
Timed Moore automata: test data generation and model checking

Helge Löding

Verified Systems International GmbH

Bremen, Germany

hloeding@verified.de

Jan Peleska

Center of Information Technology

University of Bremen

Bremen, Germany

jp@informatik.uni-bremen.de

Abstract—In this paper we introduce Timed Moore Au-
tomata, a specification formalism which is used in industrial
train control applications for specifying the real-time behavior
of cooperating reactive software components. We define an
operational semantics for the sequential components (units)
with an abstraction of time that is suitable for checking timeout
behavior of these units. A model checking algorithm for livelock
detection is presented, and two alternative methods of test
case/test data generation techniques are introduced. The first
one is based on Kripke structures as used in explicit model
checking, while the second method does not require an explicit
representation but relies on SAT solving techniques.

Keywords-Timed Moore Automata, model-based testing,
model checking, livelocks

I. INTRODUCTION

A. Motivation

In this paper we introduce Timed Moore Automata

(TMA), a syntactic and semantic extension of classical

Moore Automata [6]. TMA are used in industrial train

control applications for specifying the real-time behavior

of cooperating reactive software components. While the

description formalism has been designed by railway control

system suppliers, our contribution consists in the elaboration

of test automation and model checking methods for TMA

specifications. To this end, we define an operational seman-

tics for the sequential components (units) with an abstraction

of time that is suitable for checking timeout behavior of these

units: The application software only distinguishes between

running and elapsed timers, but does not have a notion of

the real time span passing between setting a timer and the

associated elapsed-timer event. As a consequence, control

decisions involving several timers have to be programmed

in a way such that any of the timers may elapse first,

though, in reality, only a restricted number of elapsed-

timer sequences may be possible. Intuitively speaking, we

introduce a simulation semantics for the Timed Automata,

so that every computation sequence possible in reality is also

a valid computation according to the TMA semantics, but

not necessarily vice versa.

Based on this semantics, two alternative fully automated

model-based unit test generation algorithm are presented.

Both algorithms guarantee full requirements coverage and

MC/DC coverage on code level, provided that the code

is derived from the model according to a well-defined

pattern. As a consequence, the tests are also sufficient to

be used for checking the results of an automated code

generator. The algorithms are inspired by techniques from

explicit and bounded model checking, respectively, using

Kripke structures or, alternatively, SAT solving techniques

to elaborate the concrete test data. Since the success of

model-based testing depends on the models’ quality we

advocate an approach where model verification and model-

based testing are performed in an integrated tool set. Indeed,

the similarities between data structures and algorithms used

in model checking and test data generation suggest that

this is also a promising approach from the perspective of

tool construction. For the formalism under consideration the

main specification problems observed during practical appli-

cations consisted in livelocks. We have therefore integrated

automated livelock detection with test data generation. The

verification is based on the classical Kripke structures used

in explicit model checking, because the limited size of the

specification models and the Boolean nature of their input

and output interfaces suggests this approach. We sketch

briefly, how this technique is also used for large-scale models

on an abstracted level.

B. Related work

At least in theory, tests against automata-based formalisms

can be made exhaustive as shown, for example, in [1], [9].

In practice, however, this would lead to an infeasible number

of tests, even for the units under test we are considering in

this paper. Our approach therefore focuses on the generation

of useful test cases in the sense that they are sufficient

to establish compliance with the applicable safety-related

standards such as [2]. The application of SAT solving to test

case generation also plays an important role for structural

test generation based on software code. There, due to the

more complex data types usually needed for applications

more general than the ones described here, SAT solving is

embedded into a Satisfiability Modulo Theory framework

allowing to handle arithmetic expressions over integers and

floats, as well as pointer expressions [7]. In [5] a timed

state machine formalism is considered where timers are

represented on a less abstract level than in our paper. While

in [5] only atomic input symbols are admitted, our approach

handles Boolean input vectors and Boolean transition guards

referring to vector component values.

C. Overview

Section II introduces the specification formalism Timed

Moore Automata and section III defines its operational

semantics. In section IV Kripke structures over TMA are

described and a livelock checking algorithm is presented.

Based on these explicit model checking techniques, the

first collection of test generation algorithms is presented in

section V. As an alternative, section VI presents algorithms

based on SAT solving, such that the explicit unfolding of

the Kripke state space becomes unnecessary. Section VII

presents performance measurements for a collection of TMA

used in the railway control domain. Finally, section VIII

gives a conclusion and an outlook on ongoing work. There

we also motivate the utilization of Kripke structures for more

powerful modeling formalisms.

II. FORMAL DEFINITION OF TIMED MOORE AUTOMATA

TMA process input symbols ξ = (ξ1, . . . , ξn) ∈ B
n

and produce outputs η = (η1, . . . , ηm) ∈ B
m. Just as in

classical Moore Automata, output values only depend on

the current control state l ∈ LOC the automaton resides

in. Classical Moore Automata, however, process their inputs

in discrete steps like a synchronous device, and their state

transition function is total. In contrast to this, TMA inputs

are interpreted as state vectors and processed in run-to-

completion mode: For a given input ξ several consecutive

transitions may be taken if they are enabled by ξ. As a

consequence, TMA transition relations are not total, and a

sequence of consecutive transitions triggered by some input

ξ leads to a stable control state l if no transition leaving l

is enabled by ξ. A cycle of consecutive enabled transitions

represents a livelock situation which is to be avoided because

it corresponds to an unwanted endless loop in the TMA

implementation.

