Specification of Embedded Systems
Summer Semester 2020

Session 4
Requirements Tracing

Jan Peleska
peleska@uni-bremen.de
Issue 2.0
2020-06-18

Note. These lecture notes are free to be used for non-commercial educational
purposes. [did my best to provide scientifically sound material, but no
guarantees whatsoever are given regarding correctness or suitability of the
content for any specific purpose.

All rights reserved (©) 2020 Jan Peleska

Chapter 1

Preface

In this document, the material for Session 4 of the course Specification
of Embedded Systems is provided.
This document is structured as follows.

e In Section [2], the objectives of requirements tracing are explained.

e In Section |3, the SysML modelling techniques for tracing requirements
are described.

e In Section {4} we slightly extend the material of Session 1 regarding re-
quirements and associations between them. This extension is presented
now, because it requires a deeper understanding of system design which
is now available, since we have modelled a substantial portion of the
Turn Indication Control System.

In Section b we give a short introduction into model-based testing,
where requirements tracing information can be used to identify test
cases that are suitable for verifying the given requirement.

e As usual, these lecture notes end with questions and exercises in Sec-
tion 6l

For this session, we advise you to study Chapter 13 in [I] for more elab-
orate background information about what is presented here in condensed
form.

Overview

Contents

[1_Prefacel 1
2 Objectives of Requirements Tracing| 5
[3 The SysML Approach to Requirements Tracing| 7
[3.1 The Satisfy Relationship| 7
[3.2 Choice of Clients in Satisty Relationships 9
(3.3 Different Ways to Represent Traceability Information| 13

[4 Requirements and Related Associations| 17
[4.1 Association summary| 17
4.2 'The Derive Requirement Relationship|. 18
4.3 The Refine Relationship| 19
4.4 'The Copy Relationship| 20
4.5 Obsolete Stereotypes| L. 20

[6 Model-based Requirements-driven Testing| 21
b1 Terms and Definitiond 21
[5.2 Requirements-driven |

[[est Case Identification|. 22
b3 Test Cases o 23
(5.4 System Test Case Creation Examplel 24
[>.4.1 The Requirement to be Tested| 24

0.4.2 The Model Flements to be Coveredl 24

b.4.3 Test Case Identification| 25

h.4.4 Test Case Elaboration: TC-051-0011 26

6 Questions and Exercises| 31

6.1 Questions| 31
[6.1.1 How Many Satisfy Links do we Need?|. 31
6.2 Exercises. 31
[6.2.1 Derived Requirements| 31

[6.2.2 Full Requirements Tracing for the
[[urn Indication Modell 32
[6.2.3 Requirements-driven Test Case Specifications| 32

List of Figures

(3.1 Example of a <satisfy>-relationship.| 8
[3.2 Example of a <traces-relationship.| 9
[3.3 'Iracing a requirement to parts and flows.|. 10
[3.4 ITracing a behavioural requirement to parts and transitions.. . 12
[3.5 Tracing a behavioural requirement to parts, transitions, and |

opaque behaviours.| o000 13
[3.6 Traceability matrix created as Papyrus Generic Tree Table|. . 14

4.1 Example of supplier requirement and two derived requirements.| 19

[>.1 Model elements contributing to the satisfaction of requirement |

REQ051] . o o oo e 25

(5.2 Initial transitions leading to state NO_FLASHING.| 27

Chapter 2

Objectives of Requirements
Tracing

You remember from Session 1 that requirements are “first-class citizens” of
the SysML modelling language. This means, that they have their own SysML
language elements and can be related to other model elements. This feature
distinguishes SysML significantly from other modelling formalisms, where
requirements come in as “an afterthought” and have to be represented by
other existing language constructs that were not originally invented for this
purpose[l]

Typically, requirements are stored in a separate package of the model,
and the other packages “show how these requirements are realised”. We also
say that the other packages show how the requirements are implemented,
because the formalised model represented by these packages should represent
an implementable refinement of the informal requirements specified in the
first package.

So far, we have only captured (i.e. identified) requirements for the Turn
Indication Control System, and we have structured them, for example, ac-
cording to behavioural, structural, and non-functional requirements. We
recall from Session 1 that the full requirements data can be extracted from
leaves of the requirements diagrams: there, atomic requirements without
further decomposition are specified. The requirements further up in the de-

'For example, requirements are often represented as comments with a special format
in programming languages. Other modelling formalisms require to set up tables relat-
ing requirement identifiers created with other tools to behavioural or structural model
elements.

From
require-
ments

capture

composition tree are only needed for structuring the atomic requirements
into suitable sub-collections.

The main objective of this session is to learn how to trace requirements ...to
to other parts of the model, showing that require-
ments

e the requirement has not been forgotten, and tracing

e which design is considered as appropriate for realising the requirement
in an effective way.

Chapter 3

The SysML Approach to
Requirements Tracing

3.1 The Satisfy Relationship

As you may have guessed, requirements tracing is performed by means of Satisfy

specific associations, linking the requirement to one or more model elements
representing structure, behaviour, or non-functional system properties. The
most important association is the satisfy relationship which is depicted by
a dashed-line arrow decorated with the stereotype «satisfy> and leads from a
structural or behavioural model element to a requirement. The interpretation
of this relationship is

The model element at the base of the <satisfys-arrow (called the
client) contributes to the realisation of the requirement at the
arrow head (called the supplier) of this association.

