
Theory of Reactive Systems

Jan Peleska1

Centre of Information Technology
University of Bremen

Germany
July 8, 2010

1 Email:jp@tzi.de

2010 This article uses the ENTCS style by Elsevier Science B. V.

mailto:jp@tzi.de

Peleska

1 Reactive Systems, Behaviour, Specifications and
Models

Reactive Systems.
A reactive computer system continuously interacts with its operational environ-

ment: at any point in time, inputs from the environment to the system may occur,
and the system should be ready to react on these inputs in an appropriate way.
In general, the interaction takes place over a longer period of time (think of an
aircraft engine controller that should certainly be operative during the duration of
the flight); in many applications reactive computer systems are not supposed to
terminate at all, because the services they deliver do not allow for any downtime
(so-called 24/7 systems).

Behaviour, States and Events.
As a consequence, the behaviour of reactive systems cannot simply be described

by initial and termination state, as would be possible for sequential terminating soft-
ware programs. Instead, behaviour is characterised by (possibly infinite) sequences
of state changes, called computations, executions or runs of the reactive system:

〈s0, s1, s2, . . .〉

denotes a sequence of states si which have been observed as “snapshots” of the sys-
tem state at several points in time during the execution. s0 was the first observation,
s1 the second, and so on. Observe that computations represent a discretised view on
the observable state components: it may be the case that between observations si
and si+1 additional state changes took place which we could not observe or were not
interested in. In theory it would be possible for digital computer systems to observe
every state change in a computation since the electronic circuits involved process
data in discrete steps timed by the digital clock. For physical systems, however,
when time-continuous observables are involved (e. g. change of temperature over
time), computations can never capture the complete evolution of system states.

It is possible to abstract from concrete states in the description of reactive system
behaviour by recording sequences of events. Events denote discrete points in time
where certain properties of the state space become true. This abstraction may help
to reduce the amount of information in computations to the data which is “relevant”
in the application context.

Example 1.1 Suppose we observe temperature changes temp in a reactor at dis-
crete points in time, and this results in a run

c =def 〈(t0, temp0), (t1, temp1), (t2, temp2), . . . , (tk, tempk), . . .〉

where the state observations consist of tuples (timestamp ti, temperature tempi
observed at time ti). Suppose further that we are interested in observing whether

2

Peleska

a temperature threshold max is exeeded, and that the computation satisfies

∀i ∈ {0, . . . , k − 1} : tempi ≤ max

∀i ∈ {k, . . . , k + 3} : tempi > max

∀i ∈ {k + 4, . . .} : tempi ≤ max

Introducing two events

• temp ok
• temp too high

the computation can be abstracted to a trace of events

cevent =def 〈(t0, temp ok), (tk, temp too high), (tk+4, temp ok)〉

2

Specifications.
A specification is a description of the expected or admissible behaviours of a

system. In general, first order predicate logic can be used to write specifications
by giving logical characterisations of the state sequences or event sequences which
are admissible in computations. Since these logical characterisations always deal
with sequences of states or events, more elegant logical formalisms (temporal logic,
trace logic) have been invented, in order to represent these logical formulas in a
more elegant way. Some of these logical formalisms will be presented in the sections
below.

Example 1.2 Suppose we require in Example 1.1 that the temperature threshold
in the reactor should never be exceeded for longer than δ time units. This can be
expressed by a formula referring to arbitrary computations

c =def 〈(t0, temp0), (t1, temp1), (t2, temp2), . . . , 〉

in the following way:

∀c : ∀i ≥ 0 : tempi > max⇒ (∃j > 0 : tempi+j ≤ max ∧ ti+j − ti ≤ δ)

On the event abstraction level, consider arbitrary computations

cevent =def 〈(t0, e0), (t1, e1), . . .〉

Now the requirement can be expressed as

∀cevent : ∀i ≥ 0 : ei = temp too high⇒ (ei+1 = temp ok ∧ ti+1 − ti ≤ δ)

2

3

Peleska

Models.
A model is a representation of the system from which all possible behaviours

can be theoretically derived in a mechanical way by means of simulations.

Exercise. 1. Suppose there is a laboratory equipped with a laser and - for safety
reasons - a door locking mechanism. If the laboratory is empty, a controller
component locks the door and switches the laser on. If a person wants to enter the
laboratory, a button has to be pushed, whereupon the controller switches the laser
off and unlocks the door.

Right after switching-on, the laser is in the state on which automatically changes to
active after a certain period of time. The same applies to the states off and passive.

Possible states of the door are open or closed. After the door has been
opened, it closes automatically. A door counter counts how often the door has
been opened or closed. We can assume, that at any time, at most one person can
be in the laboratory.

Assuming t, door, dcnt and laser being variables which reflect current point
in time, the door, door counter and laser states, computations have the form

c = 〈(t0, door0, dcnto, laser0), (t1, door1, dcnt1, laser1), . . .〉

with domains D(t) = R, D(door) = {open, closed}, D(dcnt) = N and
D(laser) = {on, active, off, passive}.

1.1 Find logical formulas to express the following textual requirements:

a) In the initial state, the door is closed, the door counter is 0 and the laser is in
state passive.

b) Being in the state on, the subsequent state of the laser has to be active. The
same applies to the states off and passive.

c) The laser state-change from off to passive takes at most X time units.

d) If the laser is not in the state passive, the room has to be empty.

e) The laser has to be in the state passive, if the room is not empty or the door
is open.

1.2 Introduce events in order to abstract concrete computations c to abstract com-
putations cE . Adapt the formulas a - e to the abstract computations using these
events. 2

4

Peleska

2 Transition Systems and Kripke Structures

The operational semantics of specification formalisms for reactive systems, as well
as of computer programs, can be described by means of state transition systems.
For the verification of properties of specifications or programs it is useful to extend
the notion of transition systems by adding information about the basic properties
which are true in each state. This leads to the definition of Kripke structures. The
definitions below follow closely [2, pp. 14] and [1].

Definition 2.1 A State Transition System is a triple TS = (S, S0, R), where

• S is the set of states,
• S0 ⊆ S is the set of initial states,
• R ⊆ S × S is the transition relation.

2

Definition 2.2 A Labelled Transition System is a tuple LTS = (S, S0,Σ, R), where

• S is the set of states,
• S0 ⊆ S is the set of initial states,
• Σ is a set of labels, also called events,
• R ⊆ S × Σ× S is the transition relation.

2

State transition systems are the preferred mathematical model to reason about
state-based reactive systems, where communication takes place according to the
shared variable paradigm. Labelled transition systems are the preferred model for
reasoning on the event abstraction level. In the sections to follow we focus on
state-based systems represented by state transition systems.

An atomic proposition is a logical proposition which cannot be divided further.
Examples are a, x < y, but x < y ∧ a is not considered as atomic because it
represents the conjunction of a and x < y.

Definition 2.3 A Kripke Structure K = (S, S0, R, L) is a state transition system
(S, S0, R) augmented by a set AP of atomic propositions and a function

L : S → 2AP

mapping each state s of K to the set of atomic propositions valid in s. Furthermore
it is required that the transition relation R is total in the sense that ∀s ∈ S : ∃s′ ∈
S : (s, s′) ∈ R. 2

If a state transition system contains terminal states, that is, states s ∈ S satis-
fying ∀s′ ∈ S : (s, s′) 6∈ R, we can always extend R to a total transition relation R

suitable for Kripke structures by adding self loops to the terminal states in R:

R = R ∪ {(s, s) | s ∈ S ∧ (∀s′ ∈ S : (s, s′) 6∈ R)}

5

Peleska

State Space of Valuation Functions.
Next, we specialise on specification formalisms where the state space can always

be defined by a vector of variables, together with their current values. In this con-
text, a state is a mapping from symbols to current values. The mapping is partial,
since the visibility of symbols may depend on scope rules. Let V = {x0, x1, . . .} be
the set of all variable symbols associated with a specification, a model or a program.
For each variable x ∈ V , let Dx denote its type (also called domain) comprising
all possible values x can assume. We require a special element > to be contained
in each Dx, denoting an undefined variable state, such as an arbitrary input value
or a stack variable which is still in an undefined state since no assignments to the
variable have been performed so far. Let D =

⋃
x∈V Dx the union over all domains

of variables from V . A valuation is a partial mapping

s : V 6→ D

which is compatible with the symbol types Dx in the sense that

∀x ∈ dom s : s(x) ∈ Dx

In the transition systems and Kripke structures to consider from now on the state
space will always be represented by a set of valuation functions. This has a conse-
quence on the atomic propositions to consider: All information that can be obtained
from the fact that a system is in state s : V 6→ D is a consequence from the atomic
propositions specifying exactly the valuation of each variable in the current state s,
that is,

x0 = s(x0), x1 = s(x1), . . . (∗)
Every other atomic proposition, say, x0 < x1 can be derived from the propositions
(*): For example, x0 < x1 holds in state s if and only if s(x0) < s(x1). For the
moment, our set of atomic propositions will therefore be

AP = {x = d | x ∈ V ∧ d ∈ Dx} (∗∗)

Observe, however, that we will also consider other atomic propositions later on in
order to avoid the state explosion that would occur if we enumerated AP from (**)
for variables x with large data types, such as 32 and 64 bit integers and floats.

The special nature of the atomic propositions from AP in (**) implies that the
mapping L can be easily determined for a Kripke structure as soon as their state
space, initial state and transition relation is known: Considering (*) and (**), the
atomic propositions valid in some state s are obviously

L(s) = {x = d | x ∈ V ∧ s(x) = d}

First Order Representations.
Let φ a first order logical formula, x a free variable in φ and ε an expression. Then

φ[ε/x] denotes the formula which results from replacement of every free occurrence
of x by ε. This term replacement can be applied more than once, which is written
φ[ε0/x0, ε1/x1, . . .]; in which case the replacements are applied from left to right.

6

Peleska

Let s ∈ S a valuation and φ a (first order) logical formula with free variables
from V = {x0, x1, . . .}. We say that φ holds in state s and write s |= φ, if the
formula evaluates to true when replacing every free variable x occurring in φ by its
valuation s(x); that is, φ[s(x0)/x0, s(x1)/x1, . . .] is a tautology.