Additionally TMA extend classical Moore Automata by

admitting the definition of a set of Boolean timer activation

and timer status variables: when entering a control state,

timer activation variables T may be set to 1, leading to the

activation of associated timers in the runtime environment

of the automaton’s implementation. With each activation

variable T a status variable t is associated and may be

referenced in the Boolean expressions of guard conditions:

t = 1 indicates that the timer has not yet elapsed, and t = 0
indicates that the timer has expired. As a result, TMS operate

on an abstracted notion of real time; it is only possible to

check whether a pre-defined time duration has passed or

not, but the value of this duration in concrete time units is

unknown on TMA level. A stable control state l is left as

soon as a transition leaving l becomes enabled, either by

a change in the input vector or by a timer status changing

from “activated to “elapsed”. These intuitive concepts are

formalized in this section.

A. Abstract Syntax

A Timed Moore Automaton consists of a tuple

(LOC , loc0,VARin,VARout,VARta,VARts, Lout, Lta, R),
where LOC is the set of locations, loc0 ∈ LOC is the

initial location, VARin is the set of input variables, VARout

is the set of output variables, VARta is the set of timer

activation variables, VARts is the set of timer status

variables. Function Lout : LOC − {loc0} −→ 2VARout

labels each location with the entry action on output

variables. Lta : LOC − {loc0} −→ (VARta 6−→ B)
labels each location with its entry action on zero or more

timers. R = LOC −→ (N 6−→ (GUARD × LOC))
is a function associating each location with its outgoing

guarded transitions: suppose R(l0) = τ for some

function τ : N 6−→ (GUARD × LOC). Then for

each n ∈ dom τ the image τ(n) specifies a transition

with source location l0. If τ(n) = (gn, ln) then ln
is the target location of τ(n) and gn is its guard

condition. The argument n defines the transition’s priority.

Guards are conjunctions of possibly negated atoms from

VARin ∪ VARts; more formally, GUARD = NG × G,

where NG = G = P(VARin ∪ VARts) denote the

sets of negated and non-negated Boolean atoms from

VARin ∪ VARts, respectively. We use the mapping

β : VARta −→ VARts to associate timer activation

variables and their corresponding timer status variables.

B. Static Semantics

Some consistency conditions have to be imposed on the

syntax in order to identify well-formed TMA. (1) The sym-

bol sets VARin,VARout,VARta,VARts are pairwise dis-

joint. (2) No transition may have the initial location as target:

If τ = R(l), n ∈ dom τ and τ(n) = (g, ln), then ln 6= loc0.

(3) The initial location has just one unguarded emanating

transition: ∃l ∈ LOC−{loc0} : R(loc0) = {1 7→ (∅, ∅, l)}.

(4) The priorities of transitions emanating from a given loca-

tion always consist of consecutive numbers, starting with 1:

∀l ∈ LOC − {loc0} : ∃m ∈ N0 : dom R(l) = {1, . . . ,m}.

For m = 0 the domain is empty, this characterizes termi-

nal locations. (3) Contradicting guard conditions are not

allowed: If τ(n) = (gn, ln) and gn = (Nn, Gn), then

Nn ∩ Gn = ∅, i.e., an atom may not appear both negated

and unnegated in the guard condition.

C. Abstract and concrete syntax – example

Fig. 1 shows an example of the concrete graphical TMA

syntax. The initial location loc0 is denoted by •, all other

locations are represented by rounded boxes which are la-

beled by their entry actions. For entry actions on output

variables, all variables not listed are implicitly set to 0. For

timer activations, only the specified actions are performed.

X=1

T=1

loc 3

loc 1

Y=1

2: !a

 b

1: !a

!t

Z=1

 c

loc 2

a

Figure 1. Timed Moore automaton with VARin = {a, b, c},VARout =

{X, Y, Z},VARta = {T},VARts = {t}.

In location loc1, for example, output X is set to 1 on entry,

and Y to 0. Additionally, timer T is activated. If only one

transition leaves a location the priority may be omitted, it is

implicitly set to 1. Negated atoms a are denoted by !a. The

abstract syntax of the TMA shown in Fig. 1 is

Lout = {loc1 7→ {X 7→ 1, Y 7→ 0, Z 7→ 0},

loc2 7→ {X 7→ 0, Y 7→ 0, Z 7→ 1}}

loc3 7→ {X 7→ 0, Y 7→ 1, Z 7→ 0}}

Lta = {loc1 7→ {T 7→ 1}, loc2 7→ ∅, loc3 7→ ∅}

R = {loc0 7→ {1 7→ (∅, ∅, loc1)},

loc1 7→ {1 7→ ({a}, {c}, loc3),

2 7→ ({a}, {b}, loc2)},

loc2 7→ {1 7→ (∅, {a}, loc3)}}

loc3 7→ {1 7→ ({t}, ∅, loc1)}}

β = {T 7→ t}

III. SEMANTICS OF TIMED MOORE AUTOMATA

We define the operational semantics of TMA to be the

state transition system (S, S0, T) with state space S, set of

initial states S0 ⊆ S and transition relation T ⊆ S × S.

A. Variable valuations and state space

The state space S consists of variable valuations for in-

puts, outputs and timers. In addition it is useful to introduce

an auxiliary Boolean variable symbol stable indicating that

the TMA is in a stable state, i. e. that no further transitions

are possible before either some time passes until the next

timer elapses or a change in the input vector enables new

transitions. States which are not stable are called transient.

We model stable as an auxiliary output. Let

Σin = VARin −→ B

Σts = VARts −→ B

Σout = VARout ∪ {stable} −→ B

Σta = VARta −→ B

denote the set of associated valuation functions. With these

definitions the state space is given by

S ⊆ LOC × Σin × Σts × Σout × Σta

B. Initial state

The initial state of a TMA has loc0 as initial location. All

outputs are set to 0, all timers in an inactive state, but the

inputs may have arbitrary values. Moreover, the initial state

is unstable since we have exactly one unguarded transition

leaving loc0:

S0 = {loc0} × Σin × (V ARts −→ {0}) ×
(V ARout ∪ {stable} −→ {0}) × (V ARta −→ {0})

C. Guard valuations and action valuations

We use a fresh symbol ℓ for locations and write σ(ℓ) =def

l for states σ = (l, σin, σts, σout, σta) ∈ S. For symbols x ∈
VARin ∪ VARts ∪ VARout ∪ VARta we define σ(x) =def

σin(x) if x ∈ VARin, σ(x) =def σts(x) if x ∈ VARts,

σ(x) =def σout(x) if x ∈ VARout and σ(x) =def σta(x) if

x ∈ VARta.

