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New Age Concurrency?
• Several observations lead us to the conviction that “time is 

right” to invest into changes of paradigm in the field of 
concurrency and its semantic foundations


• Multi-core systems – the need for weak memory models 


• E-commerce – new notions of distributed database 
consistency 

• Cyber-physical systems (CPS) – dynamic re-
configuration, adaptive, emergent properties, 
collaborative, multi formalism development and V&V …



Three Topics to Address

• Multi-formalism support for CPS modelling and 
verification


• Dynamicity – changing CPS configurations


• Evolving behaviour of CPS components

All this is presented from the perspective of model-based testing



Multi-formalism support 
for CPS modelling and 

verification



Problem Statement

• Different CPS components are developed and verified 
with different formalisms


• This produces “local” verification results, presented in 
different formalisms


• How can we assert the validity of the required emergent 
properties of the CPS?



Two Approaches
• Application of the 


• Theory of (Grothendiek) Institutions 


• Unifying Theory of Programming (UTP)


to translate


• theories between different formalisms 


•  verification obligations and test cases


• verification results and test results


between different formalisms



Application scenario

• CPS consists of several components 

• Some components are modelled by finite state 
machines (FSMs) 

• Other components are modelled by SysML state 
machines with Kripke structure semantics



Application scenario – train onboard 
speed control
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RELEASED auto_off,man_off/release
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• Discrete inputs  

• Discrete internal state 

• Discrete outputs 

• Complete testing 
strategies available

Brake controller



• Large input 
domains  – 
speed  

• Discrete internal 
state 

• Discrete outputs 

Apply input 
equivalence class 
testing 

Can we also 
apply a complete 
strategy? 

TTT = Testing 
Theory 
Translation 
using 
institutions

Onboard main controller



Verification of emergent 
properties

• Application scenario 

Onboard controller has been verified and tested using SysML 
models with Kripke semantics 

PLC has been verified and tested using FSM models 

Verification objective. System satisfies emergent property  

EP. „As long as the speed is above emergency threshold, 
the emergency brakes stay active and cannot be manually 
released“ 

Technical side condition. EP shall be specified in CSP trace 
logic



Verification of emergent 
properties

• Problems to be solved 

• EP can only be specified by referring to properties of both the 
onboard main controller and the brake controller  

• Properties related to brake controller are specified by FSM I/O 
sequences x/y – e.g. via intersection with testing automaton

• Properties related to Onboard speed controller are specified 
by, e.g. LTL formulas with shared I/O variables as free 
symbols 

• CSP trace logic formulas are specified over traces of events 
and refusal sets



Linking Theories by UTP

Ana Cavalcanti, Wen-ling Huang, Jan Peleska, Jim Woodcock: 
CSP and Kripke Structures. ICTAC 2015: 505-523

Galois Connections

FSM

↵

http://dblp.uni-trier.de/pers/hd/h/Huang:Wen=ling
http://dblp.uni-trier.de/pers/hd/p/Peleska:Jan
http://dblp.uni-trier.de/pers/hd/w/Woodcock:Jim
http://dblp.uni-trier.de/db/conf/ictac/ictac2015.html#CavalcantiHPW15


Dynamicity – changing 
CPS configuration



Problem Statement

• CPS need cooperating components in dynamically 
changing configurations 

• Each component needs to be prepared to


• accept/set up/destroy new communication links 
from/to other components entering/leaving the 
configuration


• enter/leave the configuration itself (mobility)



Major Contributions

• pi-calculus for dynamic creation of channels


• Augmented CSP allowing to simulate Pi-calculus with 
the means of a “conventional process algebra”


• Bigraphs for presenting both topography and 
communication structure



pi-Calculus and CSP
• Milner’s pi-calculus

(⌫x)
�
xhzi.0 | x(y).yhxi.x(y).0

�
| z(v).vhvi.0

allows for dynamic channel creation and 
communication of channel names

A.W.Roscoe: 
CSP is Expressive Enough for pi.
C.B.Jones et. al. (eds.), Reflections on the work
of C.A.R. Hoare, dog 10.1007/978-1-84882-912-1 16,
Springer 2010

• Roscoe showed that pi-calculus can be simulated by CSP 
augmented with throw operator

P⇥AQ
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• Roscoe showed that pi-calculus can be simulated by CSP 
augmented with throw operator

P⇥AQ

As a consequence, 
“conventional” model 
checking (e.g. with FDR) can 
be used to verify mobile 
process systems



Bigraphs

• Bigraphs allow for representation of 


• process topography 


• communication topology


• dynamic changes of the former



Bigraphs

R. Milnor: 
Bigraphs as a Model for Mobile Interaction
A. Corradini et al. (Eds.): ICGT 2002, LNCS 2505,
pp. 8–13, Springer 2002.   



How to Test Dynamic CPS 
Configurations

• Some things are easier in testing than in general 
verification


• Only safety properties matter


• Tests terminate after finite amount of time


• Finite variability of HW components implies that only a 
finite number of configurations can be covered during 
test execution



How to Test Dynamic CPS 
Configurations

• Model a CPS configuration tree


• Construct equivalence classes for configuration changes


• Elaborate complete testing theory guaranteeing full fault 
coverage with finitely many test cases, provided that


• equivalence classes are adequate


• CPS components do not have more state equivalence 
classes than assumed



CPS (or SoS) configuration tree

[ 1.1] [ 1.2]

Pre-post-condition guarding 
a configuration change



Evolving behaviour of 
CPS components



Problem Statement
• CPS components act according to the rely-guarantee 

paradigm 

• The assumptions component C relies on may be 
violated after some time, due to


• configuration changes


• evolving behaviour of other components


• C needs to adapt its behaviour to the new environment 
conditions



What is to be Solved?