Based on the replacement concept, the initial state S0 of a transition system
based on variables and valuations can be specified by means of a first order logical
formula I, if S0 coincides with the set of all valuations where I holds, that is,

S0 = {s : V 6→ D | s |= I}

Conversely, given S0 and assuming that S0 and D are finite, we can always construct
such an I by setting

I ≡
∨
s∈S0

(
∧
x∈V

x = s(x))

If the finiteness assumptions do not hold we can write

I ≡ ∃s ∈ S0 : ∀x ∈ V : x = s(x)

In analogy, we can specify transition relations by means of first order formulas.
In contrast to the initial state formula, however, we now have to consider pre- and
post states. Therefore we consider formulas with free variables in V and V ′ =
{x′ | x ∈ V } and associate unprimed variable symbols x with the prestate and
primed variables with the poststate. Let s, s′ two valuations and ψ a formula with
free variables in V, V ′. We say that ψ holds in (s, s′) and write (s, s′) |= ψ if

ψ[s(x0)/x0, s(x1)/x1, . . . , s
′(x0)/x′0, s

′(x1)/x′1, . . .]

evaluates to true. With this notation a formula T with free variables in V, V ′

specifies a transition relation R ⊆ S × S by setting

R = {(s, s′) ∈ S × S | (s, s′) |= T}

Conversely, given transition relation R we can construct a suitable formula T by

T ≡ ∃(s, s′) ∈ R : ∀x ∈ V, x′ ∈ V ′ : x = s(x) ∧ x′ = s′(x)

Example 2.4 Consider two parallel processes P0, P1 acting on global variables s,
c0, c1. Suppose the processes are executed on a single-core CPU such that each
assignment is atomic but the both processes may have to release the CPU between
two arbitrary statements.

int s = 0;
int c0 = 0;
int c1 = 0;

7

Peleska

1 P0 {
2 do { s = 0;
3 while (s == 0);
4 c0 = 1; // process data
5 c0 = 0;
6 } while (1);
7 }
8

1 P1 {
2 do { s = 1;
3 while (s == 1);
4 c1 = 1; // process data
5 c1 = 0;
6 } while (1);
7 }
8

To capture the complete state space, we add two program counters p0, p1 in range
{1, 2, . . . , 7} indicating the next statement to be executed by P0, P1, respectively.
The semantics of this little parallel program is specified as follows: The symbol set of
the parallel system is V = {p0, p1, s, c0, c1} with p0, p1 ∈ {1, 2, . . . , 7}, c0, c1, s ∈ B.
The initial state is captured by the formula

I ≡ p0 = 1 ∧ p1 = 1 ∧ s = 0 ∧ c0 = 0 ∧ c1 = 0

The transition relation is specified by the formula

T ≡ (p0 = 1 ∧ p′0 = 2 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 2 ∧ p′0 = 3 ∧ p′1 = p1 ∧ s′ = 0 ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 3 ∧ s = 0 ∧ p′0 = 3 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 3 ∧ s 6= 0 ∧ p′0 = 4 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 4 ∧ p′0 = 5 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = 1 ∧ c′1 = c1) ∨

(p0 = 5 ∧ p′0 = 6 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = 0 ∧ c′1 = c1) ∨

(p0 = 6 ∧ p′0 = 2 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p1 = 1 ∧ p′1 = 2 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 2 ∧ p′1 = 3 ∧ p′0 = p0 ∧ s′ = 1 ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 3 ∧ s = 1 ∧ p′1 = 3 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 3 ∧ s 6= 1 ∧ p′1 = 4 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 4 ∧ p′1 = 5 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = 1 ∧ c′0 = c0) ∨

(p1 = 5 ∧ p′1 = 6 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = 0 ∧ c′0 = c0) ∨

(p1 = 6 ∧ p′1 = 2 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0)

For representing the associated Kripke structure we use the encoding

π0, π1, σ, ζ0, ζ1 for a Kripke state s where L(s) = {p0 = π0, p1 = π1, s = σ, c0 =

ζ0, c1 = ζ1}. For unfolding the Kripke structure from the specification of the tran-
sition system we proceed as follows:

(i) Construct the initial states: This is done by finding all solutions s : V 6→ D

of the formula I describing the initial state. In our example this is trivial since
I specifies exactly one admissible initial value for each variable, so S0 consists

8

Peleska

just of the one valuation s0 = {p0 7→ 1, p1 7→ 1, s 7→ 0, c0 7→ 0, c1 7→ 0}. In
the general case the set of all valuations s with s |= I has to be constructed.
Each initial state s is labelled as described above by L(s) = {x0 = s(x0), x1 =
s(x1), . . .}. If the number of variables involved and their data ranges are small
this can be done using truth tables for I. For more complex applications more
sophisticated methods will be introduced later on.

(ii) Expand from the initial states: Starting with each initial state, expand the
Kripke structure by applying the transition relation. This process stops as soon
as the expansions of all states generated so far have already been generated
before, that is, as soon as the expansion process reaches a fixed point. More
formally, given a state s which has already been reached by the expansion, we
need to construct all solutions of T [s(x0)/x0, s(x1)/x1, . . .], that is T , with all
prestate variables replaced by their actual values in s. Every solution s′ gives
rise to a new Kripke state with L(s′) = {x0 = s′(x0), x1 = s′(x1), . . .}.

Lets expand our initial state 1,1,0,0,0 : Replacing the prestate variables in T with

these values results in formula

T [1/p0, 1/p1, 0/s, 0/c0, 0/c1] ≡

(p′0 = 2 ∧ p′1 = 1 ∧ s′ = 0 ∧ c′0 = 0 ∧ c′1 = 0) ∨

(p′1 = 2 ∧ p′0 = 1 ∧ s′ = 0 ∧ c′1 = 0 ∧ c′0 = 0)

so initial state 1,1,0,0,0 expands to 2,1,0,0,0 and 1,2,0,0,0 . The resulting

complete Kripke structure for the two interacting processes in this example is shown
in Fig. 2. Observe that we can also represent the Kripke structure as an infinite
tree which is called the computation tree. 2

Unwinding the Computation Tree.
The following algorithm formalises an unwinding procedure for a finite section

of the computation tree associated with a Kripke structure, as illustrated in Exam-
ple 2.4. Since a state s may occur in more than one place of the computation tree
we use tree nodes N = S × 2AP × N: (s, P, n) ∈ N denotes a state s ∈ S which is
inserted as a tree node at level n and has valid atomic propositions P = L(s). The
computation tree to be constructed is a structure TC = (N, ρ, succ,pred) with

• ρ ∈ N the root of the tree
• succ : N → P(N) the successor function mapping each tree node to the set of its

children. If succ(z) = ∅ then z is called a leaf of the tree.
• pred : N → N ∪ {⊥} the predecessor function mapping each node to its parent

or – in case of the root node – to ⊥

The algorithm is shown in Fig. 1. It unwinds the computation tree in a manner
where a node becomes a leaf if it already occurs elsewhere on the same path on
a higher level closer to the root. This representation is interesting in the context
of test automation (to be discussed in later chapters) and suffices as a simplified

9

Peleska

function computationTree(in (S, S0, R, L) : KripkeStructure) : (N, ρ, succ, pred)
begin
n := 1; M := {(s, L(s), n) | s ∈ S0}; N := {ρ} ∪M ;
succ := {ρ 7→ S0} ∪ {s 7→ ∅ | s ∈ S0};
pred := {(s, L(s), n) 7→ ρ | s ∈ S0} ∪ {ρ 7→ ⊥}
while M 6= ∅ do
M ′ := ∅;
foreach (s, L(s), n) ∈M do

foreach s′ ∈ S do
if (s, s′) ∈ R then
N := N ∪ {(s′, L(s′), n+ 1)};
succ(s, L(s), n) := succ(s, L(s), n) ∪ {(s′, L(s′), n+ 1)};
succ(s′, L(s′), n+ 1) := ∅;
pred(s′, L(s′), n+ 1) := (s, L(s), n);
if (∀k ∈ {1, . . . , n} : pr1(predk(s′, L(s′), n+ 1)) 6= s′) then
M ′ := M ′ ∪ {(s′, L(s′), n+ 1)}

endif
endif

enddo
enddo
M := M ′

n := n+ 1;
enddo
computationTree := (N, ρ, succ, pred);

end

Fig. 1. Algorithm for generating a finite portion of the computation tree associated with a Kripke Structure
(S, S0, R, L).

model to prove or disprove assertions about the model with are of a certain restricted
nature, to be discussed in the next section.

Exercise. 2. Consider the specification model of component C in Fig. 3. C inputs
x ∈ {0, 1, 2} and outputs to y ∈ {−1, 0, 1, 2, . . .}. Its behaviour is modelled in
Statechart style: The rounded corner boxes denote locations, also called control
states. Arrows between locations denote transitions; a transition arrow without
source location marks the initial control state. Expressions in brackets (like [x >
y]) specify guard conditions: The transition from location l0 to l1 can only be
taken if x > y holds, which means, that the current valuation s : V 6→ D results
in s(x) > s(y). Expressions after a slash, like / y = -1;, denote actions, that is,
assignments to internal variables (if any) or outputs. An action is executed if its
associated transition is taken.

Applying the informal description of the behaviour of C in Example 2.4, specify
the initial state and the transition relation as logical formulas. 2

10

Peleska

1,1,0,0,0

2,1,0,0,0

3,1,0,0,0

3,2,0,0,0

3,3,1,0,0

1,2,0,0,0

1,3,1,0,0

4,3,1,0,0

2,3,1,0,0

3,3,0,0,0

3,4,0,0,0

6,3,1,0,0

5,3,1,1,0

3,6,0,0,0

3,5,0,0,1

3,2,0,0,0

2,2,0,0,0

Fig. 2. Kripke structure for the processes P0 ‖ P1 from Example 2.4.

Exercise. 3. Following the algorithm described in Fig. 1, draw the initial part
of the computation tree representing associated with the Kripke structure of C in
Exercise 2. For the first 3 nodes in the tree, explain how they are derived from the
transition relation. For this exercise assume N = 2. 2

11

Peleska

l0 l1

l2

[x>y]/

y = y + x;

[x <= 0]

[y > N]/

y = −1;

[odd(y)]/

y = −1;

[x <= 0]/

y = 0;

/y = 0;

C
x y

Fig. 3. Model of component C.

3 Property Specification With Temporal Logic

3.1 The Computation Tree Logic CTL∗

Operators.
CTL∗ formulas are based on the following operators:

• The path quantifiers are
· A (“on every path”)
· E (“there exists a path”)

• The temporal operators are
· X (“next time”)
· G (“globally” or “always”)

12

Peleska

· F (“eventually” or “finally”)
· U (“until”)
· R (“release”)

Apart from these new operators the conventional Boolean operators can be used,
as will be specified in the syntax definition below.

Syntax of CTL∗ formulas.
CTL∗ distinguishes between

• state formulas which refer to properties of a specific Kripke state
• path formulas which specify properties of a path in the computation tree.

State and path formulas refer recursively to each other. The set of all valid
CTL∗ formulas is given by the state formulas generated according to the following
inductive rules:

(i) Every atomic proposition p ∈ AP is a state formula.

(ii) If f and g are state formulas then ¬f, f ∧ g, f ∨ g are state formulas.

(iii) If f is a path formula then E f,A f are state formulas.

The path formulas are defined according to the following rules:

(iv) Every state formula is also a path formula.

(v) If f and g are path formulas, then ¬f, f ∧ g, f ∨ g are path formulas.

(vi) If f and g are path formulas, then X f,F f,G f, f U g, f R g are path formulas.

More formally, we can write these syntax rules in EBNF notation as follows,
where p ∈ AP , φ denotes state formulas and ψ denotes path formulas

CTL∗-formula ::= φ

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X ψ | F ψ | G ψ | ψ U ψ | ψ R ψ

Semantics of CTL∗ formulas.
The semantics of CTL∗ formulas is explained using a Kripke structureM , specific

states s of M and paths π through the computation tree of M . We write

M, s |= φ (φ a state formula)

to express that φ holds in state s of M . We write

M,π |= ψ(ψ a path formula)

to express that ψ holds along path π through M . For CTL∗ formulas φ we say φ

holds in the Kripke model M and write

M |= φ

13

Peleska

M, s |= p ≡ p ∈ L(s)

M, s |= ¬φ ≡ M, s 6|= φ

M, s |= φ1 ∨ φ2 ≡ M, s |= φ1 or M, s |= φ2

M, s |= φ1 ∧ φ2 ≡ M, s |= φ1 and M, s |= φ2

M, s |= E ψ ≡ there is a path π from s such that M,π |= ψ

M, s |= A ψ ≡ on every path π from s holds M,π |= ψ

M,π |= φ ≡ M,π(0) |= φ

M, π |= ¬ψ ≡ M,π 6|= ψ

M,π |= ψ1 ∨ ψ2 ≡ M,π |= ψ1 or M,π |= ψ2

M,π |= ψ1 ∧ ψ2 ≡ M,π |= ψ1 and M,π |= ψ2

M,π |= X ψ ≡ M,π1 |= ψ

M,π |= F ψ ≡ there exists k ≥ 0 such that M,πk |= ψ

M,π |= G ψ ≡ For all k ≥ 0 M,πk |= ψ

M,π |= ψ1Uψ2 ≡ there exists k ≥ 0 such that M,πk |= ψ2 and for all 0 ≤ j < k M, πj |= ψ1

M,π |= ψ1Rψ2 ≡ for all j ≥ 0 holds: if M,πi 6|= ψ1 for every i < j then M,πj |= ψ2

Fig. 4. Semantics of CTL∗ formulas.

if and only if ∀s0 ∈ S0 : M, s0 |= φ. For paths π = s0s1s2 . . . π(i) denotes the ith
element si of π, and πi = sisi+1 . . . the ith suffix of π.