We write σ |= x if and only if σ(x) = 1 and σ 6|= x

if and only if σ(x) = 0. For a transition R(σ(ℓ))(n), n ∈
dom R(σ(ℓ)), we use the abbreviation σ |= R(σ(ℓ))(n) if

R(σ(ℓ))(n) = ((N,G), l′) for some target location l′ and

the transition guard (N,G) evaluates to 1, that is, all atoms

a in the guard condition evaluate to 0 if they appear negated

(i. e., a ∈ N), and evaluate to 1 if they appear unnegated

(i. e., a ∈ G). More formally,

σ |= R(σ(ℓ))(n) ≡def

∃(N,G) ∈ GUARD , l′ ∈ LOC :
R(σ(ℓ))(n) = ((N,G), l′) ∧
(∀a ∈ N : σ 6|= a) ∧ (∀b ∈ G : σ |= b)

For an entry action Lout(l) on output variables in a

location l, we write

σ |= Lout(l) ≡def σ(ℓ) = l ∧
(∀x ∈ VARout : (σ |= x ⇔ Lout(l)(x) = 1))

For an entry action Lta(l) on timer activations σ |= Lta(l)
is defined in an analogous way.

D. Transition relation

Given state S and transition relation T ⊆ S × S let

σ = (l, σin, σts, σout, σta) and σ′ = (l′, σ′

in, σ′

ts, σ
′

out, σ
′

ta)
in the paragraphs below. The elements of transition relation

T are characterized by a predicate T (σ, σ′) in the sense that

(σ, σ′) ∈ T ⇔ T (σ, σ′). Predicate T (σ, σ′) is defined by

T (σ, σ′) ≡def inv(σ) ∧ inv(σ′) ∧

Rule2(σ, σ′) ∧ Rule3(σ, σ′) ∧

Rule4(σ, σ′)

where the invariant inv(σ) and the rules Rulej(σ, σ′) are

introduced in the paragraphs to follow.

(1) A state is stable if all guard conditions of leaving tran-

sitions evaluate to false. This is formalized by the following

invariant, where σ ∈ S with σ = (l, σin, σts, σout, σta):

inv(σ) ≡def

(σ |= stable) ⇔
(∀n ∈ dom R(σ(ℓ)) : σ 6|= R(σ(ℓ))(n))

(2) Locations, outputs and timer activations remain un-

changed if the state is stable. Moreover, elapsed timers do

not change their states.

Rule2(σ, σ′) ≡def

(σ |= stable) ⇒
σ′(ℓ) = σ(ℓ) ∧ σ′

out = σout ∧ σ′

ta = σta ∧
(∀t ∈ VARts : σ 6|= t ⇒ σ′ 6|= t)

(3) In transient states inputs remain stable and time does

not pass, that is, all timer states remain unchanged.

Rule3(σ, σ′) ≡def

(σ 6|= stable) ⇒ σ′

in = σin ∧ σ′

ts = σts

(4) If one or more transitions leaving the current location

have guard conditions evaluating to 1, then the one with

the best priority (1 is best) is taken. The TMA proceeds

to the transition’s target location, and the valuations of the

output variables change according to the entry action of the

target location. A timer activation during an entry action sets

the associated timer status to 1. Resetting an active timer

by means of its activation variable automatically resets the

associated timer status.

Rule4(σ, σ′) ≡def

(∃n ∈ dom R(σ(ℓ)) : (σ |= R(σ(ℓ))(n) ∧
∀m ∈ {1, . . . , n − 1} : σ 6|= R(σ(ℓ))(m))) ⇒

σ′(ℓ) = π2(R(σ(ℓ))(n)) ∧
σ′ |= Lout(σ

′(ℓ)) ∧ σ′ |= Lta(σ′(ℓ)) ∧
(∀u ∈ dom Lta(σ′(ℓ)) :

Lta(σ′(ℓ))(u) = 1 ⇒ σ′

ts |= β(u)) ∧
(∀u ∈ dom Lta(σ′(ℓ)) :

Lta(σ′(ℓ))(u) = 0 ⇒ σ′

ts 6|= β(u)) ∧
(∀u ∈ VARta − dom Lta(σ′(ℓ)) :

σ′(u) = σ(u)) ∧
(∀u ∈ VARta − dom Lta(σ′(ℓ)) :

σ′(β(u)) = σ(β(u)))

In this rule, π2 denotes the projection on the second compo-

nent, that is, the target location, of the transition R(σ(ℓ))(n).

Recall that β maps timer activation variables onto their

corresponding timer status variables.

Lemma 1: Let M a Timed Moore Automaton and σ a

state of M . Then, if σ is transient, it has exactly one post-

state:

(σ 6|= stable) ⇒ (|{σ′ ∈ S | T (σ, σ′)}| = 1)

Proof. If σ is transient then inv(σ) implies that there exists

a transition R(σ(ℓ))(n) leaving location σ(ℓ) whose guard

condition is enabled, that is, σ |= R(σ(ℓ))(n). Without

loss of generality let n ≥ 1 the smallest number satisfying

σ |= R(σ(ℓ))(n). Application of Rule4 now implies the

existence of a post-state σ′ and uniquely determines σ′(ℓ),
σ′

out and σ′

ta. For (σ, σ′) to be in T the pair also has

to satisfy Rule3(σ, σ′), and this determines σ′

in and σ′

ts.