• Detection. Component needs to “understand” that its 
assumptions no longer hold


• Change of belief. Component needs to update its 
assumptions about the environment


• Adaptation. Component needs to “optimise” its 
behaviour w.r.t. the new assumptions 



Detection
• For regular safety properties, the detection problem is 

completely solved


• Can be implemented efficiently for hard real-time 
applications

Recall. A safety property

over atomic propositions AP is regular,

if its bad prefixes in (2

AP
)

⇤

form a regular language.



Detection
• Therefore, the bad prefix set can be represented by 

accepting states of an FSM


• One more problem to solve. CPS component may not 
know the trace of system observations from the start, 
since it may join the configuration at a later state


• Use a homing algorithm to determine the FSM state 
by a sequence of observations


• The detection problem is a passive testing problem



Detection – an Example
• Suppose, component C relies on the environment to fulfil 

safety condition

� ⌘ s0 ^G
�
(s0 ^X(s1 ^ a)) _

(s1 ^X((s0 ^ b) _ (s2 ^ a))) _
(s2 ^X(s1 ^ b))

�

with internal state variable sj and assumption that a or b 
must occur in every step

Example trace. a.b.a.a.b.a.b.b . . .
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safety condition
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with internal state variable sj and assumption that a or b 
must occur in every step

Example trace. a.b.a.a.b.a.b.b . . .

b follows a – at most 
two more a’s than b’s



Example (continued). FSM modelling bad prefixes of the safety 
condition

s0 s1 s2
a a

a

a, b

b

b b



Example (continued). FSM modelling bad prefixes of the safety 
condition

s0 s1 s2
a a

a

a, b

b

b b

Can be generated, for 
example with  ltl2ba from 

¬�



Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Initial  checking state



Example (continued). Application of the homing algorithm
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Observation b
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Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b.b – post-state



Example (continued). Application of the homing algorithm

s0 s1 s2
a a

a

a, b

b

b b

Observation b.b.b – safety-violation



Change of Belief
• Different options with different complexity


• Assumptions are just “true” – components can adapt to 
any environment behaviour (examples from control theory)


• Expected violations of assumptions – fault-tolerant 
adaptation of behaviour under new, pre-defined 
assumptions


• Unexpected violations of assumptions – new valid 
assumptions need to be extracted from observations 
(apply machine learning, construct temporal properties 
reflecting environment behaviour)
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• Assumptions are just “true” – components can adapt to 
any environment behaviour (examples from control theory)


• Expected violations of assumptions – fault-tolerant 
adaptation of behaviour under new, pre-defined 
assumptions


• Unexpected violations of assumptions – new valid 
assumptions need to be extracted from observations 
(apply machine learning, construct temporal properties 
reflecting environment behaviour)

Can this be achieved in 
hard real-time?



Adaptation
• Solved, as far as 


• basic laws of control theory can be applied


• optimal behaviour can be specified as mathematical 
boundary value problem or general optimisation 
problem


• Can be modelled by Hybrid Automata, if discrete 
changes between different control laws/optimisation 
methods are required 



Adaptation

• Open questions


• Q1. After change of belief system consisting of 
(temporal) logic formulas: how can we defined the 
optimal behaviour w.r.t. goals and belief system ?


• Q2. If such a temporal logic formula for optimal 
behaviour could be found, could it become possible to 
synthesise the new component behaviour on the fly in 
hard real-time? 



A Tentative Solution for Q1
• Specialised problem statement


• If, due to changes in the environment behaviour, a CPS component 
can no longer fulfil its original guarantees, is there a possibility to 
specify a graceful degradation of behaviour in a well-founded way?


• Suggestion from testing theory


• Classify component outputs according to criticality


• Identify outputs of “negligible” criticality


• Realise behaviour that is equivalent to the original specification, 
with all outputs of negligible criticality identified



Conclusion
• We discussed 3 topics of new-age concurrency


• Multi-formalism support for CPS development and verification


• Modelling and testing of dynamically changing CPS 
configurations


• Modelling and testing evolving behaviour of CPS


• We have seen that many “mechanisms” and approaches already 
exist to tackle these challenges


• Do we need more –– a comprehensive new theory & formalism, 
instead of a “bag of special solutions” ?



Further Reading
• About cyber-physical systems and mobile and channels

A.W. Roscoe. CSP is Expressive Enough for π. In C.B. Jones et al. (eds.), 
Reflections on the Work of C.A.R. Hoare, DOI 10.1007/978-1-84882-912-1 16, 
Springer, 2010.

Jim Woodcock, Andy Wellings, and Ana Cavalcanti. Mobile CSP.                    
In M. Cornelio and B. Roscoe (Eds.): SBMF 2015, LNCS 9526, pp. 39–55, 
2016. DOI: 10.1007/978-3-319-29473-5 3, Springer, 2016.

• About testing and equivalence classes

Wen-ling Huang and Jan Peleska. Complete model-based equivalence class 
testing for nondeterministic systems. DOI 10.1007/s00165-016-0402-2 BCS 
© 2016 Formal Aspects of Computing (2017) 29: 335–364
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