
Testing Distributed
Systems

Part I: Introduction to Model-Based Testing
2012-08-01

Jan Peleska and Wen-ling Huang
University of Bremen

{jp,huang}@informatik.uni-bremen.de

mailto:jp@informatik.uni-bremen.de
mailto:jp@informatik.uni-bremen.de

Acknowledgements. This seminar
has been elaborated in the context of the
EU FP7 COMPASS project under grant
agreement no.287829.

Model-Based Testing

• Model-based testing (MBT) as defined
in Wikipedia [1]

• “Model-based testing is the application
of Model based design for designing and
optimally executing the necessary
artifacts to perform software testing.
Models can be used to represent the
desired behavior of the System Under
Test (SUT), or to represent the desired
testing strategies and testing
environment.”

http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing

Model-Based Testing

• Model-based testing (MBT) as defined
in Wikipedia [1]

• “Model-based testing is the application
of Model based design for designing and
optimally executing the necessary
artifacts to perform software testing.
Models can be used to represent the
desired behavior of the System Under
Test (SUT), or to represent the desired
testing strategies and testing
environment.”

We would say:
system or software

testing

http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing

Model-Based Testing

• Let’s analyze this definition

• “Apply model-based design”: use modeling
formalism to specify any test-related
information

• “Models ...represent desired behavior of ...
SUT”: this is the gold-plated
approach to MBT

• Just specify the desired capabilities of the SUT

• . . . or, alternatively . . .

Model-Based Testing

• “Models ... represent the desired testing
strategies and testing environment”: this is
the pedestrian approach

• Test cases and associated test data are
modeled in an explicit way – they are
identified and calculated by the test engineers

• MBT only helps by transforming this into
executable test procedures

Our MBT Approach
• Instead of writing test procedures,

• develop a test model specifying
expected behavior of system under test
(SUT) ☞ the gold-plated approach

• Use generator to identify “relevant” test
cases from the model and calculate
concrete test data

• Generate test procedures fully
automatic

• Perform tracing requirements ↔ test
cases in a fully automatic way

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

We also call these symbolic
tests, since they can be represented by

logical formulas

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

We also call these test
procedures, as is suggested by several standards, such as

RTCA DO-178B

MBT-Paradigm

Model System

Abstract Tests Executable
Tests

Is a partial
description of

can be run
against

Are abstract
versions of

Are derived
from

Programs are models: we consider program code
as suitable model for specifying some

algorithm or task with a certain degree of abstraction.
Programs, represented by their control flow graphs (CFG), are

obviously models, and the same test data generation algorithms can
be applied to CFGs as to, e.g., state machine models

Modeling Formalisms

• Any formalism used to model
expected SUT behavior should
comply with the testing
hypothesis

• The testing hypothesis assumes that the
true behavior of the SUT — as far as
relevant from the requirements’ point of
view — can be fully specified by means of
this formalism

MBT Modeling Formalisms
• VDM [9]

• Z [3]

• B

• LOTOS [5]

• CSP [4]

• CCS [6]

• Time Automata [11,8]

• TTCN*

• TTCN3* [2]

• SDL

• SCADE [10]

• UML [2,7]

• SysML [7]

* These formalisms are dedicated test specification languages

Modeling Formalisms – UML

• Unified Modeling Language

• Wide-spectrum graphical modeling
language

• Combined with OCL – Object
Constraint Language for textual
specification of algorithms

Modeling Formalisms – SysML

• SysML is a UML profile for modeling
systems

• Extends UML capabilities by

• requirements engineering support

• block diagrams

• parametric constraints

Test Cases

• Test cases are specifications of (subsets of) SUT
computations which are suitable to check given
requirements, the so-called test objectives

• RTCA DO178B defines test cases as follows

A set of test inputs, execution conditions, and
expected results developed for a particular test
objective, such as to exercise a particular program
path or to verify compliance with a specific
requirement

Test Cases

• Test cases are typically structure into

• Test objective. What should be verified by means
of this test case?

• Execution conditions. Which pre-states of the
SUT are suitable to test the objective?

• Inputs. Which inputs are suitable for testing the
objective from the current SUT pre-state?

• Expected results. What are the expected outputs
of the SUT as a reaction to the inputs?

Test Cases

• Test cases are typically structure into

• Test objective. What should be verified by means
of this test case

• Execution conditions. Which pre-states of the
SUT are suitable to test the objective?