σ′(stable) is uniquely determined from the fact that inv(σ′)
must hold and σ′(ℓ) is already fixed. This shows that one

and only one σ′ exists such that T (σ, σ′) holds. �

Lemma 2: Let M a Timed Moore Automaton with tran-

sition relation T ⊆ S × S. Then T is total, that is, every

state σ ∈ S has at least one successor state σ′ ∈ S such that

T (σ, σ′).
Proof. From Lemma 1 we know that every transient state has

a post-state in T . Now let σ ∈ S be stable. Then Rule3 does

not apply and neither does Rule4 since inv(σ) implies that

the premise of Rule4 is not fulfilled. Now it is easy to see

that there exists at least one (stable or transient) post-state

σ′ satisfying inv(σ′) and Rule2(σ, σ′). As a consequence,

T (σ, σ′) holds and therefore (σ, σ′) ∈ T . �

IV. MODEL CHECKING FOR TIMED MOORE AUTOMATA

This chapter introduces the algorithms used to perform

explicit model checking of CTL properties on Timed Moore

automata. We use Kripke structures to that end and closely

follow [3]. Since these algorithms and the underlying theory

are well understood and documented in the literature, we will

focus on results that are specific for TMA.

A. Construction of Kripke structures

Every Timed Moore Automaton

M = (LOC , loc0,VARin,VARout,VARta,VARts,

Lout, Lta, R)

with operational semantics given by transition system

TS (M) = (S, S0, T) as explained in Section III gives rise

to a labeling function L : S −→ 2AP , where AP is the set

of atomic proposition over M . Intuitively speaking, L(σ) is

the set of all propositions that are true in state σ. Now all

variables of M have Boolean type; moreover, every location

ℓ ∈ LOC may be identified with the Boolean atom ℓ ∈ B,

σ |= ℓ stating that “when in state σ, M resides in location

ℓ”. As a consequence, the atomic propositions over M are

AP =def LOC ∪ VARin ∪ VARout ∪
VARta ∪ VARts ∪ {stable}

function constructSuccessors(in σ : S) : P(S)
let σ = (l, σin, σts, σout, σta);
if (σ |= stable)

newStates = {σ′ = (l′, σ′

in, σ′

ts, σ
′

out, σ
′

ta) ∈ S |
l′ = l ∧ σ′

out = σout ∧ σ′

ta = σta ∧
(∀t ∈ V ARts : ¬σts(t) ⇒ ¬σ′

ts(t))}
ret = calcStable(newStates);

else

l′ = nextLocation(σ);
σ1 = (l′, σin, σts, σout, σta);
σ2 = applyLocation(σ1);
ret = calcStable({σ2});

endif

constructSuccessors = ret;
end

Figure 2. Function constructSuccessors constructs the successor set for
a given state σ.

and L is determined by L(σ) =def {x ∈ AP | σ |= x} for

all σ ∈ S. This construction introduces a Kripke structure

K(M) over M by setting K(M) =def (S, S0, T, L).

Constructing the Kripke structure in an explicit way

requires to obtain an explicit representation of the transition

relation T ⊆ S×S. The standard algorithm is a breadth-first

search starting with the set of initial states S0 and calculating

transitions by means of a next-state function.

Algorithm constructSuccessors(σ) (Fig. 2) explains how

to compute the sets of successor states {σ′ ∈ S | T (σ, σ′)}
of a given state σ, as required in algorithm constructKripke.

Its behavior is dictated by the given system state’s running

state: If σ is a stable state, then the set of successor

states will consist of multiple states with modified inputs

and timer states. The set of system states with identical

location, identical output valuation, identical timer activation

valuation, free input valuation and modified timer status

valuation is initially collected in set newStates. Recall,

that when in a stable state, a timer status may only be

modified from 1 (running) to 0 (elapsed), but not vice versa.

Function calcStable (Fig. 3) modifies the resulting states’

stable valuation depending on whether the modifications

have enables a transition emanating from location l.

If the source system state σ is not stable we employ func-

tion nextLocation to determine the location of a successor

system state. An intermediate system state σ1 is constructed

from initial system state σ by simply changing the associated

location. Function applyLocation (Fig. 5) applies changes

necessary due to entry actions associated with new location

l′. Finally, function calcStable (Fig. 3) is called to determine

whether the resulting successor state is stable.

Function calcStable (Fig. 3) loops over all states within a

given set and determines, whether each state can transition

function calcStable(in states : P(S)) : P(S)
ret = ∅;
forall σ ∈ states do

ret = ret ∪ (σ ⊕ {stable 7→ ¬canTransition(σ)});
enddo

calcStable = ret;
end

Figure 3. Function calcStable reassigns stable valuations for a given set
of system states.

function canTransition(in σ : S) : B

ret = false; prio = 1;
let σ = (l, σin, σts, σout, σta);
while (prio ∈ dom R(l)) do

if (σ |= R(l)(prio))
ret = true; break;

endif

prio = prio + 1;
enddo

canTransition = ret;
end

Figure 4. Function canTransition determines whether a state σ can
transition to another location.

to a new location. This is determined by using function

canTransition (Fig. 4). Each state’s stable valuation is

modified accordingly.

Function canTransition (Fig. 4) loops over all transitions

emanating from a location l associated with given system

state σ in order of priority. If any transition is enabled

within σ, the function returns true, false otherwise. Function

nextLocation is nearly identical to function canTransition

(Fig. 4) except that for a given system state σ and asso-

ciated location l, it will return the target location for the

enabled transition emanating from l with highest priority.

If no transition emanating from l is enabled, its behavior

is undefined. However, since function nextLocation is only

called for transient states, this poses no problem.