The inductive definition of |= is given in Fig. 4, where p denotes atomic propo-
sitions from AP , φ, φi denote state formulas and ψ,ψj denote path formulas:

Exercise. 4. Using the syntax rules of CTL∗ formulas and a syntax tree represen-
tation, prove or disprove that the following formulas conform to the CTL∗-syntax
(a, b, c ∈ AP):

(i) AG(XFa ∧ ¬(bUGc))

(ii) AXG¬a ∧EFG(a ∨A(bUa))

2

14

Peleska

Exercise. 5. Using the Kripke structure displayed in Fig. 2 prove or disprove the
following CTL∗-assertions, using the semantic definition described in Fig. 4 in a
step-by step manner. For each of the formulas, give a textual interpretation of their
meaning.

(i) AG¬(c0 ∧ c1)

(ii) A(Fc0 ∧G(c0 ⇒ F(c1 ∧ Fc0)))

Justify why the first assertion could be proved on the finite representation of the
Kripke structure’s computation tree as explained in algorithm 1 while this is not
possible for the second assertion. 2

3.2 The Computation Tree Logic CTL

A frequently used subset of CTL∗ is called CTL. It is defined by the following
restricted syntactic rule (CTL.vi) for the path formulas (the other rules (i), (ii),
(iii), (iv), (v) for CTL∗ syntax apply in the same way to CTL):

(CTL.vi) If f and g are state formulas then X f,F f,G f, f U g, f R g are path formulas.

More formally, the CTL syntax is defined by (p denotes atomic propositions from
AP)

CTL-formula ::= φ

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X φ | F φ | G φ | φ U φ | φ R φ

As a consequence, the temporal operators X,F,G,U,R can never be prefixed by
another temporal operator in CTL. Only pairs consisting of path quantifier and
temporal operator can occur in a row.

Example 3.1 The CTL∗ formula A(FGf) (On every path, f will finally hold in
all states) has no equivalent in CTL. 2

Theorem 3.2 Every CTL formula can be expressed by means of the operators
¬,∨,EX,EU,EG.

Proof. Obviously ψ1 ∧ ψ2 can be expressed as ¬(¬ψ1 ∨ ¬ψ2). The theorem now
follows from the fact that the following equivalences hold for all CTL path formulas

15

Peleska

ψ,ψ1, ψ2:

1. AXψ ≡ ¬EX(¬ψ)

2. EFψ ≡ E(trueUψ)

3. AGψ ≡ ¬EF(¬ψ)

4. AFψ ≡ ¬EG(¬ψ)

5. A(ψ1Uψ2) ≡ ¬E(¬ψ2U(¬ψ1 ∧ ¬ψ2)) ∧ ¬EG¬ψ2

6. A(ψ1Rψ2) ≡ ¬E(¬ψ1U¬ψ2)

7. E(ψ1Rψ2) ≡ ¬A(¬ψ1U¬ψ2)

8. Eφ ≡ E(falseUφ) if φ does not contain E,A,X,F,G,U,R

9. Aφ ≡ ¬E(falseU¬φ) if φ does not contain E,A,X,F,G,U,R

The proof of these equivalences is performed using the semantic rules given in Fig. 4,
to be performed by the reader in Exercise 6. 2

Exercise. 6. Prove the 9 semantic equivalences used in the proof of Theorem 3.2.

3.3 The Computation Tree Logics ACTL∗ and ACTL

If we restrict CTL∗ formulas to universal quantification only, the resulting computa-
tion tree logic is called ACTL∗. More precisely, ACTL∗ only admits CTL∗ formulas
satisfying

• The formula is in positive normal form, that is, the negation operator ¬ is only
applied to atomic propositions.

• The only occurring path quantifier is A.

The corresponding restriction of CTL formulas to universal quantification is
called ACTL.

Example 3.3 AFAXa is an ACTL formula, but AGEFa is not in ACTL∗, since
its E-free representation AG¬AG¬a is not in positive normal form. 2

In Section 5.4 we will prove a theorem about simulation relations between Kripke
structures, and the properties that may be transferred from an abstract Kripke
structure to its associated concrete one. It will turn out that a sufficient condition
for this implication from abstract to concrete level is for the formula to be in the
subset of ACTL∗ or ACTL, respectively.

16

Peleska

4 CTL Model Checking

Model checking distinguishes between

• Equivalence checking. Two models (these are usually given in state transition
system or labelled transition system representation) are compared with respect
to semantic equivalence.

• Refinement checking. Two models are compared by means of a (usually transitive)
relation which is weaker than equivalence.

• Property checking. A model is checked with respect to an (implicit) specification:
The specification is given by a logical formula stating some desired property of
the model. The model is usually represented as a transition system or as a Kripke
structure K = (S, S0, R, L). The specification is most frequently expressed by a
temporal logic formula φ; an alternative specification formalisms is trace logic.

In the general case we wish to identify all states s ∈ S where φ holds, i. e.,
s |= φ. In most practical applications the objective is to prove that φ holds in
every initial state s ∈ S0 and in every state which is reachable from some initial
state by n-fold application of the transition relation R; this is written K |= φ.

In this section we investigate property checking for Kripke structures against
CTL formulas. The technique which is introduced here is called explicit model
checking because it requires to represent the Kripke structure’s state space in an
explicit way, so that all the necessary atomic propositions of the form x = ν can
be directly derived from each state’s representation. This is the oldest form of
model checking which is only applicable if state spaces are sufficiently small to be
enumerated explicitly.

The basic idea of the property checking algorithm.
The property checking algorithm introduced formally below is based on the

following concept:

• The CTL specification formula is decomposed into its (binary) syntax tree.
• Starting at the leaves of the syntax tree (the leaves represent atomic propositions)

the algorithm processes a sequence of sub-formulas φi in bottom-up manner. This
is implemented by means of a recursive in-order traversal of the syntax tree.

• The goal of each processing step is to annotate all states s statisfying s |= φi with
the new sub-formula φi. To this end, a labelling function Lφ : S → CTL is used.

• The algorithm stops when the last formula φi having been processed coincides
with the specification φ.

• The result of the algorithm is the set Sφ =def {s ∈ S | φ ∈ Lφ(s)}.
• The Kripke model (S, S0, R, L) satisfies φ if its initial states are part of Sφ, that

is,

(S, S0, R, L) |= φ ≡ S0 ⊆ {s ∈ S | φ ∈ Lφ(s)}

17

Peleska

function checkCTL(in (S, S0, R, L) : KripkeStructure; in φ : CTL) : P(S)
begin

label : S → 2CTL;
label := {s 7→ ∅ | s ∈ S};
calcLabel((S, S0, R, L), φ, label);
checkCTL := {s ∈ S | φ ∈ label(s)};

end

Fig. 5. Main algorithm for CTL property checking against Kripke structures.

Syntax tree representation of CTL formulas.
From Section 3.2 we know that every CTL formula can be represented by means

of the operators ¬,∨,EX,EU,EG alone. The binary syntax tree representation of
such a formula can be defined recursively using the tree notation

• ε: empty tree
• T (t0, n, t1): tree with root n and left sub-tree t0 and right sub-tree t1.

The recursive syntax tree definition t(φ) for a given CTL formula φ is as follows:

(i) If φ ∈ AP then t(φ) = T (ε, φ, ε).

(ii) If φ = ¬φ1 then t(φ) = T (ε,¬, t(φ1)).

(iii) If φ = φ0 ∨ φ1 then t(φ) = T (t(φ0),∨, t(φ1)).

(iv) If φ = EXφ1 then t(φ) = T (ε,EX, t(φ1)).

(v) If φ = E(φ0Uφ1) then t(φ) = T (t(φ0),EU, t(φ1)) 2 .

(vi) If φ = EGφ1 then t(φ) = T (ε,EG, t(φ1)).

Given a tree representation t(φ) of a formula φ, its leaves (i. e. its atomic propo-
sitions) can be extracted by means of the function leaves : Tree→ 2AP by means of
the following recursive definition:

(i) leaves(T (ε, φ, ε)) = {φ}
(ii) leaves(T (ε,¬, t(φ1))) = leaves(t(φ1))

(iii) leaves(T (t(φ0),∨, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

(iv) leaves(T (ε,EX, t(φ1))) = leaves(t(φ1))

(v) leaves(T (t(φ0),EU, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

(vi) leaves(T (ε,EG, t(φ1))) = leaves(t(φ1))

2 We regard EU as a binary operator, so that formulas E(φ0Uφ1) could be equivalently written as
(φ0(EU)φ1). As a consequence its tree representation is T (t(φ0),EU, t(φ1))

18

Peleska

procedure calcLabel(in (S, S0, R, L) : KripkeStructure;
in φ : CTL;
inout label : S → 2CTL)

begin
if φ ∈ AP then

foreach s ∈ S do
if φ ∈ L(s) then

label(s) := label(s) ∪ {φ};
endif

enddo
elseif t(φ) = T (ε,¬, t(φ1)) then

calcLabel((S, S0, R, L), φ1, label);
foreach s ∈ S do

if φ1 6∈ label(s) then
label(s) := label(s) ∪ {φ};

endif
enddo

elseif t(φ) = T (t(φ0),∨, t(φ1)) then
calcLabel((S, S0, R, L), φ0, label);
calcLabel((S, S0, R, L), φ1, label);
foreach s ∈ S do

if φ0 ∈ label(s) ∨ φ1 ∈ label(s) then
label(s) := label(s) ∪ {φ};

endif
enddo

elseif t(φ) = T (ε,EX, t(φ1)) then
calcLabel((S, S0, R, L), φ1, label);
foreach s ∈ S do

if ∃s′ ∈ S : R(s, s′) ∧ φ1 ∈ label(s′) then
label(s) := label(s) ∪ {φ};

endif
enddo

elseif t(φ) = T (t(φ0),EU, t(φ1)) then
calcLabel((S, S0, R, L), φ0, label); calcLabel((S, S0, R, L), φ1, label);
calcLabelEU((S, S0, R, L), φ0, φ1, label);

elseif t(φ) = T (ε,EG, t(φ1)) then
calcLabel((S, S0, R, L), φ1, label);
calcLabelEG((S, S0, R, L), φ1, label);

endif
end

Fig. 6. Label calculation – syntax-driven control algorithm.