The <satisfy>-relationship always has a requirement at its supplier end. At
the arrow base, any named element may occur as client, including even re-
quirements. The typical usage, however, is to linke a named element which
is not a requirement to a requirement.

The <satisfy>-relationship is many-to-many:

e Many structural and/or behavioural model elements may be needed to
realise one requirement.

e One structural or behavioural model element may partake in the real-
isation of many requirements.

relationship

In Fig. 3.1} which is part of a requirements diagram, it is shown how
the fact that the proxy port EmerSwitchPressed contributes to the imple-
mentation of requirement REQ-023 is expressed by means of a <satisfy>-
relationship. Arbitrary model elements may be dragged and dropped to
requirements diagrams, and then linked to requirements by means of the
<satisfy>-relationship.

«Requirement»
{derived=[] , derivedFrom=[] , id=REQ-023 ...

REQ-023 Emergency flashing button

«Requirement»
id=REQ-023
_| text=There is an interface to the emergency
flashing button on the dashboard, showing
the button states RELEASED, PRESSED K-

«Satisfy»
Satisfy-REQ-029

«ProxyPort»
EmerSwitchPressed

Figure 3.1: Example of a <satisfy>-relationship.

For showing in a very general way that one model element (including
a requirement) is “somehow” related to another, SysML provides a second
association called trace relationship which is represented by a dashed-line
arrow labelled by stereotype <trace>. This association should not be used
in places where a <satisfy>-relationship is appropriate. Instead, the <traces-
relationship is used to point out that a requirement is related in any general
way to artefact it points to. In Fig. a typical example of an application of
the <traces-relationship is shown: The requirements related to the ON/OFF
flashing periods for the turn indication control system are based on German
traffic law. The <traces-relationship just points from the requirements to
this document.

We won’t consider the trace relationship further in the remainder of this
session, because its use is quite informal, so that trace relationships are never
evaluated for automated code generation or automated generation of tests.

Trace

relationship

«Requirement»
REQ-300: Non-functional Requirements
id=REQ-300
text=empty
\
«Requirement» «Requirement»
REQ-014: Flashing periods (ignition ON) REQ-015: Flashing periods (ignition OFF)
id=REQ-014 id=REQ-015
text=The flashing period is text=The flashing period is
340ms ON/320ms OFF when 320ms ON/340ms OFF if the
the ignition is on ignition is off.

. ‘
\ «abstraction, Trace» ’
Y Laws)/
\
’
¥ ’
§ ’
\\ ’
. Laws1 \ K
«abstraction, Trace» \ ,
d ’
A .
A} v
\

«Document»
German Traffic Laws

Figure 3.2: Example of a <trace>-relationship.

3.2 Choice of Clients in Satisfy Relationships

Depending on the nature of the requirement, different choices of clients sat-
isfying the requirement need to be made. Some choices are quite obvious.

1. A behavioural requirement can never be satisfied by a collection of sat-
isfy relationships containing only structural model elements as clients.

2. A structural requirement can never be satisfied by a collection of satisfy
relationships containing only behavioural model elements as clients.

-controller,
n lights and «abstraction, Satisfy»

Satisfy-REQ-008-R-Pin E]

pinprogramblockright

«abstraction, Satisfy»
«Requirement»

REQ-008-R: Right door controller Satisfy-REQ-008-R]
id=REQ-008-R RCREEEEEELEEEEEEEE DR
text=There is a controller in the right door, <z - - -

managing the right mirror indication light

1
1
‘
1
(2] : (2]
«FullPort» |rmemmmmmm—aa 4 -> «ProxyPort»
ntroller | CurrentOUT CurrentDR

»

«ItemFlow»

LampCurrent
controller, CurrentDRFlow

~atinn linhte

Figure 3.3: Tracing a requirement to parts and flows.

For structural requirements, a distinction between blocks and parts (that Using
is, instances of blocks) will usually become necessary. To give an example, parts
consider the structural requirement REQ-008-R in Fig.[3.3] This requirement instead of
states that a door controller must be allocated in the right door. Therefore, blocks
it would not suffice to use the block DoorController as the client of the <sat-
isfy>-relationship. Instead, we need the part property DR : DoorController
of the TurnIndicationController as client, because this confirms that there will
be a door controller instance at the right-hand side. Now here, we should
be a bit more elaborate and show that this door controller also “knows”

10

that it is integrated in the right door. This is ensured by the part prop-
erty pinprogramblockright : PinProgramBlockRight of TurnIndicationController.
Finally, the requirement states that this door controller should manage the
right mirror indication light. This is ensured by the item flow connecting the
output port CurrentOUT to the proxy port CurrentDR. This results in the
collection of <satisfys-relationships shown in Fig. [3.3

When it comes to behaviour, there is usually at least one part involved
as client in the collection of <satisfy>-relationships: This part is an instance
of the block possessing the owned classifier behaviour implementing the re-
quirement. Tracing to this part means that “the behaviour has not only been
modelled in some state machine (and then forgotten), but it is also allocated
in a suitable place of the system design”. The proper behaviour may be
expressed by a collection of

e state machines,
e activities,

e interactions,

e operations.