For a given system state σ with associated location l,

function applyLocation (Fig. 5) modifies valuation functions

σout, σta and σts according to entry actions associated with

l. With the exception of stable, all outputs are reassigned

according to labeling function Lout. All timer activations

within Lta(l) are reflected in σta and σts. For all timer vari-

ables, that are not in the domain of Lta(l), timer activation

valuations and corresponding timer status valuations remain

unchanged.

Since states are valuation functions of Boolean symbols

this suggests to encode them as bit-vectors indicating which

symbols evaluate to true or false in σ. Then the labeling

function applyLocation(in σ : S) : S

let σ = (l, σin, σts, σout, σta);
σ′ = σ;
forall x in V ARout do

σ′ = σ′ ⊕ {x 7→ (x ∈ Lout(l)};
enddo

forall t in dom Lta(l)do

σ′ = σ′ ⊕ {t 7→ Lta(l)(t)};
σ′ = σ′ ⊕ {β(t) 7→ Lta(l)(t)};

enddo

end

Figure 5. Function applyLocation modifies valuations of a given state
σ according to entry actions associated with its location.

function L is obtained in a trivial way by collecting in each

state the symbols whose associated bits have value 1.

The size of the Kripke structures used in this paper

were reduced considerably by means of the delayed non-

determinism technique introduced in [8]: The explicit state

representation for valuations σ ∈ S was extended by means

of “Don’t Care” bits on input valuations σin indicating

whether an input is used in a guard condition of the current

control state σ(ℓ). If an input a is not referenced in any of

σ(ℓ)’s guards then the unfolding of its possible values may

be delayed, which is marked by setting a don’t care bit for

a in σ(ℓ). Only before entering a new location depending

on a the unfolding is performed, now leading to different

states for each a value. This technique reduces the states and

paths of the Kripke structure in a considerable way and was

therefore implemented in our tool box. Indeed, the largest

of the TMA used for performance evaluation as described

later in section VII could not be handled by constructing the

corresponding Kripke structure without employing delayed

nondeterminism.

B. Checking CTL properties

Given a Kripke structure as introduced above, arbitrary

model properties expressible in Computation Tree Logic

CTL may be checked, using the well known algorithms of

explicit model checking [3]. We will now show in more de-

tail how model checking with respect to livelock properties

can be performed for TMA in an optimized manner.

C. Live-lock checking of TMA

A live-lock occurs when a TMA executes a cycle of

transient system states. This cycle will never terminate since

the TMA is deterministic and the system will never react to

changing inputs, because those are only considered when

in a stable state. Formally speaking, a live-lock occurs

when there exists a cycle σ0 → σ1 → . . . → σn → σ0

such that σ0 is reachable from some initial state in S0,

the cycle is consistent with the transition relation, ∀i ∈

{1, . . . , n} : T (σi−1, σi) ∧ T (σn, σ0), and each state is

transient, i. e., ∀i ∈ {0, . . . , n} : stable 6∈ L(σi). Expressed

as a CTL property, live-locks may occur in reachable states

σ0 fulfilling σ0 |= EG(¬stable), or, equivalently, in TMA

satisfying EF(EG(¬stable)). Conversely, for establishing

live-lock freedom, the negation of the previous formula has

to be proven:

livelockFree ≡def AG(AF(stable))

In order to check this property, it must first be transformed

into a semantically equivalent form containing only opera-

tors ¬, ∧, ∨, EX, EG and EU:

AG(AF(stable))
⇔ AG(¬EG(¬stable))
⇔ ¬EF(EG(¬stable))
⇔ ¬E(true U (EG(¬stable)))

In general, checking formulas of the type EGφ involves

the expensive calculation of (non-trivial) strongly connected

components [3, p. 36]. Therefore the following theorem is

helpful to increase the efficiency of the live-lock checking

algorithm, since the formulas to be checked alternatively in

the case of TMA can be handled without the identification

of strongly connected components.

Theorem 1: Let M a Timed Moore Automaton. Then

(M |= livelockFree) ⇔ (M |= ¬EF(¬EF(stable)))

Proof. Consider a live-lock state σ0 with property σ0 |=
EG(¬stable). Then σ0 6|= stable, so, according to

Lemma 1, it only has one successor state which is again

transient. Repeating this argument for all states on the path

p globally satisfying ¬stable implies that p is in fact the

only path starting at σ0. We conclude that for TMA the

equivalence

(σ |= EG(¬stable)) ⇔ (σ |= AG(¬stable))

holds. Therefore the existence of a live-lock can be identified

by EF(AG(¬stable)), or, equivalently, EF(¬EF(stable)).
As a consequence the absence of live-locks is just the

negation of the latter formula, that is, ¬EF(¬EF(stable)).
�

V. TEST DATA GENERATION

Kripke structures may be utilized to construct test cases

according to several test strategies. In this approach, con-

struction of test cases consists of selecting a path to a system

state to be tested within a Kripke structure and refining

this path into sequences of input assignments and output

assertions.

Given a system state σ ∈ S within a Kripke structure

K(M), we need to find a path p starting in some initial

state σ0 ∈ S0, containing σ and ending in the next possible

stable system state σ′ ∈ S with σ′ |= stable. The stability

of σ′ is required in order to be able to check the SUT with

respect to correctness of the outputs produced and – for

grey-box or white-box testing – some aspects of its internal

state. Path p and initial state σ0 are found by performing a

backward breadth-first search through the Kripke structure

starting in σ. If σ is stable itself, we use it as final system

state of our test path since its outputs may be asserted during

execution. If σ is a transient system state, we determine

the next stable system state σ′ and the corresponding path

from σ to it by following transition relation T starting from

σ. Since Timed Moore Automata are deterministic while

passing through transient states, only one such σ′ can exist.

Observe that these considerations already require M to be

live-lock free.

