection of valid assertions which
are universally quantified over spe-
cific sets of parameters. The theory
has been manually proven once, as
sketched in Section 4. SystemC con-
troller model M is now mapped to its
behavioural IOTS model T (M), and
A is mapped to its model T (A) as
well, using the semantic rules for Sys-
temC and assembler statements, re-
spectively. Next, the symbols of T (A)
are changed to C-style notation ac-
cording to mapping αM defined above
– this results in T 1. Also, the variable
symbol space of T (M) is extended
to T (M+), so that T 1 and T (M+)
can be directly compared with respect
to their variable symbols. Then the
mechanised proof generator analyses
T 1 with respect to applicable pat-
terns for theorems and corollaries of
the generic theory. Each pattern ap-
plication results in a I/O-equivalent
transformation T 1 7→ T 2 7→ . . . un-
til the last transformation results in
T (M+), whereupon the proof gener-
ator terminates.

We illustrate this mechanised
proof procedure using a fragment
from SystemC controller code,
where global shadow variables
reqsigNext[i] (the new state re-
quired for signal i) and reqptNext[j]
(the new state required for point j are
copied to output signals reqsig[i]
(set-state request to signal i) and
reqpt[j] (set-state request to point

j) during the output phase of a main
loop cycle. Consider the following
fragment from the output phase of a
SystemC controller M:

for (int i=0; i<NUM_SIGNALS; i++)
reqsig[i] = reqsigNext[i];

for (int j=0; j<NUM_POINTS; j++)
reqpt[j] = reqptNext[j];

The concrete configuration data
for this controller instance defines
NUM SIGNALS=3 and NUM POINTS=3.
From that the compiler4 generates the
following assembler fragment of A:

movl $0, i
jmp .L103

.L104:
movl i, %edx
movl i, %eax
movl reqsigNext(,%eax,4), %eax
movl %eax, reqsig(,%edx,4)
movl i, %eax
incl %eax
movl %eax, i

.L103:
movl i, %eax
cmpl $2, %eax
jle .L104
movl $0, j
jmp .L106

.L107:
movl j, %edx
movl j, %eax
movl reqptNext(,%eax,4), %eax
movl %eax, reqpt(,%edx,4)
movl j, %eax
incl %eax
movl %eax, j

.L106:
movl j, %eax
cmpl $2, %eax
jle .L107

Now the mechanised equivalence
proof is constructed as follows: (1)
the behavioural IOTS model of A
is constructed by using the seman-
tic rules for assembler instructions
listed above. After changing the
names of assembler variables to C-
style notation according to mapping
αM defined above, this results in an
IOTS T 1 which is depicted in Fig. 3.
(2) Applying Theorem 1 to the re-
gions S11 and S12 of T 1 results is
an I/O-equivalent IOTS T 2 depicted
in Fig. 4. (3) Twofold application
of Theorem 4 on T 2 results in I/O-
equivalent IOTS T 3 shown on the
left-hand side of Fig. 5. Finally, a

4We have used gcc 4.0.2 for this example.

valuation-preserving change of guard
conditions ([i ≤ 2] 7→ [i < 3], [i >
2] 7→ [i ≥ 3] etc.) yields T (M) which
completes the proof, as far as the code
fragments shown here for illustration
purposes are concerned.

6 . CONCLUSION

In this paper we have described a
method for automated object code
verification for railway controllers. To
prove that an assembler program (ob-
ject code) A is a correct implementa-
tion of the SystemC controller model
M from which it is generated, the
main idea was to map A and M to
their behavioural models T (A) and
T (M) given in terms of some common
semantic foundations and then prove
that T (A) and T (M) are equivalent
by applying transformations that have
been proven once and for all to pre-
serve I/O behaviour.

As common semantic foundations
for the considered SystemC models
and assembler programs we used I/O-
safe transition systems. This seman-
tics of SystemC models is much sim-
pler than the semantics of general Sys-
temC models, and it was only possi-
ble to use it because the considered
SystemC models adhere to a restric-
tive programming model which can
be practically enforced since our Sys-
temC “programs” are automatically
generated from higher-level domain-
specific models. Using I/O-safe tran-
sition systems has the advantage that
several practically relevant equiva-
lence transformations can be applied,
and the equivalence proofs are far
more easy than those required for gen-
eral transition systems.

REFERENCES

Badban, Bahareh, Martin Fränzle, Jan
Peleska and Tino Teige (2006).
Test automation for hybrid sys-
tems. In: Proceedings of the
Third International Workshop on
SOFTWARE QUALITY ASSUR-
ANCE (SOQUA 2006). Portland
Oregon, USA.

Berkenkötter, Kirsten (2006). OCL-
based validation of a railway do-

main profile. In: OCLApps 2006
- OCL for (Meta-)Models in Mul-
tiple Application Domains. Ac-
cepted for publication.