19

Peleska

procedure calcLabelEU (in (S, S0, R, L) : KripkeStructure;
in φ0 : CTL; in φ1 : CTL;
inout label : S → 2CTL)

begin
T := 〈s ∈ S | φ1 ∈ label(s)〉;
foreach s ∈ T do label(s) := label(s) ∪ {E(φ0Uφ1)};
while T 6= 〈 〉 do
s := hd(T);
T := tail(t);
foreach u ∈ {v ∈ S | R(v, s)} do

if E(φ0Uφ1) 6∈ label(u) ∧ φ0 ∈ label(u) then
label(u) := label(u) ∪ {E(φ0Uφ1)};
T := T _ 〈u〉;

endif
enddo

enddo
end

Fig. 7. Algorithm for labelling states with E(φ0Uφ1) formulas.

procedure calcLabelEG(in (S, S0, R, L) : KripkeStructure;
in φ1 : CTL;
inout label : S → 2CTL)

begin
S′ := {s ∈ S | φ1 ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S′}
T := 〈s | ∃C ∈ SCC : s ∈ C〉;
foreach s ∈ T do label(s) := label(s) ∪ {EGφ1};
while T 6= 〈 〉 do
s := hd(T);
T := tail(t);
foreach u ∈ {v ∈ S′ | R(v, s)} do

if EGφ1 6∈ label(u) then
label(u) := label(u) ∪ {EGφ1};
T := T _ 〈u〉;

endif
enddo

enddo
end

Fig. 8. Algorithm for labelling states with EGφ1 formulas.

20

Peleska

5 Data Abstraction

This section deals with state space reduction by means of data abstraction.

5.1 Equivalence Classes and Factorisation of Transition Systems

Let TS = (S, S0, R) a transition system and ∼⊆ S × S an equivalence relation on
S, that is,

• ∀s ∈ S : s ∼ s (reflexivity)
• ∀s, s′ ∈ S : s ∼ s′ ⇒ s′ ∼ s (symmetry)
• ∀s, s′, s′′ ∈ S : s ∼ s′ ∧ s′ ∼ s′′ ⇒ s ∼ s′′ (transitivity)

Let S/∼ denote the set of equivalence classes; each class is written in the form
[s] ∈ S/∼, [s] =def {u | s ∼ u}. An equivalence relation gives rise to a transition
system factorised by ∼ which is defined by

TS/∼ =def (S/∼, S0/∼, R/∼)

S0/∼ =def {[s0] | s0 ∈ S0}

R/∼ =def {([s], [s′]) | ∃u ∈ [s], u′ ∈ [s′] : R(u, u′)}

(1)

5.2 Auxiliary Variables and Associated Equivalence Classes

Let us consider now again only state spaces S whose elements are variable valuations
s : V 6→ D,V = {x1, x2, . . .}. Let AUX = {a1, a2, . . .} a set of fresh variables such
that V ∩ AUX = ∅. Let ei(xi1, x

i
2, . . .) expressions associated with each ai ∈ AUX.

For a fixed set of auxiliary variables ai and expressions ei, extend valuation functions
by

se : V ∪AUX 6→ D

dom se = dom s ∪ {ai ∈ AUX | xi1, xi2, . . . ∈ dom s}

se|V = s that is, ∀x ∈ V ∩ dom se : se(x) = s(x)

∀ai ∈ AUX ∩ dom se : se(ai) = ei(s(xi1), s(xi2), . . .)

Observe that the expressions ei(xi1, x
i
2, . . .) induce a type Dai on the corresponding

auxiliary variables ai. We denote the transition system extended by the variables
from AUX and the extended valuations se by TSe = (Se, S0e, Re), where the tran-
sition relation is defined by

Re =def {(se, s′e) | (se|V , s′e|V) ∈ R}

A collection of auxiliary variables induces an equivalence relation ∼ on TSe =
(Se, Soe, Re) by defining

∀s, s′ ∈ S : s ∼ s′ ≡def (∀a ∈ AUX : se(a) = s′e(a))

21

Peleska

TSe/∼ is called the factorisation of TS by means of the data abstraction

ai = ei(xi1, x
i
2, . . .), i = 1, 2, . . .

Observe that, given a valuation (s : V 6→ D) ∈ S, its equivalence class [s] may
also be regarded as a valuation function on the variables from AUX by setting

∀ai ∈ AUX : [s](ai) =def ei(s(x1), s(x2), . . .)

The definition of ∼ guarantees that this valuation function is well-defined, since all
members s′ ∈ [s] fulfil

∀i : ei(s(x1), s(x2), . . .) = ei(s′(x1), s′(x2), . . .)

Lemma 5.1 Suppose that the initial state S0 is characterised by first-order pred-
icate I with free variables in V = {x1, x2, . . .}, and that the transition rela-
tion R ⊆ S × S is characterised by predicate R with free variables in V and
V ′ =def {x′1, x′2, . . .}. Then the respective predicates for TSe/∼ are given by

I/∼(a1, a2, . . .) =def ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .] (2)

R/∼(a1, a2, . . . , a
′
1, a
′
2, . . .) =def ∃ξ1, ξ2, . . . , ξ

′
1, ξ
′
2, . . . :

∀i : (ai = ei(ξ1, ξ2, . . .) ∧ a′i = ei(ξ′1, ξ
′
2, . . .)) ∧

R[ξ1/x1, ξ2/x2, . . . , ξ
′
1/x
′
1, ξ
′
2/x
′
2, . . .]

(3)

Proof. From (1) and the fact that I characterises S0 we conclude that

S0e/∼ = {[s0] : AUX 6→ D | s0 : V ∪AUX 6→ D ∧ I[s0(x1)/x1, s0(x2)/x2, . . .]}

Therefore, in order to prove correctness of I/∼, it has to be shown that

S =def {sa : AUX 6→ D | I/∼[sa(a1)/a1, sa(xa)/a2, . . .]} =

{sa : AUX 6→ D | ∃ξ1, ξ2, . . . : (∀i : sa(ai) = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .]}

equals S0e/∼.
We show first that S0e/∼ ⊆ S: Let [s0] ∈ S0e/∼. Define ξi =def

s0(xi), i = 1, 2, Then, because I[s0(x1)/x1, s0(x2)/x2, . . .] holds, this implies
I[ξ1/x1, ξ2/x2, . . .]. Furthermore, [s0](ai) = ei(s0(x1), s0(x2), . . .) by definition of
[·], so (∀i : ai = ei(ξ1, ξ2, . . .)). As a consequence, I/∼[[s0](a1)/a1, [s0](a2)/a2, . . .]
holds which shows that [s0] ∈ S.

Now we show S ⊆ S0e/∼: Let sa ∈ S, then there exist ξ1, ξ2, . . . such
that (∀i : sa(ai) = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .]. Now define a valuation
s0 : V 6→ D by s0(xi) =def ξi, i = 1, 2, This s0 is contained in S0 and there-
fore [s0] ∈ S0e/∼, since I[ξ1/x1, ξ2/x2, . . .] and therefore I[s0(x1)/x1, s0(x2)/x2, . . .]

22

Peleska

holds. Since sa(ai) = ei(ξ1, ξ2, . . .) = ei(s0(x1), s0(x2), . . .), the construction of s0

implies sa = [s0], so sa ∈ S0e/∼, and this shows S ⊆ S0e/∼ and proves (2).
For proving (3), recall from (1) that the transition relation of the factorised

transition system TSe/∼ is defined by

R/∼ =def {([s], [s′]) | ∃u ∈ [s], u′ ∈ [s′] : R(u, u′)}

We define

R =def {(sa, s′a) | R/∼[sa(a1)/a1, sa(a2)/a2, . . . , s
′
a(a1)/a′1, s

′
a(a2)/a2, . . .]}

and show that R/∼ equals R.
To show that R/∼ ⊆ R, suppose that ([s], [s′]) ∈ R/∼. By definition of [·], R/∼

and R there exists u, u′ : V 6→ D such that

∀i : (ei(s(x1), s(x2), . . .) = ei(u(x1), u(x2), . . .) ∧

ei(s′(x1), s′(x2), . . .) = ei(u′(x1), u′(x2), . . .)) ∧

R[u(x1)/x1, u(x2)/x2, . . . , u
′(x1)/x′1, u

′(x2)/x′2, . . .]

holds. Setting ξi = u(xi), ξ′i = u′(xi), i = 1, 2, . . . yields

∀i : (ai = ei(ξ1, ξ2, . . .) ∧ a′i = ei(ξ′1, ξ
′
2, . . .)) ∧R[ξ1/x1, ξ2/x2, . . . , ξ

′
1/x
′
1, ξ
′
2/x
′
2, . . .]

and, since ei(s(x1), s(x2), . . .) equals ei(ξ1, ξ2, . . .) and ei(s′(x1), s′(x2), . . .) equals
ei(ξ′1, ξ

′
2, . . .), this implies that

R/∼[[s](a1)/a1, [s](a2)/a2, . . . , [s′](a1)/a′1, [s
′](a2)/a′2, . . .]

holds. This proves ([s], [s′]) ∈ R.
It remains to show that R ⊆ R/∼. To this end, assume that (sa, s′a) ∈ R. By

definition of R and R/∼ this implies the existence of ξi, ξ′i, i = 1, 2, . . . such that

∀i : (sa(ai) = ei(ξ1, ξ2, . . .) ∧ s′a(a′i) = ei(ξ′1, ξ
′
2, . . .)) ∧

R[ξ1/x1, ξ2/x2, . . . , ξ
′
1/x
′
1, ξ
′
2/x
′
2, . . .]

Now define

s : V 6→ D; s(xi) 7→ ξi, s′ : V 6→ D; s′(xi) 7→ ξ′i, i = 1, 2, . . .

Then [s] = sa and [s′] = s′a and R[s(x1)/x1, s(x2)/x2, . . . , s
′(x1)/x′1, s

′(x2)/x′2, . . .]
by construction and this implies R(s, s′) and finally yields ([s], [s′]) ∈ R/∼. This
shows (sa, s′a) ∈ R/∼ and completes the proof. 2

5.3 Data Abstraction on Kripke Structures

Given a Kripke structure K = (S, S0, R, L) and a set AUX of auxiliary variables
ai with associated expressions ei(xi1, x

i
2, . . .) we can extend K to a Kripke structure

23

Peleska

Ke =def (Se, Soe, Re, Le) by defining its set of atomic propositions and the labelling
function as

APe =def AP ∪APAUX

APAUX =def {ai = α | ai ∈ AUX ∧ α ∈ Dai}

Le : Se → 2APe

Le(s) = L(s) ∪ {ai = ei(s(xi1), s(xi2), . . .) | ai ∈ AUX}

If we now factorise Ke’s transition system (Se, Soe, Re) by the equivalence relation
∼ introduced by AUX then we can extend the abstracted transition system to a
Kripke structure by “forgetting” about the original variables in V and considering
only the propositions on abstraction variables of AUX. This is done in the obvious
way by defining a labelling function

Le/∼ : Se/∼ → 2APAUX ; [s] 7→ {ai = ei(s(xi1), s(xi2), . . .) | ai ∈ AUX}

Note that Le/∼ is well-defined since all members of [s] induce the same valuations
for all ai ∈ AUX. As a consequence

Ke/∼ = (Se/∼, S0e/∼, Re/∼, Le/∼)

is a well-defined Kripke structure, and the explicit model checking algorithms in-
troduced in Section 4 can be applied to Ke/∼, as long as we only consider CTL
formulas ϕ over the auxiliary variables from AUX, without any reference to the
variables from V . Such a formula would also be applicable to the unfactorised
Kripke structure Ke. Therefore we would like to know when a formula ϕ proven to
be valid in Ke/∼ is also valid in Ke.

Example 5.2 Consider the Kripke Structure depicted in Fig. 9, which is associated
with a specification model of a traffic light controller. As is well known to every
law-abiding citizen we always stop our cars on red and on yellow. Therefore, if we
are only interested in knowing when cars are in a halt-state in front of the traffic
light, it makes sense to introduce a Boolean auxiliary variable

stops =def (tl = red ∨ tl = yellow)

Factorisation against the equivalence relation introduced by stops leads to the
abstracted Kripke structure shown in Fig. 10.