We focus here on state machines. Typically, only some parts of a state
machine contribute to the satisfaction of a given requirements. This means,
that single transitions, states, or actions need to be related to the require-
ment. Consider, for example, requirement REQ-16 in Fig. which states
that OFF commands are sent by the rear controller. The part responsible for
executing the state machine implementing this behaviour is candriver : CAN-
driver. The state machine CANdriver has two transitions reacting to OFF
commands, these are linked to the requirement as well, so that one struc-
tural modelling element and two behavioural elements together implement
the requirement.

Note that in the requirements diagram, the transition names are used in
the client boxes. This show again that it is useful to associate names with
transitions.

11

Tracing
behaviour

id=REQ-013

text=Each controller evaluates the ON-

duration contained in the ON-message «abstraction, Satisfy»

from the rear controller, so that it can Satisfy-REQ-016-CAN 7

switch its lights off automatically, without]
requiring another CAN bus signal.

candriver

REQ-016: OFF command
id=REQ-016
text=When indication lights are switched
OFF, the rear controller sends an OFF
command to the other controllers, so RSRREEEEEEEEEEEEEEEEEEE) cabstraciion, Satisfy» 1
that lights are switched off immediately
(without waiting for the end of an ON- e e
period).

7]

'
'
'
'
'
'
'

«Requirement» H
'
'
'
'
!
'
H alloffTrans
'

Satisfy-REQ-016-AllOff

«abstraction, Satisfy»
Satisfy-REQ-016-Off

REQ-050 Rear controller sends ON message

id=REQ-050

«Requirement» E
text=The rear controller is responsible for ' |
indicating each ON switching event with the flashingOffTrans 2
— associated ON-duration on the CAN bus, so |
that all controllers switch their connected

lights in synchrony (delays on the CAN bus

may be neglected).

Figure 3.4: Tracing a behavioural requirement to parts and transitions.

In several situations, it is necessary to refer to opaque behaviour or opaque
expressions, because the modelled behaviour can only be fully understood
when analysing the actions and conditions specified there. An example is
given in Fig. 3.5 where the requirement for left-hand-side flashing is spec-
ified. Apart from the part executing the ControlLogic state machine and
the transitions involved, the behaviour is determined by the entry action
LRFlashingAssignment, which has the opaque behaviour

1 FlashCmdOut.cmd = ON;
2 FlashCmdOut.applyLeft = (LeverPositionIN == LEFT);
3 FlashCmdOut.applyRight = (LeverPositionIN == RIGHT);

12

Trace to
opaque
behaviour

@ «abstraction, Satisfy»

controllogic Satisfy-REQ-051-A

2 Y
«Requirement»
REQ-051 Turn indication LEFT
id=REQ-051
text=When the turn indication lever is
switched from any other position to

LRFlashingAssignment

«abstraction, Satisfy»

T Satisfy-REQ-051-B

e >

7 «abstraction, Satisfy» position LEFT and the ignition is on, left-
........ --------_----->3! hand side flashing is activated. An active
RtoLchangeTrans Satisfy-REQ-051-C
ON period is immediately interrupted,
and the lights on the right side are
switched OFF at once.
2]
leftOverrideTrans «abstraction, Satisfy» A
" SRy REG-05 7D T T TTTTTTTTTTTT T TTTe !

«Requirement»
REQ-058 Turn indication RIGHT

id=REQ-058

Figure 3.5: Tracing a behavioural requirement to parts, transitions, and
opaque behaviours.

3.3 Different Ways to Represent Traceability
Information

In the previous section, we have presented the standard way to represent
satisfaction relations: the clients of <satisfy>-relationships are dragged and
dropped to requirements diagrams and linked there to the associated supplier
requirement. While this is the preferable solution for small collections of
requirements and clients, the diagrams may become quite cluttered when
many requirements with numerous clients are involved.

Some tools allow for referencing requirements in other diagrams (so-called
callout notation), drawing a <satisfys-relationship, for example, from a
transition to a requirements callout box in a state machine diagram [3|
p. 184]. This notation style, however, is not supported by the Papyrus tool.

13

Callout

notation

Specifying traceability information without graphical representation is satisfiedBy
possible by creating a satisfy association from the context menu SysML Rela- compart-
tionship — Satisfy of the client model element. There, the supplier require- ment
ment can be selected, and the client is registered in the Satisfied By compart-
ment of the requirement. This avoids cluttered graphical representations,
but one misses a condensed representation of the satisfied-by information.

To overcome this problem, SysML introduces tabular representations of Tabular
requirements and their related elements, such as the clients of the <satisfy>- views
relationship, or other requirements related by the associations described in
the next section [3, 16.3.1.5]. In the Papyrus tool, these tables can be cre-
ated using the New Table — Generic Tree Table command on a higher-level
requirement R. The table will then contain all the the requirements under-
neath R. Then it is possible to select additional columns using the Columns
— Create/Destroy Columns command in the context menu of the table it-
self. This is explained in the video accompanying this session. An example
of such a table is given in Fig. [3.6]