• Inputs. Which inputs are suitable for testing the
objective from the current SUT pre-state?

• Expected results. What are the expected outputs
of the SUT as a reaction to the inputs?

For testing reactive systems, the
notions of inputs and outputs

require some closer consideration!

Functional requirements and
test cases

• Functional requirements specify the
expected behavior of the SUT (also called
behavioral requirements)

• Behavior is specified by computations

• Computations - in the most general
case - are conceptually infinite sequences of

• (Timestamp,Event,State,Flow)

26

• General form of computations

• Time stamps in dense
time

• Time monotonicity:

• Time divergence applies
to infinite computations
(so-called non-Zenoness
condition):

ti 2 R

h(t0, e0, s0, f0), (t1, e1, s1, f1), . . .i

8i : ti ti+1

�i�0(ti+1 � ti) = 1

• Events abstract significant state changes
occurring at specific points in time

28

ei 2 � (alphabet of SUT)

• State valuations are functions from
variable symbols x to their domain (= type)
Dx

si : V ! D

8i 2 N0, x 2 V : s
i

(x) 2 D

x

D =
S

x2V

D
x

• Flows are time-continuous functions
defined between two time stamps

29

fi : [ti, ti+1)⇥ V ! D

8x 2 V : fi(ti, x) = si(x)

• As a consequence the valuation of variables
with discrete domain cannot change in time
interval

[ti, ti+1)

• Traces are finite prefixes of
computations – these are the objects
considered during (dynamic) testing,
since every test has to terminate after
a finite number of steps

• Inputs are finite traces of the form

Traces

h(t0, eI0, s0|I , f0|I), (t1, eI1, s1|I , f1|I), . . .i

where events e, valuation functions s
and flow functions f are restricted to
input symbols

Traces

• Outputs are traces of the form

h(t0, eO0 , s0|O, f0|O), (t1, eO1 , s1|O, f1|O), . . .i

where events, states and flows are
restricted to output symbols

• Input and output traces associated with
a test case are generally interleaved

32

• Symbolic test cases specify subsets of
computations which are suitable to test a
given requirement

• Concrete test cases are specific traces
complying with the specification of the
associated symbolic test case

Test Procedures

• Test procedures are (possibly
executable) “recipes” describing how one
or more test cases should be executed on
the SUT in specified order

• RTCA DO178B defines test procedure
as follows

Detailed instructions for the set-up and
execution of a given set of test cases, and
instructions for the evaluation of results of
executing the test cases

Test Suites

• A test suite is a collection of test
procedures, whose execution is
suitable to check a well-defined set of
test objectives

• A test suite is exhaustive if the
SUT conforms to the specification
model whenever all tests in the suite
have been passed

Conformance Relations

• Conformance relations specify the
“likeness” between SUT and
specification model

• For the context of this seminar, where
only non-blocking untimed systems are
considered, a very simple conformance
relation suffices:

The SUT conforms to the specification model A if and only if all
input traces result in the same output traces as for A and the
interleaving of inputs and outputs is the same for SUT and A

Manual vs. Automated MBT

• MBT does not necessarily mean that
test should be generated in an
automated way

• The UML testing profile [2], for example,
explains how to specify test cases and
procedures and the testing environment
(TE) in UML, but leaves it open whether
executable procedures are written by
hand or generated automatically

• Observe that [2] describes the
pedestrian approach to MBT

Fundamental System
Classification

• Combinatorial systems. Output
is a function of the input vector —
SUT behavior can be specified by
mathematical function

f : D1 ⇥ . . .⇥Dn ! E1 ⇥ . . .⇥ Em,

~x 7! f(~x) = (f1(~x), . . . , fm(~x)),

~x = (x1, . . . , xn)

Fundamental System
Classification

• Reactive systems. Output is a
function of the timed trace of input
vectors — SUT behavior can be
specified by mathematical function of
the sequence input trace, and delivers
an output trace

h(t0, eI0, s0|I , f0|I), (t1, eI1, s1|I , f1|I), . . .iInput trace

• For reactive systems, the output is a
function of input and internal state

Impact of System Classification
on Testing

• Combinatorial systems can be
exhaustively tested by generating all
possible input vectors and checking
for each vector whether the output
complies to the expected result

~x

f(~x)