Now suppose we wish to prove that EF(tl = green) holds for the Kripke struc-
ture of the original model in Fig. 9. The assertion can be readily expressed on ab-
stract level as EF(¬stops) which obviously holds on abstract level, since every path
in Fig. 10 visits (m1,¬stops). Similarly, the condition AF(tl = red ∨ tl = yellow)
can be expressed in an abstract way as AFstops. It is easy to see that it holds on
abstract level.

In these special cases, the assertions also hold on concrete level, but this is not
always the case: On abstracted level we can also prove the formula EG(stops)

24

Peleska

l0

tl = red

l1 l2

l3

tl = yellow

tl = yellow tl = green

Fig. 9. Kripke structure of traffic light controller from Example 5.2.

stops

m1

not stops

m0

Fig. 10. Abstracted Kripke structure induced by auxiliary variable stops in Example 5.2.

which obviously does not hold in the concrete model. Conversely, the concrete
model satisfies AF(¬stops) which is false on abstract level. 2

Exercise. 7. Consider the slightly modified specification model from Exercise 2,
now shown in Fig. 11. Assume now that x and y have unbounded range Dx = Dy =
Z, so that explicit model checking becomes infeasible. Chose suitable abstraction
variables and construct the corresponding factorisation of the model’s Kripke struc-
ture such that the following assertion can be proved using the explicit CTL model
checking algorithms on the abstracted Kripke structure:

¬EF(l0 ∧ odd(y))

Give informal justifications for

• the completeness and correctness of your abstracted Kripke structure (since you
do not want to enumerate the concrete (infinite!) Kripke structure of the model),

• the fact that the proof for the abstracted model implies that the assertion also
holds for the concrete model.

2

25

Peleska

l0 l1

l2

[x>y]/

y = y + x;

[odd(y)]/

y = −1;

[x <= 0]/

y = 0;

/y = 0;
[x <= 0 and not odd(y)]

Fig. 11. Model for Exercise 7.

5.4 Simulations

In order to investigate the situations where assertions on auxiliary variables proven
on abstract level also hold for the concrete level we introduce the concept of simu-
lations:

Definition 5.3 [Simulation] Given two Kripke structures K = (S, S0, R, L),K ′ =
(S′, S′0, R

′, L′) such that K refers to atomic propositions AP and K ′ refers to atomic
propositions AP ′ and AP ′ ⊆ AP . The relation H ⊆ S × S′ is called a simulation,
if the following conditions hold for all (s, s′) ∈ H:

(i) L(s) ∩AP ′ = L′(s′)

(ii) ∀s1 ∈ S : R(s, s1)⇒ ∃s′1 ∈ S′ : R′(s′, s′1) ∧H(s1, s
′
1)

We write K 4 K ′ (K is simulated by K ′) if such a simulation H exists and

∀s0 ∈ S0 : ∃s′0 ∈ S′0 : H(s0, s
′
0)

2

Before exploiting the simulation concept in Theorem 5.7 below it is necessary to
show that the equivalence relation ∼ induced by auxiliary variables as introduced
above establishes a simulation relation between original Kripke structure Ke and
its factorisation Ke/∼:

Theorem 5.4 Given ∼, equivalence classes [s], APe, Le, Ke, Ke/∼ as introduced
in Section 5.3 above, define

H =def {(s, [s]) | s ∈ Se} ⊆ Se × Se/∼

Then H is a simulation between Ke and Ke/∼ and Ke 4 Ke/ ∼ holds.

26

Peleska

Proof. Let H be defined according to the precondition of the theorem and s ∈ Se,
so that (s, [s]) ∈ H. By the construction rules given in Section 5.3, the states of
Ke are labelled with atomic propositions from AP ∪ APAUX, and the states (i. e.,
equivalence classes) of Ke/∼ are labelled with atomic propositions from APAUX. As
a consequence, the construction of the labelling functions Le on Ke and Le/∼ on
Ke/∼ implies

Le(s) ∩APAUX = {ai = ei(s(xi1), s(xi2), . . .) | ai ∈ AUX} = Le/∼([s])

Therefore condition (i) of Definition 5.3 holds.
Now let s1 ∈ Se such that R(s, s1). By construction of R/∼ in Section 5.1

this implies R/∼([s], [s1]) and by construction of H this also implies H(s1, [s1]).
Therefore condition (ii) of Definition 5.3 is also fulfilled.

Finally, we note that ∀s0 ∈ S0 : H(s0, [s0]) holds by construction of H, and
[s0] ∈ S0e/∼ by construction of Ke/∼. As a consequence, Ke 4 Ke/ ∼, and this
completes the proof. 2

Definition 5.5 Let K 4 K ′ with simulation relation H ⊂ S × S′ and H(s, s′).
Suppose π is a path in K starting at s and π′ a path starting at s′ in K ′. We say
that π and π′ correspond to each other if

∀i ≥ 0 : H(π(i), π′(i))

2

Lemma 5.6 Let K 4 K ′ with simulation relation H ⊂ S × S′ and H(s, s′). Then
for every path π in K starting at s there is a corresponding path π′ in K ′ starting
at s′.

Proof. Since π is a path starting at s,

π(0) = s ∧ (∀i ≥ 0 : R(π(i), π(i+ 1)))

follows. Since s = π(0) and H(s, s′), this implies H(π(0), s′). Applying condition
(ii) of Definition 5.3 successively on π(0), π(1), π(2), . . . this yields the existence of
states π′(i) ∈ S′, i ≥ 0, such that

π′(0) = s′ ∧ (∀i ≥ 0 : R′(π′(i), π′(i+ 1)) ∧H(π(i+ 1), π′(i+ 1))),

so π′ is a path in K ′, and it corresponds to π by construction. 2

Theorem 5.7 Assume K 4 K ′. Then for every ACTL∗ formula φ with atomic
propositions in AP ′

(K ′ |= φ) implies (K |= φ)

Proof. Let φ an ACTL∗ formula as defined in Section 3.3. Suppose K ′ |= φ, which
is equivalent to ∀s′0 ∈ S′0 : (K ′, s′0) |= φ. We have to show that for any s0 ∈ S0,
(K, s0) |= φ holds. This is achieved by proving the more general fact that

∀(s, s′) ∈ H : ((K ′, s′) |= φ)⇒ ((K, s) |= φ) (∗)

27

Peleska

which implies our original proof goal. The proof of (*) is performed by structural
induction over the formula φ. Assume (s, s′) ∈ H and (K ′, s′) |= φ for the rest of
this proof.

(1) If φ is an atomic proposition, then (K, s) |= φ if and only if φ ∈ L(s). Since
(K ′, s′) |= φ by assumption, φ must be contained in AP ′. Because K ′ simulates K
and L(s) ∩ AP ′ = L′(s′) holds (condition (i) of Definition 5.3). Now K ′ |= φ, and
therefore φ ∈ L′(s′) and L′(s′) = L(s) ∩AP ′, so φ ∈ L(s) follows.

(2) Let φ = ¬φ1 and suppose (K ′, s′) |= φ. Since φ is an ACTL∗ formula φ1

must be an atomic proposition. This implies that φ1 6∈ L′(s′) and, since L′(s′) =
L(s) ∩ AP ′ and φ1 ∈ AP ′ also φ1 6∈ L(s). This means K, s 6|= φ1 and therefore
K, s |= ¬φ1 which is equivalent to K, s |= φ.

(3) Let φ = φ1 ∨ φ2 such that φi are state formulas for i = 1, 2 and (K, s) |= φi
whenever (K ′, s′) |= φi. Since (K ′, s′) |= φ, (K ′, s′) |= φ1 or (K ′, s′) |= φ2 follows.
If (K ′, s′) |= φ1 then we know already that (K, s) |= φ1 follows, and this implies
(K, s) |= φ1 ∨ φ2. The same argument applies if (K ′, s′) |= φ2. As a consequence
(K, s) |= φ1 or (K, s) |= φ2 holds, which proves (K, s) |= φ1 ∨ φ2.

(4) Let φ = φ1 ∧ φ2 such that φi are state formulas for i = 1, 2 and (K, s) |= φi
whenever (K ′, s′) |= φi. This case is handled in analogy to (3).

(5) Let φ a state formula, such that (K, s) |= φ whenever (K ′, s′) |= φ. Let π a
path with π(0) = s, and π′ its corresponding path in K ′, starting at s′ = π′(0) (this
path exists according to Lemma 5.6). Suppose that K ′, π′ |= φ (remember that
every state formula is also a path formula). This is equivalent to K ′, π′(0) |= φ, so
by our assumption K,π(0) |= φ. This implies that K,π |= φ. Now we have shown
that K,π |= φ whenever K ′, π′ |= φ on a path π′ corresponding to π.

(6) Let φ = Aψ such that ψ is a path formula and K,π |= ψ whenever K ′, π′ |=
ψ, where π, π′ are corresponding paths starting in s and s′, respectively. Now
K, s |= Aψ is equivalent to the condition that every path π emanating from s

satisfies K,π |= ψ. Since K ′, s′ |= Aψ we know that K ′, π′′ |= ψ for every π′′ starting
at s′, so this holds in particular for the path π′ corresponding to π. Therefore also
K,π |= ψ holds, and this implies K, s |= Aψ since π was an arbitrary path starting
at s.

(7) Let φ = ψ1 ∨ ψ2, such that ψi are path formulas where K,π |= ψi whenever
K ′, π′ |= ψi for i = 1, 2 on a path π′ corresponding to π. Suppose K ′, π′ |= ψ1 ∨ ψ2.
This means that K ′, π′ |= ψ1 or K ′, π′ |= ψ2. By (5) we can deduce that K,π |= ψ1

or K,π |= ψ2, and we have shown that K,π |= ψ1 ∨ ψ2 whenever K ′, π′ |= ψ1 ∨ ψ2

on a path π′ corresponding to π.
(8) Let φ = ψ1 ∧ ψ2, such that ψi are path formulas where K,π |= ψi whenever

K ′, π′ |= ψi for i = 1, 2 on a path π′ corresponding to π. With an argument
analogous to (7) it is shown that K,π |= ψ1 ∧ ψ2 whenever K ′, π′ |= ψ1 ∧ ψ2 on a
path π′ corresponding to π.

(9) Let φ = Xψ and ψ a path formula such that K,π |= ψ holds whenever
K ′, π′ |= ψ holds on a path π′ corresponding to π. Now K ′, π′ |= Xψ is equivalent
to K ′, π′1 |= ψ. Since π′1 corresponds to π1 we know already that K ′, π′1 |= ψ

implies K,π1 |= ψ. As a consequence K,π |= Xψ also holds.
(10) The cases φ = Fψ, φ = Gψ, φ = ψ1Uψ2, φ = ψ1Rψ2 are shown in analogy

to (9), and this completes the proof. 2

28

Peleska

Exercise. 8.a Give the following explanations regarding the proof of Theorem 5.7:

(i) Give a detailed formal explanation why the theorem follows from (*).

(ii) Give a formal syntax specification for ACTL∗ similar to EBNF notation intro-
duced for CTL∗ formulas in Section 3.1.

(iii) Explain how ACTL∗ is inductively defined according to Definition A.1:
(a) What might be a suitable universe U?
(b) What is the base set B?
(c) Which are the constructors r ∈ K?

(iv) Explain how the proof of Theorem 5.7 applies the principle of structural in-
duction.

2

Theorem 5.8 Let K = (S, S0, R, L) and K ′ = (S, S′0, R
′, L) Kripke structures with

variable symbols from V and atomic propositions AP , using the same set of states S
and the same labelling function L : S → 2AP . Let I, I ′ be the first order predicates
characterising the initial states S0 and S′0, respectively, and R, R′ the first order
predicates characterising the transition relations R and R′, respectively. Suppose
that

• I ⇒ I ′

• R ⇒ R′

Then K 4 K ′.