2 | D | |

: rome S 0.1 T |
=1 L /ownedElement
[#] REQ-011: Controllers communicate via CAN bus REQ-011: Controllers communicate via CAN bus REQ-011
=[] REQ-100-A: Interfaces to the operational environment REQ-100-A: Interfaces to the operational environment REQ-100-A
=1 L /ownedElement
[+ %] REQ-100-A1 Indication Light Interfaces REQ-100-A1 Indication Light Interfaces REQ-100-A1
[~ %] REQ-100-A2 Dashboard interfaces REQ-100-A2 Dashboard interfaces REQ-100-A2
=l L /ownedElement
REQ-002-L Left dashboard indication LED REQ-002-L Left dashboard indication LED REQ-002-L
REQ-002-R Right dashboard indication LED REQ-002-R Right dashboard indication LED REQ-002-R
REQ-023 Emergency flashing button REQ-023 Emergency flashing button REQ-023 EmerSwitchPressed
REQ-020 Battery interface REQ-020 Battery interface REQ-020
REQ-021 Ignition interface REQ-021
REQ-022 Turn Indication Lever interface REQ-022 Turn Indication Lever interface REQ-022
REQ-100-B Internal interfaces REQ-100-B Internal interfaces REQ-100-B
=I] REQ-100-C Controllers REQ-100-C Controllers REQ-100-C
=1 L /ownedElement
REQ-006: one front controller REQ-006: one front controller REQ-006
EQ-008-L: Left door controller REQ-008-L: Left door controller REQ-008-L
EQ-008-R: Right door controller REQ-008-R: Right door controller REQ-008-R DR, <Information Flow> CurrentDRFlow, pinprogramblockright
REQ-007: one rear controller REQ-007: one rear controller REQ-007

Figure 3.6: Traceability matrix created as Papyrus Generic Tree Table.

Summarising, we recommend the following two approaches for represent-

ing traceability onformation in the model. for
LI hical L : di displaying
. graphical representation 1s 1mp0rtan‘dz|, use requirements diagrams traceability

!For example, if walkthroughs for checking how requirements have been implemented information

in the model are performed with several participants.

14

Recommendation

showing only a small number of requirements, so that they do not be-
come cluttered, when clients and <satisfy>-relationships are displayed
on the same diagram.

2. If graphical representation is not important, create <«satisfy>-
relationships by means of the SysML Relationship — Satisfy command
in the context menu of the client, and collect all <satisfy>-relationships
in a table showing requirements and associated clients in separate
columns.

Please note that these options are not an “either-or” choice: you can always
choose Approach 2 and add requirements diagrams with graphical display of
clients and <satisfy>-relationships for some specific requirements only.

In general, and independent of the SysML formalism, tabular representa-
tions of requirements and related artefacts are called traceability matrix.
Of course, the term “matrix” is a bit naive, since more complex structures
involving several tree tables are needed to represent all related information
in a comprehensive view. In this course, we focus on other model elements
acting as clients to the <satisfy>-relationship to be displayed in traceability
matrices. In a complete system development involving HW and SW devel-
opment, reviews, analyses, and tests on unit level, software integration level,
HW/SW integration level, and system level, there are far more artefacts to
be traced back to requirements with different relationships not used in this
course, but briefly discussed in the next section.

For example, a system test case can be represented in SysML by means
of an interaction. To express that a requirement R is tested by interaction I,
a <verify>-relationship with I as client and R as supplier can be used.

It is currently discussed in the engineering communities whether it is
advisable to capture all artefacts of a system development in a SysML model,
which would allow us to perform complete requirements tracing inside the
system model. The SysML syntax and semantics is expressive enough to do
this. There are, however, some serious obstacles to be overcome until such
an ideal situation could be reached:

e The SysML tools currently available (both commercial and free open
source) are far too weak to provide a satisfactory user experience for
managing all artefacts in the development life cycle.

15

Traceability

matrix

SysML
model as
central
source of
traceability
information?

e There is a separate market for requirements management tools
which provide a database for managing requirements, other artefacts,
and traceability relations between them.

As of today, separate tools for requirements management and tracing on the
one hand, and modelling on the other hand, are therefore applied in industry.

2See, for example, https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.5.
0/com.ibm.doors.requirements.doc/topics/c_welcome.html| for one of the commer-
cial tools focused on requirements management.

16

https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.5.0/com.ibm.doors.requirements.doc/topics/c_welcome.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.5.0/com.ibm.doors.requirements.doc/topics/c_welcome.html

Chapter 4

Requirements and Related
Associations

4.1

Association summary

By now, we have become acquainted with four requirements-related associa-

tions:

1.

The containment relationship, denoted by a “crosshair” @& is used
to specify that one requirement is comprised of other, more specific
(potentially atomic) ones.

The satisfy relationship has been introduced above to trace supplier
requirements back to client model elements.

The trace relationship has been briefly mentioned above, and it is used
to link requirements to other artefacts having only a weakly specified
relationship to the requirement.[]

The verify relationship (also briefly mentioned above) is used to link a
verification artefact (typically, a test case or an analysis document) to a
requirement, stating that the proper implementation of the requirement
is checked by the artefact.

To this little zoo of association animals, the following relationships need

to be

added, and they will be explained in the following paragraphs.

1So the <traces-relationship must never be used for stating that requirements are
implemented by other model elements.

17

Known

associations

New

associations

5. The DeriveReqt (derive requirement) relationship connects a
client requirement to a supplier requirement and states that the client
is a more concrete requirement which has been “invented” to realise
the supplier requirement.

