Trace Logic

Trace logic according to Steve Schneider, Concurrent and Real-time Systems, The CSP Approach, John Wiley \& Sons, Ltd, 2000.

1 General

Σ	universal set of events
\checkmark	termination event, not in Σ
τ	internal event, not in Σ
Σ^{\checkmark}	$\Sigma \cup\{\checkmark\}$
$\Sigma^{\{\checkmark, \tau\}}$	$\Sigma \cup\{\checkmark, \tau\}$
A	set of eventsA $\subseteq \Sigma^{\checkmark}$
A^{\checkmark}	$A \cup \checkmark$
a	external event from Σ^{\checkmark}
μ	external or internal event from $\Sigma^{\{\checkmark, \tau\}}$
$c . v$	communication event with event v and channel c
channel $(c . v)$	channel c of c.v
value(c.v)	value v of c.v
seq	sequence
$t r$	finite trace
u	infinite trace
s	timed trace
$T R A C E$	set of finite traces
$I T R A C E$	set of infinite traces
$T T$	set of timed traces
t	$t \in \mathbb{R}^{+}$
I	interval $\in \mathbb{R}^{+}$
$P(a)$	predicate P
$P R O C$ sat $P(t r)$	\forall tr \in traces (PROC) $\bullet P(t r)$

2 Untimed Traces and Sequences

<>		empty sequence
$<a_{1}, a_{2}, \ldots, a_{n}>$		sequence of listed elements
$<a \mid a \leftarrow \operatorname{seq}, P(a)>$		sequence comprehension
$s e q_{1} \frown \operatorname{seq}_{2}$		sequence concatenation
head (seq)		first element of seq
tail(seq)		seq without its first element
foot(seq)		last element of seq
init(seq)		seq without its last element
\#seq		length of seq
seq@i		ith element of seq
		(counting from 0)
$\sigma(\mathrm{seq})$		set of events appearing in seq
a in seq		event a appears in seq
term(seq)		seq includes \checkmark
$s e q_{1}=s e q_{2}$		seq_{1} and seq_{2} identical
$s e q_{1} \leqslant s e q_{2}$		seq $_{1}$ is prefix of seq ${ }_{2}$
$s e q_{1} \preceq s^{\text {seq }}{ }_{2}$		seq $_{1}$ is subsequence of seq $_{2}$
		(not necessarily contiguous)
$s e q$ interleaves $s e q_{1}, s e q_{2}$		seq is an interleaving of sequences
		seq_{1} and seq ${ }_{2}$
seq synch $_{\text {A }}$ seq $_{1}, \operatorname{seq}_{2}$		seq synchronizes seq d $_{1}$ and seq ${ }_{2}$
		on events in A^{\checkmark}
$s e q \upharpoonright A$		subsequence of elements of seq
		in A
$s e q \backslash A$		subsequence of elements of seq
		not in A
$s e q \downarrow A$	$\equiv \#(s e q \upharpoonright A)$	number of elements of A in seq
channels ($t r$)	$\equiv\{\operatorname{channel}(x) \mid x$ intr $\}$	set of channels in trace
$t r \Downarrow c$	$\equiv<\operatorname{value}(x) \mid x \leftarrow$ tr, channel $(x)=c>$	sequence of values c in trace
$\operatorname{tr} \Downarrow C$	$\equiv<\operatorname{value}(x) \mid x \leftarrow$ tr, $\operatorname{channel}(x) \in C>$	sequence of values in C in trace

3 Timed Traces

$s \upharpoonright A$		s restricted to $\mathrm{A}:<(\mathrm{t}, \mathrm{a}) \mid(\mathrm{t}, \mathrm{a}) \leftarrow \mathrm{s}, \mathrm{a} \in \mathrm{A}>$	
$s \backslash A$	$\equiv s \upharpoonright \Sigma \backslash A$	subsequence of elements of seq not in A	
$s \downarrow A$	$\equiv \#(s \upharpoonright A)$	number of elements of A in s	
strip(s)	$\equiv<a \mid(t, a) \leftarrow s>$	s with times removed	
$s+t$	$\left.<\left(t^{\prime}+t, a\right) \mid\left(t^{\prime}, a\right) \leftarrow s\right)>$	s delayed by t	
$s-t$	$<\left(t^{\prime}-t, a\right) \mid\left(t^{\prime}, a\right) \leftarrow s, t^{\prime} \geqslant t>$	s brought earlier by t	
begin(s)		time of the first event in s (and ∞ for the empty trace)	
end(s)		time of the last event in s (and 0 for the empty trace)	
first(s)		first event to appear in s	
last(s)		last event to appear in s	
$s \uparrow I$	$<(t, a) \mid(t, a) \leftarrow s, t \in I>$	s during I	
$s \\| t$	$s \uparrow[0, t)$	s strictly before t	
$s \upharpoonright t$	$s \uparrow[0, t]$	s before t	
$s \uparrow \mid t$	$s \uparrow(t, \infty)$	s strictly after t	
$s \upharpoonleft t$	$s \uparrow[t, \infty)$	s after t	

4 Macros for Timed Traces

$$
\begin{aligned}
a \text { at } t & \equiv<(t, a)>\preceq s & & \text { a occurres at time t } \\
a \text { at } I & \equiv \exists t \in I \bullet a \text { at } t & & \text { a occurs in interval I } \\
A \text { at } I & \equiv \exists a \in A \bullet a \text { at } I & & \text { an Event from A occurres in interval I } \\
\text { no } A & \equiv \neg(A \text { at }[0, \infty)) & & \text { no events from A appear in s } \\
\text { only } A & \equiv \neg\left(\Sigma^{\checkmark} \backslash A \text { at }[0, \infty)\right) & & \text { only events from A appear in s }
\end{aligned}
$$