The resulting path p may then be refined into a test case

by (1) constructing input assignments to produce initial state

σ0, (2) asserting stable outputs according to each stable

system state along the path, and (3) constructing new input

assignments according to each respective successor system

state to each stable system state along the path. (1) and

(3) will then enforce the execution of the selected path, (2)

verifies the consistency of implementation and specification.

A. Statement coverage

In order to attain complete statement coverage, it is

sufficient to construct test cases covering all locations of

a given automaton. Since all assignments to outputs must

occur within entry actions of automaton locations, transition

coverage is not necessary for statement coverage. For each

reachable location ℓ ∈ LOC , we find a corresponding

state σ in Kripke structure K(M), such that σ |= ℓ. As

described above, σ gives rise to a test path p through

K(M) and subsequently to a test case visiting location

ℓ. When constructing a test case to cover all statements

executed within a given location, it is preferable to force

the automaton to stabilize in that location in order to be

able to assert the effect of all statements within that location.

Hence it is advisable to find system states, where the stronger

property σ |= (ℓ∧stable) holds. Note that it is not necessary

to explicitly require all transitions leaving the location under

consideration to be disabled since this is implicitly ensured

by stable.

B. Decision coverage

For TMA, decision coverage can be achieved by (1) con-

structing test cases to cover all transitions between locations

and (2) constructing test cases enforcing stable states for

each location l by setting the inputs appropriately, as long

as states σ with σ(ℓ) = l are not transient for every possible

input vector. (1) will cover all control structures, that cause

locations to change, (2) is needed to negate all such control

structures. Combined, (1) and (2) will therefore cause all

control conditions to evaluate to true and false at least once.

As described above, (2) can be achieved by finding system

states σ for each location l, such that M,σ |= l ∧ stable.

To accomplish (1), we need to find a transient system

state σ ∈ S for any given transition emanating from a

location ℓ, such that σ enables the transition and disables

all other outgoing transitions with better priorities. Consider,

for example, transitions (loc1 7→ {1 7→ ({a}, {c}, loc3), 2 7→
({a}, {b}, loc2)}) ∈ T from Figure 1. In order to construct

a test case covering the transition with priority 2, we need

to find a system state σ, such that:

σ |= loc1 ∧ ¬a ∧ ¬c ∧ b

C. Modified condition / decision coverage

When constructing test cases according to modified con-

dition / decision coverage criteria, we may again take test

cases constructed for transition coverage as a basis. For each

transition between locations, it remains to be shown by test

cases that each atomic guard condition associated with a

transition can cause the overall complex guard condition

to evaluate to false. Since a complex guard condition is

merely a conjunction of atomic guard conditions, we require

test cases, where input valuations fulfill all but one atomic

condition of a given transition. For each location l ∈ LOC

and transition priority n ∈ dom R(l) consider the pair

(ng, g) ∈ NG × G, (ng, g) = π1(R(l)(n) formalizing the

guard condition of the transition with priority n emanating

from location l. We now require a set of modified guard

conditions, where precisely one Boolean atom has been

inverted. The set of guard conditions, where one negated

Boolean atom from original guard condition (ng, g) has been

changed to positive polarity is given as:

GUARD+(l, n) = {(ng′, g′) ∈ GUARD |
∃x ∈ V ARin ∪ V ARts :

ng′ = π1(R(l)(n) − {x}∧
g′ = π1(R(l)(n) ∪ {x}}

Conversely, the set of guard conditions, where one positive

Boolean atom from original guard condition (ng, g) has been

changed to negative polarity is given as:

GUARD−(l, n) = {(ng′, g′) ∈ GUARD |
∃x ∈ V ARin ∪ V ARts :

ng′ = π1(R(l)(n) ∪ {x}∧
g′ = π1(R(l)(n) − {x}}

Finally, the set of relevant guard conditions for achieving

modified condition / decision coverage for given location l

and priority n is:

GUARDmcdc(l, n) = GUARD+(l, n) ∪ GUARD−(l, n)

For each guard condition ({ng1, . . . , ngm}, {g1, . . . , gn}) ∈
GUARDmcdc(l, n), we now require an additional test case

by finding a transient system state σ with:

M,σ |= l ∧ ¬stable∧
¬ng1 ∧ . . . ∧ ¬ngm∧
g1 ∧ . . . ∧ gn

It is irrelevant, whether such a σ leads to a transient or stable

successor state, since for each test case corresponding to a

transition to be disabled, either taking another transition or

stabilizing in the current location is adequate proof of the

effect an inverted guard condition has.

Consider transitions (loc1 7→ {1 7→ ({c}, {a}, loc3), 2 7→
({b}, {a}, loc2)}) ∈ R from figure 1 and priority

1. When constructing test cases for modified condi-

tion / decision coverage for this transition, we construct

GUARDmcdc(loc1, 1):

GUARD+(loc1, 1) = {(∅, {a, c})}
GUARD−(loc1, 1) = {({a, c}, ∅)}
GUARDmcdc(loc1, 1) = {(∅, {a, c}), ({a, c}, ∅)}

The resulting test cases are then constructed by finding

system states σ1 and σ2 with properties:

M,σ1 |= loc1 ∧ ¬stable ∧ a ∧ c

M, σ2 |= loc1 ∧ ¬stable ∧ ¬a ∧ ¬c

VI. TEST DATA GENERATION USING SAT SOLVING

In this section an alternative to the test generation methods

described above is presented: Based on the abstract syn-

tax representation of the TMA model, test cases may be

identified as paths through the model, together with logical

constraints ensuring that these paths will really be executed.

Checking that the constraints can be solved – that is, the test

case is feasible – and generating test data from the concrete

constraint solutions represents a SAT solving problem which

we handle using the MiniSAT tool [4].