6. The refine relationship makes a requirement more precise by associat-
ing a model at the client end explaining the requirement at the supplier
end.

7. The copy relationship states that the client requirement is just a verba-
tim copy of the supplier requirement “living” in another project context
or any other context (e.g. a standard).

4.2 The Derive Requirement Relationship

The <DeriveReqt>-relationship is typically introduced during the modelling
process, together with a new design-related requirement as client of this
relationship. The client is a requirement which typically states one of sev-
eral possible alternatives for realising the supplier requirement. In the stan-
dard [7] for avionic systems development, the client requirement is therefore
called the derived requirement. It should be emphasised that the derived
requirement is still informal, just as the supplier requirementE]

It is good style to extend the «DeriveReqt>-relationship with a rationale
if the effectiveness of the derived requirement is not immediately clear from
its description.

An important distinction between original and derived requirements is
that the original requirements are typically specified by the customer, while
the derived requirements are identified by the supplier team during the mod-
elling process.

The utilisation of derived requirements is exemplified in Fig. [£.1]

2For formalising a requirement, the <refine>-relationship discussed next can be used.

18

Stakeholders

«Requirement»
R1 24/7 operation

id=R1
text=The system shall be operable in 24/7 mode

without interruptions longer than 30s «Rationale
The XYZ hot standby server system is mature,
and it has been verified that master-slave
A switchover takes less than 2s
|

«abstraction, DeriveReqt» «DeriveReqt» ’,'

DeriveReqtUPS DeriveReqtHotStandby

«Requirement»

«Requirement» R1.2 Hot Standby Servers
R1.1 UPS id= R1.2
id=R1.1)) text=The system shall use two servers
text=The system shall be equipped with an operating in hot standby mode, using the
uninterruptable power supply (UPS) XYZ system

Figure 4.1: Example of supplier requirement and two derived requirements.

4.3 The Refine Relationship

The <refine>-relationship complements the «DeriveReqt>-relationship in the
sense that it formalises the supplier requirement by providing a sub-model
at the client end of the relationship. For example, the supplier requirement
could state “the sender uses the HDLC transmission protocol”, and the client
could be a state machine modelling the HDLC protocol behaviour.

Note that the client sub-model is usually not a part of the system design,
the latter can be realised by quite different modelling elements. For exam-
ple, the protocol implementation could be modelled by concurrent activities
instead of the state machine refining the requirement. Moreover, the refining
sub-model needs no allocation anywhere as a part of the target system.

19

4.4 The Copy Relationship

The <copy>-relationship has the effect that the copied requirement becomes
part of the project, but is read only: since it has been intentionally been
copied verbatim from another project (for example, with the intention to
re-use an existing solution), it is not allowed to change a copied requirement.

4.5 Obsolete Stereotypes

Please note that the stereotypes for specialised requirements listed in |1, Ta-
ble 13.1] (as, for example, <functionRequirements) are no longer supported
in SysML Version 1.6. With today’s SysML, one would introduce project-
specific specialisations by creating new stereotypes in a project-specific pro-
file [3, Chapter 17]. Profile creation, however, is beyond the scope of this
course.

20

Chapter 5

Model-based
Requirements-driven Testing

5.1 Terms and Definitions

The most obvious benefit of requirements tracing is the verification that no
requirements have been forgotten in the system design. But there are more
advantages coming from tracing requirements to elements of the system de-
sign. The most important of these advantages is model-based testing
(MBT), in particular, requirements-driven testing. We focus here on
functional testing, that is, on test cases suitable to check that the be-
haviour of the system under test (SUT) conforms to the behaviour in the
specified reference model. Model-based structural testing or non-functional
testing is also possible, but our focus here is on functional testing only.

In MBT, various strategies are applied to derive “useful” test cases from
design models specified in SysML or other modelling formalisms. In this
context, “useful” means one of two things:

1. The resulting test suites are suitable for detecting any deviation of
the system behaviour from the specified model expressing the expected
SUT behaviour. This approach is relevant when testing for model
conformance of the SUT with every aspect of the model. Confor-
mance testing is applied, for example, when verifying communication
systems exchanging data according to certain protocols.

2. The resulting test suites are suitable for detecting violations of a given

21

Functional
MBT

Conformance

testing

Requirements-
driven

testing

requirement. This approach is called requirements-driven testing.
It is applied in the safety-critical systems domain, where safety-related
requirements need to be traced to the system design and from there
to HW design, SW design, code and verification artefacts, like tests,
reviews, and analyses.

For the remainder of this section, we will explain the basic approach to
requirements-driven MBT. We will explain this in an informal, intuitive way.
Please note, however, that MBT has a solid scientific foundation, and it
is still a very active research field. Moreover, many companies world-wide
currently introduce MBT into their development, verification, and validation
processes. This is mainly motivated by the fact that MBT can be automated
in a way that test procedures including the test data and the checks to be
performed can be automatically generated from models.

e For the scientific foundations of MBT, please consult our lecture
notes [0] and visit our lecture on test automation.

e For MBT automation methods, please read [4} [5].

5.2 Requirements-driven
Test Case Identification

We have learned how to trace structural and behavioural model elements
to requirements, using the <satisfys-relationship. Intuitively speaking, every
behavioural model element contributing to the implementation of a require-
ment should be covered in at least one of the test cases.