Proof. See Exercise 8. 2

Exercise. 8. Prove Theorem 5.8, using the facts on first order representations
given in Section 2. 2

5.5 Bisimulations

Having studied simulations it is natural to ask how much we have to strengthen the
simulation definition in order to be sure that all CTL∗ formulas valid in one Kripke
structure are also valid in the other one and vice versa. This leads us to the concept
of bisimulation.

Definition 5.9 [Bisimulation] Given two Kripke structures K = (S, S0, R, L),K ′ =
(S′, S′0, R

′, L′) such that K,K ′ refer to the same set of atomic propositions AP . A
relation B ⊆ S×S′ is called bisimulation (relation) between K and K ′, if and only
if the following conditions hold for all s ∈ S, s′ ∈ S′ with B(s, s′):

(i) L(s) = L′(s′)

(ii) ∀s1 ∈ S : R(s, s1)⇒ ∃s′1 ∈ S′ : R′(s′, s′1) ∧B(s1, s
′
1)

(iii) ∀s′1 ∈ S′ : R′(s′, s′1)⇒ ∃s1 ∈ S : R(s, s1) ∧B(s1, s
′
1)

We write K ≡ K ′ if there exists a bisimulation B between K and K ′ such that

(∀s0 ∈ S0 : ∃s′0 ∈ S′0 : B(s0, s
′
0)) ∧ (∀s′0 ∈ S′0 : ∃s0 ∈ S0 : B(s0, s

′
0))

2

29

Peleska

Bisimilar Kripke structures satisfy the same CTL∗ formulas 3 :

Theorem 5.10 If K ≡ K ′ and φ ∈ CTL∗, then

(K |= φ) if and only if (K ′ |= φ)

2

5.6 Predicate Abstraction

With the knowledge of Section 5.3 alone we could construct abstractions only from
the original Kripke structure K = (S, S0, R, L). This is unsatisfactory, since the
very objective of abstraction is to help in situations where the original Kripke
structure is too large to be represented in an explicit way. Fortunately there is
an alternative for constructing abstractions: Having defined auxiliary variables ai
and associated expressions ai = ei(xi1, x

i
2, . . .) we can lift the original predicates I,R

over xj ∈ V specifying initial state and transition relation of K to predicates over
ai specifying initial state and transition relation of the abstracted Kripke structure
K ′ = (S′, S′0, R

′, L′). In the next section we will see that this relation can be further
approximated by simpler predicates that still preserve the simulation relation but
are coarser and therefore even simpler to compute.

Definition 5.11 Let K = (S, S0, R, L) a Kripke structure with variables from V =
{x1, . . . , xn} and φ a predicate with free variables over V . Let AUX = {a1, . . . , ak}
a set of auxiliary variables defining an abstraction relation via expressions ai =
ei(xi1, x

i
2, . . .), i = 1, . . . , k. Then the lifting of φ with respect to this abstraction is

denoted by [φ] and defined as

[φ] ≡def ∃ξ1, . . . , ξn : (∀i = 1, . . . , k : ai = ei(ξi1, . . . , ξ
i
n)) ∧ φ[ξ1/x1, . . . , ξn/xn]

2

Theorem 5.12 Let K = (S, S0, R, L) a Kripke structure with variables from V =
{x1, . . . , xn} and φ a predicate with free variables over V . Let AUX = {a1, . . . , ak}
a set of auxiliary variables defining an abstraction relation via expressions ai =
ei(xi1, x

i
2, . . .), i = 1, . . . , k. Let K ′ = (S′, S′0, R

′, L′) denote the abstracted Kripke
structure obtained by factorisation with ∼ as described in Section 5.3. Let I,R
denote initial condition and transition relation of K.

Then initial condition and transition relation of K ′ are given by the lifted pred-
icates

[I] and [R]

3 For a proof, see [2, pp. 171].

30

Peleska

not a1

not a2

not a3

a0

a1

not a2

not a3

not a0

a1

not a2

a3

not a0

1 2

3

not a1

a2

a3

not a0
4

Fig. 12. Kripke structure for abstracted model from Example 5.13.

Proof. Applying Definition 5.11 on I and R yields

[I] ≡ ∃ξ1, . . . , ξn : (∀i = 1, . . . , k : ai = ei(ξ1, . . . , ξn)) ∧ I[ξ1/x1, . . . , ξn/xn]

[R] ≡ ∃ξ1, . . . , ξn : ∃ξ′1, . . . , ξ′n : (∀i = 1, . . . , k : ai = ei(ξ1, . . . , ξn)) ∧

(∀i = 1, . . . , k : a′i = ei(ξ′1, . . . , ξ
′
n)) ∧

R[ξ1/x1, . . . , ξn/xn, ξ
′
1/x
′
1, . . . , ξ

′
n/x

′
n]

According to Lemma 5.1 these formulas represent initial condition I/∼ and transi-
tion relation R/∼ of K ′. 2

Example 5.13 Consider again the model displayed in Fig. 11 with integer variables
x, y having unbounded range. With the knowledge about simulations and predicate
abstraction it is now possible to give a rigorous proof for the formula ¬EF(l0 ∧
odd(y)). First we observe that

¬EF(l0 ∧ odd(y)) ≡ AG(¬l0 ∨ ¬odd(y))

so our proof objective is an ACTL formula. As a possible abstraction for this

31

Peleska

objective consider

a0 = l0

a1 = l1

a2 = l2

a3 = odd(y)

(4)

Note, that a0, . . . , a3 form not the simplest abstraction possible to show the required
property - indeed, abstraction by a0 and a3 would suffice. The effect of the coarser
abstraction would be, that proving several other formulas like AG(¬l2 ∨ odd(y))
becomes impossible in the resulting abstracted Kripke structure.

We proceed now to construct the resulting abstracted Kripke structure without
first unfolding the one of the concrete system, but exploiting instead its predicates
for initial state and transition relation.

Step. 1. Specify initial condition of the concrete system: From Fig. 11 we derive

I(l0, l1, l2, x, y) ≡ l0 ∧ ¬l1 ∧ ¬l2 ∧ y = 0

Step. 2. Specify formula for the transition relation of the concrete system: Evalu-
ating Fig. 11 again, we derive

R(l0, l1, l2, x, y, l0′, l1′, l2′, x′, y′) ≡

((l0 ∧ x ≤ y ∧ y′ = y ∧ l0′) ∨

(l0 ∧ x > y ∧ y′ = y + x ∧ l1′) ∨

(l1 ∧ x ≤ 0 ∧ ¬odd(y) ∧ y′ = y ∧ l0′) ∨

(l1 ∧ odd(y) ∧ y′ = −1 ∧ l2′) ∨

(l1 ∧ x > 0 ∧ ¬odd(y) ∧ y′ = y ∧ l1′) ∨

(l2 ∧ x ≤ 0 ∧ y′ = 0 ∧ l0′) ∨

(l2 ∧ x > 0 ∧ y′ = y ∧ l2′)) ∧

((l0 ∧ ¬l1 ∧ ¬l2) ∨ (¬l0 ∧ l1 ∧ ¬l2) ∨ (¬l0 ∧ ¬l1 ∧ l2)) ∧

((l0′ ∧ ¬l1′ ∧ ¬l2′) ∨ (¬l0′ ∧ l1′ ∧ ¬l2′) ∨ (¬l0′ ∧ ¬l1′ ∧ l2′))

Step. 3. Compute the abstracted initial condition I/∼ = [I]: Applying Defini-
tion 5.11 on [I] for the given abstraction (4) results in

[I](a0, a1, a2, a3)≡∃ξ0, ξ1, ξ2, ξ3, ξ4 :
a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4) ∧
ξ0 ∧ ¬ξ1 ∧ ¬ξ2 ∧ ξ4 = 0

≡ a0 ∧ ¬a1 ∧ ¬a2 ∧ ¬a3

Step. 4. Compute the abstracted transition relation R/∼ = [R]: Applying Defini-

32

Peleska

tion 5.11 on [R] for the given abstraction (4) results in

[R](a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3) ≡

∃ξ0, ξ1, ξ2, ξ3, ξ4, ξ
′
0, ξ
′
1, ξ
′
2, ξ
′
3, ξ
′
4 :

a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4) ∧

a′0 = ξ′0 ∧ a′1 = ξ′1 ∧ a′2 = ξ′2 ∧ a′3 = odd(ξ′4) ∧

((ξ0 ∧ ξ3 ≤ ξ4 ∧ ξ′4 = ξ4 ∧ ξ′0) ∨

(ξ0 ∧ ξ3 > ξ4 ∧ ξ′4 = ξ4 + ξ3 ∧ ξ′1) ∨

(ξ1 ∧ ξ3 ≤ 0 ∧ ¬odd(ξ4) ∧ ξ′4 = ξ4 ∧ ξ′0) ∨

(ξ1 ∧ odd(ξ4) ∧ ξ′4 = −1 ∧ ξ′2) ∨

(ξ1 ∧ ξ3 > 0 ∧ ¬odd(ξ4) ∧ ξ′4 = ξ4 ∧ ξ′1) ∨

(ξ2 ∧ ξ3 ≤ 0 ∧ ξ′4 = 0 ∧ ξ′0) ∨

(ξ2 ∧ ξ3 > 0 ∧ ξ′4 = ξ4 ∧ ξ′2)) ∧

((ξ0 ∧ ¬ξ1 ∧ ¬ξ2) ∨ (¬ξ0 ∧ ξ1 ∧ ¬ξ2) ∨ (¬ξ0 ∧ ¬ξ1 ∧ ξ2)) ∧

((ξ′0 ∧ ¬ξ′1 ∧ ¬ξ′2) ∨ (¬ξ′0 ∧ ξ′1 ∧ ¬ξ′2) ∨ (¬ξ′0 ∧ ¬ξ′1 ∧ ξ′2)) ≡

((a0 ∧ a′3 = a3 ∧ a′0) ∨ (a0 ∧ a′3 ∧ a′1) ∨ (a0 ∧ ¬a′3 ∧ a′1) ∨

(a1 ∧ ¬a3 ∧ a′3 = a3 ∧ a′0) ∨ (a1 ∧ ¬a3 ∧ a′3 = a3 ∧ a′1) ∨ (a1 ∧ a3 ∧ a′3 ∧ a′2) ∨

(a2 ∧ ¬a′3 ∧ a′0) ∨ (a2 ∧ a′3 = a3 ∧ a′2)) ∧

((a0 ∧ ¬a1 ∧ ¬a2) ∨ (¬a0 ∧ a1 ∧ ¬a2) ∨ (¬a0 ∧ ¬a1 ∧ a2)) ∧

((a′0 ∧ ¬a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ ¬a′1 ∧ a′2))

The resulting abstracted Kripke structure is displayed in Fig. 12, and it is trivial
to see from the graphic representation that AG(¬l0 ∨ ¬odd(y)) holds, because
this formula is equivalent to AG(¬a0 ∨ ¬a3) and the Kripke structure in Fig. 12
simulates the concrete system from Fig. 11 by construction. 2

Exercise. 9. Check whether the following C program fragment terminates:

1 uint32_t x,y;
2 y = 1;
3 while (y < 256) {
4 x = input(); // Assume 0 <= x <= 15
5 if (x > y) {
6 y = y * x;
7 }
8 }

33

Peleska

Perform this check by means of an abstraction function α that calculates the minimal
number of bits needed to represent an integral number:

α : N0 → N0; x 7→ dlog2 xe

Observe that, since logb x · y = logbx+ logby, the following estimates hold:

α(x · y) ≤ α(x) + α(y)

N ≤ α(x) + α(y)⇒ N − 1 ≤ α(x · y)

α(x) + α(y) ≤ N ⇒ α(x · y) ≤ N

Prove termination or non-termination along the following lines:

(i) Specify initial condition I and transition formula R of the concrete program
fragment above.