A. General behavior

We formalize a trace through a TMA as a sequence of

trace transitions. The set of trace transitions TT ⊆ (LOC×
N) consists of tuples (l, n) ∈ TT of a source location l

and the transition priority n of a transition emanating from

that source location. Given trace ∈ TT ∗, test data for a test

case executing that trace consists of a sequence of inputs

inputs ∈ (Σin ×Σts)
∗ to be assigned in each test step and

a corresponding sequence of output outputs ∈ (Σout×Σta)∗

to be asserted within each test step.

Recall that during execution of TMA some visited loca-

tions may be part of a transient system state. This means

that a test trace may need to be partitioned into sub-traces

corresponding to test steps. Each sub-trace will then end

in a stable state where correct output valuations may be

asserted and new inputs may be assigned. The function

generateTestData (Fig. 6) implements the general behavior

of the test data generation for TMA. It receives a test trace

as an input parameter and returns a boolean value indicating

whether the given test trace is feasible. If feasible, additional

output parameters will yield input and output assignments

corresponding to single test steps.

At the core of this function, a loop iteratively partitions

the given test trace into test steps. This is accomplished

function generateTestData(in trace : TT ∗,

out inputs :
(Σin × Σta)∗,

out outputs :
(Σout × Σts)

∗) : B

feasible = true;
inputs =<>;
outputs =<>;
σ = σ0;
while(feasible and not empty(trace)) do

(Σin × Σta) (σ′

in, σ′

ta);
feasible = nextStep(trace,

σ,

(σ′

in, σ′

ts));
if(feasible) then

push back(inputs, (σ′

in, σ′

ts));
let σ = (loc, σin, σts, σout, σta);
σin = σ′

in; σts = σ′

ts;
interpret(σ);
push back(outputs, (σout, σta));

endif

enddo

return feasible;
end

Figure 6. Function generateTestData constructs input and output
sequences for a given trace.

by function nextStep (Fig. 8). Each invocation of this

function determines, whether another test step along the

given test trace is feasible. If so, it returns the inputs

(σ′

in, σ′

ts) necessary to realize the shortest such test step as

well as the remaining postfix of the given test trace trace,

for which additional test steps need to be generated. While

test steps along the given test trace are feasible, the loop

keeps track of current locations as well as current input

and output valuations. On the one hand, this is necessary to

provide the needed inputs to nextStep, on the other hand

this will determine the outputs to be asserted after each

test step. Bookkeeping of current locations and variable

valuations is accomplished using a concrete interpretation

function interpret (Fig. 7), which will compute the next

stable successor system state for a given running source

system state. The test data generation will only return valid

test data, if a given test trace can be completely partitioned

into feasible test steps.

B. Concrete interpretation

The concrete interpreter function interpret : S → S

for Timed Moore automata can be implemented using the

operational semantics given in chapter III. Given a source

system state σ ∈ S, such a concrete interpreter function

will compute the next stable system state and modify the

procedure interpret(inout σ : S)
let σ = (loc, σin, σts, σout, σta);
σout = σout ⊕ (stable 7→ false)
while(σout(stable) = false) do

S′ = {σ′ ∈ S | T (σ, σ′)}
select σ′ ∈ S′

σ = σ′

enddo

end

Figure 7. Procedure interpret performs concrete interpretation starting
from a given system state σ.

system state accordingly: given the source system state

σ = (loc, σin, σts, σout, σta), the interpreter function will

initially ensure, that the automaton is in a transient state

by overloading σout(stable) to be false. Once in a tran-

sient state, the interpretation will loop while the automaton

transitions. Within each loop, the set of successor states is

calculated using T . A successor state is then selected from

that set, which will become the new source state for the

next loop execution. According to Lemma 1 the set S′ will

always contain exactly one element and the selection of an

element from that set is not arbitrary.

C. Test trace partitioning

Given a system state (loc, σin, σts, σout, σta) ∈ S and a

test trace trace ∈ TT ∗ starting in location loc ∈ LOC, the

function nextStep (Fig. 8) calculates the shortest feasible

prefix test trace that ends in a location with a stable system

state. In order to accomplish this, an initially empty sequence

of trace transitions is iteratively expanded along the given

test trace. This sequence is a feasible test step prefix trace

if inputs can be constructed, which enforce the trace and

cause the final location of the trace to be reached as part of

a stable system state. However, if no location along the given

test trace can be made stable, but inputs can be found that

enforce the entire trace, the entire trace may be viewed as

a feasible test step. Since the entire test trace is covered by

such a test step, it is irrelevant with respect to the generation

of input assignments which location becomes stable next.

Within function nextStep (Fig. 8), sequence step is the

test step currently under consideration. Within a loop, it

is expanded using trace transitions from the given test

trace trace. The loop continues while no feasible test step

could be found and while there are still trace transitions

remaining within the given test trace. For each test step

under consideration, function cprefix constructs a boolean

constraint expression over input values. If a solution to that

constraint can be found, the corresponding inputs will (1)

enable all transitions along the test step, (2) disable all

transitions with better priorities deviating from the test step,

and (3) disable all transitions leaving the final location of the

function nextStep(inout trace : TT ∗,

in σ : S,

out (σ′

in, σ′

ts) : (Σin × Σts) : B

sat = false;
step =<>;
remain = trace;
while(not sat and not empty(remain)) do

trans = pop front(remain);
push back(step, trans);
constraint = cprefix(σ, step);
if(solve(constraint)) then

sat = true;
(σ′

in, σ′

ts) = solution(constraint);
trace = remain;

endif

enddo

if(not sat) then

constraint = cfull(σ, step);
if(solve(constraint)) then

sat = true;
σ′

in = solution(constraint);
trace =<>;

endif

endif

return sat;
end

Figure 8. Function nextStep partitions a test trace into test steps.

test step in order to make it stable. If no such test step exists

and the loop terminates unsuccessfully, function cfull will

construct a boolean constraint expression, which will only

(1) enable all transitions along the entire trace and (2) disable

all transitions with better priorities deviating from the entire

trace. A solution to this constraint will still yield valid test

data since the entire test trace is covered. Calls of solve and

solution with a given constraint correspond to invocations

of the underlying SAT-solver and yield satisfiability and

satisfying valuations respectively.