The concept of model coverage needs some explanation: The design
model is associated with a behavioural semantics which we have only di-
cussed in an informal way, but which can be formalised as shown, for example,
in [2, Chapter 11]. Intuitively speaking, the model behaviour is specified by
the state machines involved and the guard conditions, entry actions, and op-
eration calls evaluated or executed by the state machines. Placing data or
signal events on system interfaces leads to state machine transitions being
triggered by means of signal events or change events. Moreover, state ma-
chine transitions can be triggered by time events. As a consequence, we can
simulate the state machine behaviour, either by hand, or by automatically

22

Covering
a model

element

transforming the model into simulation code. The latter technique will be
explained during the next sessions.

During a simulated state machine execution, every (partial) execution
step corresponds to

e a guard condition being evaluated,
e a trigger condition being evaluated,

e an entry action/exit action/do action or transition action being exe-
cuted, or

e a block operation called by the state machine being executed.

Therefore, we can say that these behavioural model elements have been cov-
ered during a simulation.

As a consequence, testing a requirement in a comprehensive way means
covering the related behavioural model elements in a comprehensive way.

5.3 Test Cases

Following [7], a test case consists of input data to the SUT and checking
conditions for expected results, i.e. expected SUT reactions. For reactive
control systems, input data usually consists of sequences of input tuples,
together with timing conditions stating when the next tuple should be placed
on the SUT input interfaces. The input tuples are usually called input
vectors, though there are no mathematical vector spaces involved.

For system testing, input vectors need to refer to full ports, that is, to
HW interfaces of the SUT. In software unit testing and software integration
testing, input tuples may refer to the software ports interfacing to a state
machine or to the parameters to be passed in a block operation call.

For expected results, we can simulate the model in back-to-back fash-
ion simultaneously with the SUT: every input vector placed on the SUT
input interface is also placed on the model simulation interface. Then the
SUT outputs at full ports are compared to the corresponding outputs of the
simulation.

For system test cases, it has to be determined which input vectors placed
on the SUT HW interfaces are suitable to finally cover the desired model
element(s) in the appropriate order. Based on the formal semantics available

23

for SysML models, this can be calculated by MBT tools in an automated
wayl]

5.4 System Test Case Creation Example

5.4.1 The Requirement to be Tested

To illustrate the requirements-driven MBT, let us consider the following re-
quirement specified for our turn indication system case study.

REQ-051 When the turn indication lever is switched from any other posi-
tion to position LEFT and the ignition is on, left-hand side flashing is
activated. An active ON period is immediately interrupted, and the
lights on the right side are switched OFF at once.

5.4.2 The Model Elements to be Covered

In Fig. 5.1} the model elements contributing to the satisfaction of this require-
ment are shown. Element contrologic is a structural element (part) shown
that the behaviour has been deployed (on the rear controller). The other
elements are behavioural and need to be covered by associated test cases:

e LRFlashinglnitialTrans is the transition responsible for the activation of
left or right flashing when the ignition is on and no flashing activity is
currently active.

o leftOverrideTrans is the transition overriding emergency flashing of flash-
ing on the left-hand side is activated.

e RtolchangeTrans is the transition initiating the change from right-hand
side flashing to left-hand side flashing.

e LRFlashingAssignment is the entry action (opaque behaviour) setting the
output interface of the control logic according to the turn indication
lever position.

1See, for example, the tool RT-Tester developed in my company https://www.
verified.de/products/model-based-testing/

24

Model
elements
to be

covered

https://www.verified.de/products/model-based-testing/
https://www.verified.de/products/model-based-testing/

Please look these model elements up in the turn indication controller
model (state machine ControlLogic).

controllogic

]

leftOverri

deTrans

_______________________________ =

Satisfy-REQ-051-A
«Satisfy»

L-*" satisfy-REQ-051-D
«Satisfy»

£

LRFlashinglnitialTrans

«Satisfy»

Satisfy-REQ-051-E/

«Reqirement>
REQ-051 Turn indication LEFT

id=REQ-051

text=When the turn indication lever is
switched from any other position to
position LEFT and the ignition is on,
left-hand side flashing is activated.
An active ON period is immediately
interrupted, and the lights on the
right side are switched OFF at once.

K «Satisfy»
Satisfy-REQ-051-C

«Satisfy»

Satisfy-REQ-051-B

Tl R w

" LRFlashingAssignment

RtoLchangeTrans

6]

Figure 5.1: Model elements contributing to the satisfaction of requirement
REQ-051.

5.4.3 Test Case Identification

We see that we need three test cases for covering these model elements:

1. TC-051-001. The first test case should cover LRFlashinglnitialTrans
which will always lead to the consecutive execution of the LRFlashin-
gAssignment entry action.

2. TC-051-002.
which will also lead to the consecutive execution of the LRFlashingAs-

signment entry action.

25

The second test case should cover leftOverrideTrans

Test case
identifica-

tion

3. TC-051-003. The third test case should cover transition RtoLchange-
Trans which will also lead to the consecutive execution of the LRFlashin-
gAssignment entry action.