(ii) Now use the abstraction a1 = α(x), a2 = α(y). and calculate the abstracted
formulas [I] and [R].

(iii) Unfold the Kripke structure of the abstracted system given by [I] and [R] and
sketch how the model checking algorithms introduced in Section 4 come to a
conclusion about termination or non-termination.

2

5.7 Predicate Approximation

Depending on the complexity of initial conditions I and transition relations R it
may be quite hard to compute [I] and [R]. It is therefore useful to have a technique
at hand for further simplifying this computation, at the cost of not arriving exactly
at [I] and [R], but at approximations of these predicates, denoted by A(I) and
A(R), respectively. We say that predicate φ′ approximates φ′ if φ⇒ φ′.

Definition 5.14 Let φ a predicate in negation normal form with free variables
in V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i = 1, 2, . . ., the
approximation of φ is denoted by A(φ). A(φ) has free variables in {a1, a2, . . .} and
is defined inductively by the following rules:

(i) If φ is an atomic proposition 4 , then A(φ) =def [φ].

(ii) If ¬φ is a negated atomic proposition, then A(¬φ) =def [¬φ].

(iii) A(φ1 ∧ φ2) =def A(φ1) ∧ A(φ2)

(iv) A(φ1 ∨ φ2) =def A(φ1) ∨ A(φ2)

(v) A(∃x : φ) =def ∃a : A(φ)

(vi) A(∀x : φ) =def ∀a : A(φ)

2

4 Observe that this includes all primitive relations such as x < y, x = f(y, z).

34

Peleska

Theorem 5.15 Let φ a predicate in negation normal form with free variables in
V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i = 1, 2, . . ., the lifted
version of φ implies its approximated version, i. e.,

[φ](a1, a2, . . .)⇒ A(a1, a2, . . .)

Proof. The proof is performed by structural induction over the formula φ.
Step 1. If φ is atomic or the negation of an atom, A(φ) = [φ], so there is nothing
to prove.
Step 2. Suppose φ ≡ φ1 ∧φ2 and [φj]⇒ A(φj), j = 1, 2. From the definition of [·]
we calculate

[φ1 ∧ φ2] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧

φ1(ξ1/x1, ξ2/x2, . . .) ∧ φ2(ξ1/x1, ξ2/x2, . . .)

⇒ (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ1/x1, ξ2/x2, . . .)) ∧

(∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ2(ξ1/x1, ξ2/x2, . . .))

⇒ A(φ1) ∧ A(φ2)

Step 3. Suppose φ ≡ φ1 ∨ φ2 and [φj] ⇒ A(φj), j = 1, 2. This case is handled in
analogy to Step. 2.
Step 4. Suppose φ ≡ ∃x : φ1 and [φ1]⇒ A(φ1). Assume without loss of generality
that x 6= xi for all i = 1, 2, . . . and that φ = φ(x, x1, x2, . . .). Then

[∃x : φ1] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ (∃ξ : φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))

⇒ ∃ξ, ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .)

⇒ ∃ξ : (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))

⇒ ∃a : A(φ1)

Step 5. Suppose φ ≡ ∀x : φ1 and [φ1] ⇒ A(φ1). This step is handled in analogy
to Step 4. 2

Theorem 5.16 Given a Kripke structure K = (S, S0, R, L) with variables in
V = {x1, x2, . . .}, initial condition I and transition formula R. Given an abstrac-
tion ai = ei(x1, x2, . . .), i = 1, 2, Let K ′ = (S′, S′0, R

′, L′) denote the Kripke
structure with variables {a1, a2, . . .}, initial condition A(I) and transition relation
A(R). Then

K 4 K ′

Proof. Let K ′′ denote the abstracted Kripke structure with variables {a1, a2, . . .},
initial condition [I] and transition formula [R]. From Theorem 5.12 and The-
orem 5.4 we know that K ′′ simulates K. From Theorem 5.15 we know that
[I] ⇒ A(I) and [R] ⇒ A(R). Now Theorem 5.8 implies that K ′ simulates K ′′.
Since 4 is transitive, the theorem follows. 2

35

Peleska

Exercise. 10. Given a Kripke structure K = (S, S0, R, L) we use the following
notation:

• Ks =def (S, {s}, R, L) for s ∈ S
• s0 4 s1 ≡def there exists a simulation relation H ⊆ S × S such that H(s0, s1)

Consider the following algorithm:

H := {(s0, s1) | L(s0) = L(s1)};

while H is not a simulation relation do

Choose (s0, s1) such that

∃s′0 ∈ S : R(s0, s
′
0) ∧ (∀s′1 ∈ S : R(s1, s

′
1)⇒ (s′0, s

′
1) 6∈ H);

H := H − {(s0, s1)};

enddo

(i) Justify informally why H, as computed by this algorithm, is a simulation re-
lation.

(ii) Explain the relation between H as computed by this algorithm, s0 4 s1, Ks0

and Ks1 .

2

6 Real-Time Formalisms Based on State-Transition
Systems and Shared Variables

In this section we introduce a description formalism incorporating the notion of
real time: Time is captured in a new model variable t̂ typed over R+ = [0,∞).
This allows to describe time-continuous evolutions as needed in the description
of physical models. Real-time formalisms supporting a notion of time in R+ are
called dense-time formalisms, in contrast to discrete-time formalisms, where time
is described by a counter recording the number of discrete clock ticks that occurred
since the start of a computation. Variables are taken as usual from a set V which
is now partitioned into five disjoint subsets I,O, VL, T, {t̂} denoting input variables,
outputs, local variables, timer variables and the current time, respectively.

6.1 Abstract Syntax of Timed State Machines

Timed State Machines s consist of locations ` ∈ Loc(s) (also called control states)
and transitions

τ = (`, p, g, α, `′) ∈ Σ(s) ⊆ L(s)× P ×G×A× L(s)

connecting source and target locations ` and `′, respectively. Value p ∈ P = N0

denotes the priority of the transition (0 is the best priority) and is used to enforce
determinism for state machines. Transition component g ∈ Bexpr(V) denotes the
guard condition of τ which is a Boolean expression over symbols from V . For timer

36

Peleska

symbols t ∈ T occurring in g we only allow Boolean conditions elapsed(t, c) with
constants c. Intuitively speaking, elapsed(t, c) evaluates to true if at least c time
units have passed since t’s most recent reset.

Transition component α ∈ A = P(V × Expr(V)) denotes a set of value as-
signments to variables in V , according to expressions from Expr(V). For a pair
a = (v, e) ∈ A, var(a) =def v and expr(a) =def e denote the projections on variable
and expression, respectively. For timer symbols t ∈ T only resets (t, reset) are al-
lowed. A transition without accompanying assignments is associated with an empty
set α = ∅. Function

ω : Ls → P(Σ(s)); ` 7→ {(`, p, g, α, `′) ∈ Σ(s) | ` = `}

maps locations to their outgoing transitions. Each state machine s has a specific
start location start(s). Exactly one transition must leave start(s), and the guard of
this transition has to be true.

The parallel composition of timed state machines s1, . . . , sn operating over the
same set V of variables is denoted by

‖i=1,...,n si

If more than one machine write to the same variables from VL ∪ O then these are
called shared variables. Timer variables must never be shared, and inputs must
never be written to.

Example 6.1 Fig. 13 shows an example of a simple switching mechanism involving
a timer t: The start location is marked by the black bullet. Initially, the device
controlled by this mechanism is switched off by setting the control output out to
0. If the switch sw is set to 1 then the device is switched on by means of output
out = 1. A timer is set, so that the device is automatically switched off after 100
time units. In that case, the input switch sw has to be reset first, before the device
can be switched on again. Otherwise, if the switch sw is reset to 0 before the timer
elapses, the device is switched off at once and switched on again as soon as sw = 1.
2

6.2 Semantics of Timed State Machines

The semantics of timed state machines is based on timed state transition systems
TSTS = (S, S0, R): The state space S consists of valuation functions s : L∪V → D

satisfying s(t̂), s(t) ∈ R+ for valuation of global time t̂ and timer variables t. As a
consequence, S has uncountable cardinality. For locations `, s(`) ∈ B, s(`) = true
signifying that the state machine is currently in this location. Initial states reside in
the start location and have current time t̂ = 0, but may be associated with arbitrary
input values. Also, local variables, outputs and timer have arbitrary values which
are typically reset during the first transition from the start location to its target.

Current time t̂ changes over physical time z like an ideal clock: if the model
execution starts at physical point in time z0, then the current time always fulfils

t̂ = z − z0

37

Peleska

ONOFF
out = 1; reset(t);

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[elapsed(t,100)] /

out = 0;
[sw == 0]

I = { sw } O = { out } T = { t }

/ out = 0;

1

2

Fig. 13. Timed state machine s for switch with timeout.

or, equivalently,
dt̂

dz
= 1

which will occur in the invariants introduced below, which are part of the transition
relation.

Example 6.2 For the example from Fig. 13, this results in the following initial
state:

S0 = {s ∈ S | s |= I}

I ≡ start(s) ∧ t̂ = 0 ∧ INV

INV ≡ (start(s) ∨OFF ∨ON ∨ TIMEOUT) ∧

¬(start(s) ∧OFF) ∧ ¬(start(s) ∧ON) ∧ ¬(start(s) ∧ TIMEOUT)) ∧

¬(OFF ∧ON) ∧ ¬(OFF ∧ TIMEOUT) ∧ ¬(ON ∧ TIMEOUT) ∧ dt̂
dz = 1

2

Transitions are classified as

• discrete transitions
• delay transitions

which is the canonical approach for dense-time formalisms: Discrete transitions take
place in zero time; they may change outputs, local variables, timers and locations,
while inputs and current time t̂ remain stable. Delay transitions can only happen
when no discrete transition is enabled. In that case the current time is advanced by
a positive value, but only as far as the point in time where the next timers elapse,
because this might enable another discrete transition. Obviously, TSTS contains
uncountably many transitions, since time may proceed in infinitesimally small units,
each unit inducing a delay transition.

38

Peleska

More formally, the effect of an action α = {a1, . . . , ak} is defined as

ε(α)≡def (∀a ∈ α ∧ var(a) ∈ V − T : var(a)′ = expr(a)) ∧
(∀a ∈ α ∧ var(a) ∈ T : var(a)′ = t̂)

A state machine transition τ = (`0, p, g, α, `1) may be triggered (or, synony-
mously, it may fire) if

triggers(`0, p, g, α, `1) ≡def `0 ∧ g ∧ (∀(`0, p, g, α, `1) ∈ ωs(`0) : p ≥ p ∨ ¬g)

holds. This means that for τ to fire, s must reside in location `0, τ ’s guard condition
has to evaluate to true and no higher-priority transition emanating from `0 can be
triggered. The effect of a state machine transition τ = (`0, p, g, α, `1) that can be
triggered is specified as

ε(`0, p, g, α, `1) ≡def ε(α) ∧ `′1

The write set of an action α is defined by the set of left-hand side variables and
timers that are changed by this action:

W (α) =def {var(a) | a ∈ α}

The write set of a transition τ = (`0, p, g, α, `1) is defined by the write set of its
action:

W (τ) =def W (α)

The complete transition relation of a parallel system ‖i=1,...,n si is defined by

Φ ≡def ((triggerD ∧ ΦD) ∨ (¬triggerD ∧ ΦT)) ∧ Inv′

where predicate triggerD is defined as follows:

triggerD ≡def ∃i ∈ {1, . . . , n}, τ ∈ Σ(si) : triggersi
(τ)

The invariant Inv states that

• every state machine may be in at most one location at time,
• every variable only takes values in its specified domain,
• the current time behaves like an ideal clock.