European Committee for Electrotech-
nical Standardization (2001). EN
50128 – Railway applications –
Communications, signalling and
processing systems – Software for
railway control and protection
systems. CENELEC. Brussels.

Goos, Gerhard and Wolf Zimmer-
mann (1999). Verification of com-
pilers. In: Correct System Design.
pp. 201–230. Springer.

Haxthausen, A. E. and J. Peleska
(2000). Formal Development and
Verification of a Distributed Rail-
way Control System. IEEE Trans-
action on Software Engineering
26(8), 687–701.

Haxthausen, A. E. and J. Peleska
(2002). A Domain Specific Lan-
guage for Railway Control Sys-
tems. In: Proceedings of the Sixth
Biennial World Conference on In-
tegrated Design and Process Tech-
nology, (IDPT2002), Pasadena,
California.

Müller, W., J. Ruf and W. Rosenstiel
(2003). SystemC – Methodologies
and Applications. Chap. 4, pp. 97–
126. Kluwer Academic Publishers.

Peleska, Jan, Daniel Große, Anne E.
Haxthausen and Rolf Drechsler
(2004). Automated verification for
train control systems. In: Proceed-
ings of the FORMS/FORMAT
2004 - Formal Methods for Au-
tomation and Safety in Rail-
way and Automotive Systems
(E. Schnieder and G. Tarnai, Eds.).
Technical University of Braun-
schweig. pp. 252–265. ISBN 3-
9803363-8-7.

Pnueli, Amir, Ofer Shtrichman and
Michael Siegel (1998). The code
validation tool CVT: Automatic
verification of a compilation pro-
cess. International Journal on
Software Tools for Technology
Transfer 2(2), 192–201.

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

?

?

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

?

6

6

-

?

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

?

?

?
6

6

- ?

?

?

?

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

?

?

?

?

..

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

....

eax := i

.L103

i := 0

S11

(ZF , SF) :=

eax := i

i := eax

j := 0

eax := j

S12

.L107

(ZF ,SF) :=

eax := j

j := eax

(2 = eax ,
2 > eax)

.L106

[¬(ZF ∨ SF)]
.L104

eax := eax + 1

[ZF ∨ SF]

[ZF ∨ SF]

(2 = eax , 2 > eax)

eax := eax + 1

edx := j

.L107

eax := j

eax := reqptNext [eax]

reqpt [edx] := eax

S12

T 1

edx := i

.L104

eax := i

eax := reqsigNext [eax]

reqsig [edx] := eax

S11

[¬(ZF ∨ SF)]

Fig. 3. IOTS T 1 associated with A after renaming of variables.

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

?

?

?

?

?

?

6

6

-

?

?

?

?

?
6

6

- ?

?

?

eax := i

.L103

i := 0

(ZF ,SF) :=

eax := i

i := eax

j := 0

eax := j

.L107

(ZF , SF) :=

eax := j

j := eax

.L106

[¬(ZF ∨ SF)]
.L104

eax := eax + 1

[ZF ∨ SF]

[ZF ∨ SF]

eax := eax + 1 λ12

λ11

λ11 =def reqsig [i] := reqsigNext [i]

λ12 =def reqpt [j] := reqptNext [j]

(2 = eax , 2 > eax)

(2 = eax , 2 > eax)

[¬(ZF ∨ SF)]

T 2

Fig. 4. T 1 7→ T 2: I/O-equivalent transformation according to Theorem 1.

w

w

w

w

ww

w

w

w

w

?

?

-

?

?

?

-

?

?

?

i := 0

[i > 2]

[i ≤ 2]

i := i + 1
j := 0

[j > 2]

[j ≤ 2]

j := j + 1

λ11

λ12

w

w

w

w

ww

w

w

w

w

?

?

-

?

?

?

-

?

?

?

i := 0

[i ≥ 3]

[i < 3]

i := i + 1
j := 0

[j ≥ 3]

[j < 3]

j := j + 1

λ11

λ12

λ11 =def reqsig [i] := reqsigNext [i]

λ12 =def reqpt [j] := reqptNext [j]

T 3 T (M)

Fig. 5. T 3 7→ T (M): I/O-equivalent guard transformation.

	------. INTRODUCTION
	------. MODEL DEVELOPMENT AND VERIFICATION APPROACH
	------. CONTROLLER MODEL
	------. THEORETICAL FOUNDATIONS
	I/O-Safe Transition Systems
	I/O-Equivalence
	Generic Theory on I/O-Equivalence

	------. OBJECT CODE VERIFICATION
	Overview
	Semantics of SystemC models
	Semantics of assembler programs
	Abstraction mappings
	Equivalence proof

	------. CONCLUSION