Impact of System Classification
on Testing

• Reactive systems always have to be
stimulated by input traces whose
length is generally > 1

• Some objectives for testing reactive
systems require to calculate an input
trace that “drives” the SUT into an
internal state which is suitable to check
the test objective

☞ This is a constraint solving problem

Impact of System Classification
on Testing

• Note. If the internal state of a
reactive (time-discrete) system can be
manipulated by the test system, it may
be tested like a combinatorial system,
because the next SUT reaction is
always a function of the current state
and the input vector

f : D ⇥ S ! E ⇥ S,

(~x,~s) 7! (~y, ~u)

Impact of System Classification
on Testing

• Examples for reactive systems which
can be tested as combinatorial
systems

• Electronic circuits with latches

• Object-oriented software with getter/
setter functions for internal state

• Database applications

Complexity Considerations

• For a combinatorial system with
input vector x and settable state vector s
a test suite is exhaustive if all
combinations of (x,s) are exercised on
the SUT

• Let the b(x) the bit width of the input
vector and b(s) the bit width of the state
vector

• The number of possible test inputs is

2b(~s)+b(~x)

Complexity Considerations

• For a reactive system with
internal state vector s (bit width b(s))
and input vector x (bit width b(x))
the asymptotic complexity (i.e.
asymptotic number of test cases
required for an exhaustive test suite)
is

O
⇣
22·b(~s)+(1+k)·b(~x)

⌘

k is the maximal number of additional states in the implementation, compared to the size of the
specification model state space. This will be explained later, when discussing Chow’s W-Method.

Further Reading
1. http://en.wikipedia.org/wiki/Model-based_testing, (date: 2012-06-14)

2. Paul Baker et. al.: Model-driven testing – Using the UML testing profile. Springer, Berlin, 2008.

3. H.-M. Hörcher and J. Peleska: Using formal specifications to support software testing. Software Quality Journal 4,
309-327. (1995).

4. J. Peleska and M. Siegel: Test Automation of Safety-Critical Reactive Systems.
South African Computer Jounal (1997) 19: 53-77.

5. Ed Brinksma: A theory for the derivation of tests. In P.H.J. van Eijk, C.A.Vissers and M. Diaz (eds.): The Formal
Description Technique LOTOS. Elsevire Science Publishers B.V. (North-Holland), (1989) 235-247.

6. M.C. Hennessy: Algebraic Theory of Processes. IT Press (1988).

7. Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann Schmid, Peer Smuda, Elena Vorobev, and Cornelia
Zahlten: A Real-World Benchmark Model for Testing Concurrent Real-Time Systems in the Automotive Domain. In:
Burkhart Wolff and Fatiha Zaidi (Eds.): Testing Software and Systems. Proceedings of the 23rd IFIP WG 6.1
International Conference, ICTSS 2011, Paris, France, November 2011, Springer, LNCS 7019, pp. 146-161 (2011).

8. David, A., Larsen, K.G., Lis, S. and Nielsen, B.: Timed testing under partial observability. In: Proc. 2nd International
Conference on Software Testing, Verification and Validation (ICST’09), pp.61-70. IEEE Computer Society (2009)

9. Modelling Systems - Practical Tools and Techniques in Software Development, 2nd edition, John Fitzgerald and Peter
Gorm Larsen, Cambridge University Press, ISBN 0-521-62348-0, 2009

10. V. Papailiopoulou; Automatic Test Generation for LUSTRE/SCADE Programs. In: ASE '08 Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, 517-520, IEEE Computer Society (2008)

11. J.G. Springintveld and F.W. Vaandrager and P.R. D'Argenio: Testing timed automata. Journal of Theoretical Computer
Science 254, 1-2, pp. 225-257, (2001)

http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://www.informatik.uni-bremen.de/agbs/jp/papers/testz.html
http://www.informatik.uni-bremen.de/agbs/jp/papers/testz.html
http://www.informatik.uni-bremen.de/agbs/jp/papers/sacj97.html
http://www.informatik.uni-bremen.de/agbs/jp/papers/sacj97.html
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleska_ictss2011.html
http://www.informatik.uni-bremen.de/agbs/jp/papers/peleska_ictss2011.html
http://www.vdmbook.com/twiki/bin/view/Main/MSystems
http://www.vdmbook.com/twiki/bin/view/Main/MSystems