Inv ≡def

(∀i ∈ {1, . . . , n}, `0, `1 ∈ Loc(si) : `0 ∧ `1 ⇒ `0 = `1) ∧

(∀v ∈ V : v ∈ Dv) ∧
dt̂
dz = 1

Components ΦD and ΦT denote the discrete and and delay transition aspects
of the complete transition relation Φ, respectively: if triggerD evaluates to true we
get the effect of a discrete transition, and if it evaluates to false, a delay transition
is performed. For discrete transitions we define

39

Peleska

ΦD ≡def (t̂′ = t̂) ∧ (∀v ∈ I : v′ = v) ∧
(∀i ∈ {1, . . . , n}, τ ∈ Σ(si) : trigger(τ)⇒ ε(τ)) ∧
(∀v ∈ V − I : written(v) ∨ v′ = v)

the current time and the inputs remain unchanged during a discrete transition; all
transitions of state machines si that may fire are performed simultaneously, and
variables that are not written to by any transition remain unchanged. Formally,
written(v) is defined as

written(v)≡def (∃i ∈ {1, . . . , n}, τ ∈ Σ(si) : trigger(τ) ∧ v ∈W (τ))

The delay component ΦT formalises the following rules:

• The current time has to be advanced.
• All locations, local variables and outputs remain unchanged.
• The current time may be advanced at most up to the point in time where the

next timer will elapse.
• Timers which are already elapsed do not restrict the amount of time t̂ is advanced.

ΦT ≡def (t̂′ > t̂) ∧
(∀i ∈ {1, . . . , n}, ` ∈ Loc(si) : `′ ⇔ `) ∧
(∀v ∈ V − I : v′ = v) ∧
(∀i ∈ {1, . . . , n}, (`0, p, g, α, `1) ∈ Σ(si) :

(∃g ∈ Bexpr, t ∈ T, c ∈ N : g ≡ g ∧ elapsed(t, c))⇒
(t̂′ ≤ c+ t ∨ t̂ ≥ c+ t))

Example 6.3 For the example from Fig. 13, this results in the following transition
relation:

R ≡ INV ∧ INV′ ∧ ((start(s) ∧ sw′ = sw ∧ t′ = t ∧ t̂′ = t̂ ∧ out′ = 0 ∧OFF′) ∨

(OFF ∧ sw = 0 ∧ t̂′ > t̂ ∧ out′ = out ∧ t′ = t ∧OFF′) ∨

(OFF ∧ sw = 1 ∧ sw′ = sw ∧ t̂′ = t̂ ∧ out′ = 1 ∧ t′ = t̂ ∧ON′) ∨

(ON ∧ sw = 1 ∧ t̂′ > t̂ ∧ (t̂− t) < 100 ∧ (t̂′ − t) ≤ 100 ∧ out′ = out ∧ t′ = t ∧ON′) ∨

(ON ∧ sw = 1 ∧ (t̂− t) ≥ 100 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧ TIMEOUT′) ∨

(ON ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧OFF′) ∨

(TIMEOUT ∧ sw = 1 ∧ t̂′ > t̂ ∧ t′ = t ∧ out′ = 0 ∧ TIMEOUT′) ∨

(TIMEOUT ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧OFF′))

2

Exercise. 11. Apply the concept of predicate abstraction introduced in Section 5.6
in order to prove that the sample model displayed in Fig. 13 satisfies the properties

(i) AG(¬ON ∨ (t̂− t ≤ 100))

(ii) A(G(sw = 1)⇒ F(ON ∧ (t̂− t) > 50))

To this end, proceed as follows:

40

Peleska

(i) Perform different abstractions for each of the two properties.

(ii) For each property,
(a) Define the relevant auxiliary variables ai and the associated abstraction

expressions ei(. . . concrete variables . . .).
(b) Lift the initial state predicate I defined above to its abstracted predicate

[I], as defined in Definition 5.11.
(c) Lift the transition relation predicate R defined above to its abstracted

version [R].
(d) From [I] and [R], formally derive the Kripke structure of the abstracted

system.
(e) Evaluating the Kripke structure, give an informal argument why the prop-

erty is satisfied.

2

6.3 Discussion

Modelling formalisms where all parallel components fire transitions simultaneously
in zero time, as soon as their trigger conditions are fulfilled are called synchronous;
it is also said that they implement the true parallelism paradigm. They are appro-
priate for modelling multi-core systems or distributed systems where different tasks
can perform computation steps in a truly simultaneous way. Since parallelism is
basically expressed by logical conjunction, the model deadlocks as soon as racing
conditions occur: If one action or several actions executed by simultaneous tran-
sitions try to write different values to the same variable, say α = {(x, 5), (x, 6)},
this leads to a logical contradiction, such as x′ = 5 ∧ x′ = 6. As a consequence,
the transition relation predicate has no solution, and the system is blocked. As a
consequence, models containing racing conditions are not allowed.

In contrast to true parallelism, formalisms using interleaving semantics do not
block in presence of racing conditions: These semantics stipulate that no two events
– say e1 =def x := 5; , e2 =def x := 6; may happen simultaneously, but are always
causally related. So either e1 happens before e2 or vice versa, and you get the
result of the event that has been executed last. This paradigm corresponds to
quasi-parallel execution of events. It is only applicable if it can be assured that
events are atomic. This is not the case, for example, if assignments to wide integers
or floats are made, which need two memory bus transfers for one assignments: as
consequence, two “interleaved” assignments may lead to a result where the upper
word contains the value of the first assignment while the lower word contains the
value of the second assignment or the other way round. If these situations have
to be taken into account, it is better to use synchronous semantics and disallow
racing conditions, because the atomicity assumption of interleaving semantics is
not justified.

The transition relation specified above is non-compositional in the sense that it
is not just defined by the conjunction of local transition relations for isolated state
machines, but additional predicates specify the conditions when variables remain
unchanged. This is the price to pay for being allowed to use shared variables in
VL ∪O, which can be written to by more than one state machine.

41

Peleska

ONOFF
out = 1; x=0;

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[x>=100] /

out = 0;
[sw == 0]

I = { sw } O = { out } C = { x }

/ out = 0;

1

2

Fig. 14. Timed state machine s with clock instead of timer variable.

6.4 Clock Abstraction

In order to perform finite-state model checking of timed state machine properties
we introduce clock variables, applying the well-known abstraction techniques intro-
duced in Section 5. Given a timed state machine s with timers ti ∈ T and current
time t̂ the auxiliary variables

xi(t̂, ti) =def (t̂− ti), ti ∈ T

are called clock variables; let C denote the set of all these xi. Now we take AUX
to be the set of all these clock variables together with all original variables used in
s with exception of the timers, that is,

AUX =def C ∪ (V − T)

Let ∼ denote the equivalence relation induced by AUX according to the factori-
sation principle described in Section 5.2. Then, if K denotes the Kripke structure
associated with s, it is easy to see that K/∼ is bisimilar to K.

Example 6.4 The timed state machine shown in Fig. 13 and described in Exam-
ple 6.3 can be modelled with clocks instead of timer variables as shown in Fig. 14:
instead of timer variable t ∈ T we introduce a clock x. The reset(t) command is
transformed into a reset of the clock to zero. The elapsed(t,c) guard condition is
changed into a guard x ≥ c. The initial condition and transition relation for the
new model is easily derived from the original predicates shown in Example 6.3:

42

Peleska

S0/∼ = {s ∈ S/∼ | s |= I/∼}

I/∼ ≡ start(s) ∧ t̂ = 0 ∧ INV/∼

INV/∼ ≡ (start(s) ∨OFF ∨ON ∨ TIMEOUT) ∧

¬(start(s) ∧OFF) ∧ ¬(start(s) ∧ON) ∧ ¬(start(s) ∧ TIMEOUT)) ∧

¬(OFF ∧ON) ∧ ¬(OFF ∧ TIMEOUT) ∧ ¬(ON ∧ TIMEOUT) ∧
dt̂
dz = 1 ∧ dx

dz = 1

R/∼ ≡ INV/∼ ∧ INV/′∼ ∧ ((start(s) ∧ sw′ = sw ∧ x′ = x ∧ t̂′ = t̂ ∧ out′ = 0 ∧OFF′) ∨

(OFF ∧ sw = 0 ∧ t̂′ > t̂ ∧ out′ = out ∧ x′ = x+ t̂′ − t̂ ∧OFF′) ∨

(OFF ∧ sw = 1 ∧ sw′ = sw ∧ t̂′ = t̂ ∧ out′ = 1 ∧ x′ = x ∧ON′) ∨

(ON ∧ sw = 1 ∧ t̂′ > t̂ ∧ x′ = x+ t̂′ − t̂ ∧ x < 100 ∧ x′ ≤ 100 ∧ out′ = out ∧ x′ = x ∧ON′) ∨

(ON ∧ sw = 1 ∧ x ≥ 100 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ x′ = x ∧ TIMEOUT′) ∨

(ON ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ x′ = x ∧OFF′) ∨

(TIMEOUT ∧ sw = 1 ∧ t̂′ > t̂ ∧ x′ = x+ t̂′ − t̂ ∧ out′ = 0 ∧ TIMEOUT′) ∨

(TIMEOUT ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧OFF′))

Note that in the definition of R/∼ we could drop the conjuncts x′ = x + t̂′ − t̂

because this is already implied by dt̂
dz = 1∧ dx

dz = 1 which is part of the invariant. 2

43

Peleska

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press, 1999.

[3] J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley,Teubner, Stuttgart, 2 edition,
1987.

44

Peleska

A Structural Induction

In this section the principle of structural induction is introduced. The material is
taken from [3, pp. 8].

Definition A.1 [Inductive Definition of Sets] Let U be a set called universe and
B ⊆ U , called the base set. Let K a set of relations r ⊆ Un × U , where n ∈ N
depends on r. K is called the constructor set and each r ∈ K a constructor. A set
A ⊆ U is called inductively defined by B and K, if A is the smallest subset of U
satisfying

(i) B ⊆ A
(ii) If a1, . . . , an ∈ A and ((a1, . . . , an), a) ∈ r for some constructor r ∈ K, then

a ∈ A.

Theorem A.2 (Principle of Structural Induction) let A ⊆ U be inductively
defined by base set B and constructor set K, and P (x) a property on elements of
x ∈ A. Suppose that

(i) Induction basis. P (x) holds for all x ∈ B.

(ii) Induction step. If P (ai), i = 1, . . . , n holds for a1, . . . , an ∈ A (induction hy-
pothesis) and ((a1, . . . , an), a) ∈ r for some constructor r ∈ K, then P (a) also
holds.

Then P (a) holds for all a ∈ A. 2

45

	Reactive Systems, Behaviour, Specifications and Models
	Transition Systems and Kripke Structures
	Property Specification With Temporal Logic
	The Computation Tree Logic CTL*
	The Computation Tree Logic CTL
	The Computation Tree Logics ACTL* and ACTL

	CTL Model Checking
	Data Abstraction
	Equivalence Classes and Factorisation of Transition Systems
	Auxiliary Variables and Associated Equivalence Classes
	Data Abstraction on Kripke Structures
	Simulations
	Bisimulations
	Predicate Abstraction
	Predicate Approximation

	Real-Time Formalisms Based on State-Transition Systems and Shared Variables
	Abstract Syntax of Timed State Machines
	Semantics of Timed State Machines
	Discussion
	Clock Abstraction

	References
	Structural Induction