5.4.4 Test Case Elaboration: TC-051-001

To elaborate a sequence of input vectors suitable for TC-05 1—001@, we proceed
according to the following steps.

Step 1: Determine start state. We need to decide from which state ma-
chine state of ControlLogic the test case should be activated. A good starting
point for test case TC-051-001 would be the simple state NO_FLASHING.
Fig. shows possible transitions for reaching this state: from the initial
pseudo state, we can pass, for example, through transition sequencd’|

initTrans — emerOfflnitial Trans — ignOnlnitialTrans — noLR-
flashinglnitial Trans

2Note that these sequences are not uniquely determined!
3We are using the transition names here.

26

Initial1
initTr:

emerOnlnitialTrans

ifEmerOn, [EmerSwitchPressedInSW]

1gTrans

[t EmerSfritchPressedINSW]

emerofﬂmtilmans

InitialTrans

leverl eftTrans1

ignOninitialTrans iflgnOn LeverPositipnINSW == LEFT

[ignitionOnINSW] [IgnitionONINSW]

leverRi

ignOnTrans1 LeverPositi

IgnitionONINSW

NO_FLASHING
[LeverPositionINSW == NEUTRAL]
/entry FlashCmdOut.cmd = OFF;
I FlashCmdOut.applyLeft = true; J

L FlashCmdOut.applyRight = true;

RFlashing <

noLRflashinglnitialTrans

[LeverPosifionINSW != NEUTRAL]
emerOnTrans

LRFlashinglnitialTrn:

@

EmerSwitchPressedINSW

XitLRFlashing

\
!

LRFlashing)
/do ine LRFlashing

emerOverrideTrans

EmerSwitchPressedINSW

Figure 5.2: Initial transitions leading to state NO_FLASHING.

These sequences connect pseudo states and end up in the simple state
NO_FLASHING. Therefore, all condition for taking these transitions need to
be fulfilled at the same time[T] This results in the following logical condition
for reaching NO_FLASHING in the beginning of the test case execution:

Conditionl” = —EmerSwitchPressedINSW A
IgnitionOnINSW A
LeverPositionINSW = NEUTRAL

Now this condition refers to ports of the ControlLogic state machine. In

4Remember that no time passes when going through pseudo states.

27

system testing, we cannot access these software ports in the SUT directly.
Instead, we need to stimulate suitable full ports at HW interfaces, in order to
stimulate the desired inputs at the software ports. For identifying suitable
HW interfaces, the internal block diagrams are helpful. In the RearCon-
trollerIBD, we see that the full ports EmerSwitchPressedIN, LeverPositionlN,
IgnitionOnIN are connected to the software ports EmerSwitchPressedINSW,
LeverPositionINSW and IgnitionOnINSW/ respectively. Consequently, formula
Conditionl1’ is revised by inserting the full ports in

Conditionl = —EmerSwitchPressedIN A
lgnitionOnIN /\
LeverPositionIN = NEUTRAL

Step 2: Determine transition sequence to target transition. From

the starting state, the transitions to be covered for reaching the target transi-
tion are identified. A possible path (see Fig.[5.2]) for reaching LRFlashinglni-
tialTrans from state NO_FLASHING is

leverLeftTrans — emerOfflnitialTrans — ignOnlnitialTrans —
LRFlashinglnitial Trans

Again, this transition sequence is associated with a logical condition

Condition2” = —EmerSwitchPressedINSW /A
IgnitionOnINSW A
LeverPositionINSW = LEFT

which is in turn associated with the following condition about full ports of
the rear controller:

Condition2 = —EmerSwitchPressedIN A
IgnitionOnIN A\
LeverPositionIN = LEFT

The triggered transition sequence automatically leads to the execution of the
entry action LRFlashingAssignment in state LRFlashing.SendLRFlashCmd.

28

® N O O A W N

Step 3: Determine the expected results to be checked. On system
test level, only the lamp outputs and LIN bus outputs to the dashboard LEDs
can be observed. Therefore, we need to trace the expected effect of the entry
action LRFlashingAssignment on the lamps and LEDs. To this end, the inter-
nal block diagrams with their ports and flows have to be carefully analysed
to come up with the result that the effect should become visible at full ports
CurrentRout, CurrentLout (rear controller), CurrentFLout, CurrentFRout (front
controller), DL.CurrentOut, DR.CurrentOut (door controller), and on the LIN
bus. In the flows to lamp outputs, we detect that the current is only provided
if the battery voltage is in range. Otherwise, the current is set to zero by the
power sources, and the expected effect will not be observable. This induces
an invariant condition for this test case:

Invariant = BatVolIN € [10, 15]

Finally, also timing conditions need to be considered when checking the
expected results. In our case, the ON/OFF flashing periods (340/320ms,
since the ignition is on) need to be monitored, so after having made Condi-
tion2 true, we still need a checking period of at least 660ms.

Step 4: Write the test script. Finally, we can turn the sequence of con-
ditions plus the invariants into a test script. For this example, the following
script (with this or any other tool-specific syntax) would apply:

// Write initial values to input ports of the SUT
SET BatVolIN = 12.0;
SET LeverPositionIN = NEUTRAL;

SET EmerSwitchPressedIN = false;
SET IgnitionOnIN = true;

RESET; // Reset the SUT
WAIT 5s;

// Check that lamps are OFF
ASSERT CurrentRout == 0 and CurrentLout == 0 and DL.CurrentOUT == 0 and ...