VII. PERFORMANCE RESULTS

Table I shows performance results for a collection of TMA

used as specifications of a “real-world” industrial railway

control application. Within table I, each row corresponds

to results gathered during model checking and test data

generation for a single TMA. Column labels (1) #L, (2)

#T, (3) #IN, (4) #TM, (5) #S, (6) tKS , (7) tMC , (8) #TC

and (9) tTC denote (1) number of locations within the

TMA, (2) number of transitions in the TMA, (3) number

of inputs, (4) number of timers, (5) number of Kripke states

within the corresponding Kripke structure, (6) time required

to construct Kripke structure in milliseconds, (7) time re-

Table I
PERFORMANCE RESULTS

#L #T #IN #TM #S tKS tMC #TC tTC

12 34 5 0 310 < 1 < 1 28 < 1

12 37 7 0 501 10 < 1 29 20

12 38 7 0 442 10 < 1 28 60

13 35 8 0 1071 20 20 35 20

16 28 8 1 756 10 10 27 20

18 29 6 2 574 10 10 27 10

18 41 10 0 1485 40 20 38 50

19 28 4 4 306 < 1 < 1 24 10

19 34 7 0 291 < 1 10 33 20

22 38 10 3 513 10 10 37 10

22 40 5 0 455 < 1 < 1 31 10

24 54 14 2 1613 30 30 43 30

25 73 8 3 5095 120 310 63 40

33 48 9 5 3090 50 110 43 20

quired to perform model checking for livelocks on Kripke

structure in milliseconds, (8) number of generated test cases

ensuring complete transition coverage and (9) time required

to construct test cases using the SAT-based approach in

milliseconds respectively. All measurements were performed

on a standard 2.0 GHz Intel R©CoreTM2 Duo processor with

2 GB of RAM. Note that for some TMA the corresponding

Kripke structures were constructed within less than a single

millisecond. The construction of Kripke structures never

took more than 120 milliseconds to complete. All Kripke

structures were sufficiently small to easily fit into RAM.

Examining Kripke structures to detect livelocks was always

completed within at most 310 milliseconds, many TMA

could be checked within less than a single millisecond.

Since no TMA contained livelocks (all livelocks detected

in previous TMA specification versions had been removed)

and since therefore all constructed Kripke states had to

be examined, the time measurements constitute worst-case

scenarios.

VIII. CONCLUSION

We have introduced the Timed Moore Automata formal-

ism which is used for specification and semi-automated

model-based code generation of cooperating software com-

ponents in railway control systems. An operational seman-

tics for TMA and algorithms for checking these models

against livelocks and for automated generation of test cases

and associated test data have been presented. Livelock

checking and one variant of test generation algorithms were

based on Kripke structures as used in explicit model check-

ing. Apart from the fact that, due to the moderate size of the

unit specification models, explicit models are acceptable for

our railway control application context, there is another rea-

son for utilizing explicit Kripke structures in test automation:

When generating test data for models M designed in more

general formalisms admitting large data types like 32, 64

and 128 bit integers and floating point numbers, arithmetic

conditions and assignments involving arithmetic expressions

are abstracted to Boolean atoms. This abstraction induces

a model A(M) simulating the original model M . Kripke

structures over A(M) can be readily exploited to identify

classes for equivalence testing: Roughly speaking, different

concrete paths through M being abstracted to the same path

through A(M) represent members of the same equivalence

class, and therefore it often suffices to test only one or a

small number of them.

The test automation techniques described here have been

applied in numerous test suites performed by Verified Sys-

tems International GmbH for the verification of railway

control software of highest criticality level SIL-4 according

to the international standard [2]. Compared to conventional

unit tests performed before, our techniques reduce the effort

by approx. 90%. This extraordinary efficiency improvement

could be gained since the TMA models are already provided

by the development teams. In other testing campaigns, where

testing models had to be elaborated before being able to

benefit from the automation capabilities, the efficiency im-

provement was approx. 30% when compared to conventional

test campaigns.

REFERENCES

[1] Tsun S. Chow. Testing software design modeled by finite-
state machines. IEEE Transactions on Software Engineering,
SE-4(3):178–186, March 1978.

[2] European Committee for Electrotechnical Standardization.
EN 50128 – Railway applications – Communications, sig-
nalling and processing systems – Software for railway control
and protection systems. CENELEC, Brussels, 2001.

[3] Edmund M.Clarke Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[4] Niklas Een, Niklas Sörensson. An Extensible SAT-solver. SAT
2003.

[5] M. G. Merayo, Manuel Núñez and Ismael Rodrı́guez. Formal
testing from timed finite state machines. Computer Networks
52 (2008) 432 – 460.

[6] Moore E. F. Gedanken-experiments on Sequential Ma-
chines. Automata Studies, Annals of Mathematical Studies,
34, 129153. Princeton University Press, Princeton, N.J.(1956).

[7] Jan Peleska, Helge Löding, and Tatiana Kotas. Test au-
tomation meets static analysis. In Rainer Koschke, Karl-
Heinz Rödiger Otthein Herzog, and Marc Ronthaler, editors,
Proceedings of the INFORMATIK 2007, Band 2, 24. - 27.
September, Bremen (Germany), pages 280–286.

[8] Bastian Schlich. Model Checking of Software for Microcon-
trollers. PhD Thesis , Aachen, Germany, 2008.

[9] J.G. Springintveld, F.W. Vaandrager, and P.R. D’Argenio.
Testing timed automata. Theoretical Computer Science,
254(1-2):225–257, March 2001.