WAIT b5s;

SET LeverPositionIN = LEFT;
// Check expected results and leave bms slack for SUT

ASSERT CurrentRout == 2 and CurrentLout == 2 and ... WITHIN 5ms;
WAIT 340ms;
ASSERT CurrentRout == 0 and CurrentLout == 0 and ... WITHIN b5ms;

29

23 // check a few more flashing periods ...
24 END OF TEST

Step 5: Decide about alternative test cases. The availability of a
model facilitates the identification of further test case variants. These are
always associated with alternative transition paths. For this test case, we
could, for example, start with ignition switched off, which would lead to
another path to state NO_FLASHING. Then we could first put the lever into
LEFT position and then switch on the ignition. These considerations lead
to the following more general observations:

e MBT helps extremely well to find meaningful test cases.

e Tool support is very desirable, since the enumeration of alternative
transition paths and specification of associated logical conditions is
quite tedious to perform manually.

e [t is very hard to come up with these interesting test cases without
using a model.

30

Chapter 6

Questions and Exercises

6.1 Questions

6.1.1 How Many Satisfy Links do we Need?

Consider again Fig [3.1], where a proxy port is shown to contribute to the
realisation of requirement REQ-023. In principle, it would be ok to link
all the other ports and also the flows associated with this interface via the
<satisfy>-relationship to the requirement, such as ports EmerSwitchPressedIN
of block RearController, EmerSwitchPressedInSW of block ControlLogic, and
flows EmerSwitchStatus, emerFlow. Why is it allowed to omit these additional
associations?

6.2 Exercises

6.2.1 Derived Requirements

Extend the existing requirements package by several derived requirements,
that have been set up when making certain design decisions, but have
not yet been added to the requirements package. Draw the <DeriveReqt>-
relationship between the new requirement and its supplier in one of the ex-
isting requirements diagrams.

31

6.2.2 Full Requirements Tracing for the
Turn Indication Model

Please trace all requirements back to elements of the realisation model, us-
ing the <satisfy>-relationship. Display the relationship between requirement
suppliers and model element clients by means of (several) generic tree tables.

6.2.3 Requirements-driven Test Case Specifications

Take three behavioural requirements of the turn indication model for which
you have performed complete requirements tracing and specify test cases for
each of these requirements, as described in the example in Section [5]

Alternatively, work out the details for the two test cases TC-051-002 and
TC-051-003 identified above.

32

Bibliography

1]

Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML, Third Edition: The Systems Modeling Language. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2014.

Wen-ling Huang, Jan Peleska, and Uwe Schulze. Test automation sup-
port. Technical Report D34.1, COMPASS Comprehensive Modelling
for Advanced Systems of Systems, 2013. Available under http://www.
compass-research.eu/deliverables.html.

Object Management Group. OMG Systems Modeling Language (OMG
SysML), Version 1.6. Technical report, Object Management Group, 2019.
http://www.omg.org/spec/SysML/1.4.

Jan Peleska. Industrial-strength model-based testing - state of the art
and current challenges. In Alexander K. Petrenko and Holger Schlingloff,
editors, Proceedings Eighth Workshop on Model-Based Testing, Rome,
Italy, 17th March 2013, volume 111 of Electronic Proceedings in Theoret-
ical Computer Science, pages 3—28. Open Publishing Association, 2013.

Jan Peleska, Jorg Brauer, and Wen-ling Huang. Model-based testing for
avionic systems proven benefits and further challenges. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice - Sth Interna-
tional Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part IV, volume 11247 of Lecture Notes in Computer Sci-
ence, pages 82-103. Springer, 2018.

Jan Peleska and Wen-ling Huang. Test Automation - Foundations and
Applications of Model-based Testing. University of Bremen, January 2017.

33

http://www.compass-research.eu/deliverables.html
http://www.compass-research.eu/deliverables.html

Lecture notes, available under http://www.informatik.uni-bremen.
de/agbs/jp/papers/test-automation-huang-peleska.pdf.

[7] RTCA SC-205/EUROCAE WG-T71. Software Considerations in Airborne
Systems and Equipment Certification. Technical Report RTCA/DO-
178C, RTCA Inc, 1140 Connecticut Avenue, N.W., Suite 1020, Wash-
ington, D.C. 20036, December 2011.

34

http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

	Preface
	Objectives of Requirements Tracing
	The SysML Approach to Requirements Tracing
	The Satisfy Relationship
	Choice of Clients in Satisfy Relationships
	Different Ways to Represent Traceability Information

	Requirements and Related Associations
	Association summary
	The Derive Requirement Relationship
	The Refine Relationship
	The Copy Relationship
	Obsolete Stereotypes

	Model-based Requirements-driven Testing
	Terms and Definitions
	Requirements-driven Test Case Identification
	Test Cases
	System Test Case Creation Example
	The Requirement to be Tested
	The Model Elements to be Covered
	Test Case Identification
	Test Case Elaboration: TC-051-001

	Questions and Exercises
	Questions
	How Many Satisfy Links do we Need?

	Exercises
	Derived Requirements
	Full Requirements Tracing for the Turn Indication Model
	Requirements-driven Test Case Specifications

