Theory of Reactive Systems

Jan Peleska and Elena Vorobev^{1,2}

Centre of Information Technology University of Bremen Germany July 20, 2011

¹ Email:jp@tzi.de

² Email:elenav@tzi.de

1 Reactive Systems, Behaviour, Specifications and Models

Reactive Systems.

A reactive computer system continuously interacts with its operational environment: at any point in time, inputs from the environment to the system may occur, and the system should be ready to react on these inputs in an appropriate way. In general, the interaction takes place over a longer period of time (think of an aircraft engine controller that should certainly be operative during the duration of the flight); in many applications reactive computer systems are not supposed to terminate at all, because the services they deliver do not allow for any downtime (so-called 24/7 systems).

Behaviour, States and Events.

As a consequence, the *behaviour* of reactive systems cannot simply be described by initial and termination state, as would be possible for sequential terminating software programs. Instead, behaviour is characterised by (possibly infinite) sequences of state changes, called *computations*, *executions* or *runs* of the reactive system:

$$\langle s_0, s_1, s_2, \ldots \rangle$$

denotes a sequence of states s_i which have been observed as "snapshots" of the system state at several points in time during the execution. s_0 was the first observation, s_1 the second, and so on. Observe that computations represent a discretised view on the observable state components: it may be the case that between observations s_i and s_{i+1} additional state changes took place which we could not observe or were not interested in. In theory it would be possible for digital computer systems to observe every state change in a computation since the electronic circuits involved process data in discrete steps timed by the digital clock. For physical systems, however, when time-continuous observables are involved (e. g. change of temperature over time), computations can never capture the complete evolution of system states.

It is possible to abstract from concrete states in the description of reactive system behaviour by recording sequences of *events*. Events denote discrete points in time where certain properties of the state space become true. This abstraction may help to reduce the amount of information in computations to the data which is "relevant" in the application context.

Example 1.1 Suppose we observe temperature changes temp in a reactor at discrete points in time, and this results in a run

$$c =_{\operatorname{def}} \langle (t_0, \operatorname{temp}_0), (t_1, \operatorname{temp}_1), (t_2, \operatorname{temp}_2), \dots, (t_k, \operatorname{temp}_k), \dots \rangle$$

where the state observations consist of tuples (timestamp t_i , temperature temp_i observed at time t_i). Suppose further that we are interested in observing whether

a temperature threshold max is exceeded, and that the computation satisfies

$$\forall i \in \{0, \dots, k-1\} : \operatorname{temp}_i \leq \max$$

 $\forall i \in \{k, \dots, k+3\} : \operatorname{temp}_i > \max$
 $\forall i \in \{k+4, \dots\} : \operatorname{temp}_i \leq \max$

Introducing two events

- temp_ok
- temp_too_high

the computation can be abstracted to a trace of events

$$c_{event} =_{\mathsf{def}} \langle (t_0, \mathsf{temp_ok}), (t_k, \mathsf{temp_too_high}), (t_{k+4}, \mathsf{temp_ok}) \rangle$$

Specifications.

A specification is a description of the expected or admissible behaviours of a system. In general, first order predicate logic can be used to write specifications by giving logical characterisations of the state sequences or event sequences which are admissible in computations. Since these logical characterisations always deal with sequences of states or events, more elegant logical formalisms (temporal logic, trace logic) have been invented, in order to represent these logical formulas in a more elegant way. Some of these logical formalisms will be presented in the sections below.

Example 1.2 Suppose we require in Example 1.1 that the temperature threshold in the reactor should never be exceeded for longer than δ time units. This can be expressed by a formula referring to arbitrary computations

$$c =_{\text{def}} \langle (t_0, \text{temp}_0), (t_1, \text{temp}_1), (t_2, \text{temp}_2), \dots, \rangle$$

in the following way:

$$\forall c : \forall i \geq 0 : \text{temp}_i > max \Rightarrow (\exists j > 0 : \text{temp}_{i+j} \leq max \land t_{i+j} - t_i \leq \delta)$$

On the event abstraction level, consider arbitrary computations

$$c_{event} =_{def} \langle (t_0, e_0), (t_1, e_1), \ldots \rangle$$

Now the requirement can be expressed as

$$\forall c_{event} : \forall i \geq 0 : e_i = \text{temp_too_high} \Rightarrow (e_{i+1} = \text{temp_ok} \land t_{i+1} - t_i \leq \delta)$$

Models.

A *model* is a representation of the system from which all possible behaviours can be theoretically derived in a mechanical way by means of *simulations*.

Model Checking.

A procedure to investigate whether the possible behaviours of a model satisfy a given specification is called *model checking*, or, more specific, *property checking*.

Another variant of model checking investigates whether two given models produce the same computations (i. e., have the same behaviour). This technique is called *equivalence checking*.

A third variant checks whether the sets of computations associated with two models fulfil a more general relation than equality, as, for example, a subset relation. This variant is usually called *refinement checking*.

Exercise. 1. Fig. 1 shows a laboratory which is equipped with a laser and a door locking mechanism, both controlled by a controller component. When the laboratory is empty, the door is locked and the laser is switched on. Anyone who wants to enter the room has to push a button whereupon the controller switches the laser off and unlocks the door.

Right after being switched on the laser is in the state on which, by itself, changes to active after a certain period of time. The same applies to the states off and passive.

At any time, the door is either *open* or *closed*. After the door has been opened, it closes automatically. A counter counts how often the door has been opened or closed. It can be assumed that at any time at most one person has access to the open-request button and may enter the lab.

Assuming t, door, dcnt and laser being variables reflecting the point in time, the door state, the door counter and the laser state respectively, computations c are of the form $\langle (t_0, door_0, dcnt_0, laser_0), (t_1, door_1, dcnt_1, laser_1), \ldots \rangle$ with domains $D(t) = \mathbb{R}$, $D(door) = \{open, closed\}$, $D(dcnt) = \mathbb{N}$ and $D(laser) = \{on, active, off, passive\}$.

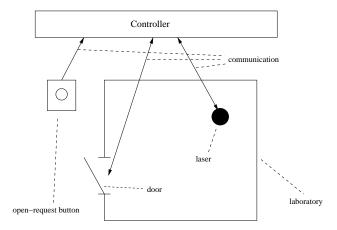


Fig. 1. Laboratory setup from Exercise 1

Peleska and Vorobev

- ${f 1.1}$ Find logical formulae to express the following textual requirements:
- a) In the initial state the door is *closed*, the counter is 0 and the laser is in the *passive* state.
- b) Whenever the laser is in the state on, it's subsequent state has to be active. The same applies to the states off and passive.
- c) The change of laser state from off to passive takes at most X time units.
- d) If the laser is not in the state *passive*, the room has to be empty and the door has to be locked.
- e) The laser has to be in the state *passive*, if the room is not empty or the door is open.

1.2 Define events e_0, \ldots, e_n abstracting concrete computations	c to ab	stract
computations c_E of the form $\langle (t_0, e_0), (t_1, e_1), \ldots \rangle$. Adapt the logical	formula	e from
part 1.1 to abstract computations over these events.		

2 Transition Systems and Kripke Structures

The operational semantics of specification formalisms for reactive systems, as well as of computer programs, can be described by means of state transition systems. For the verification of properties of specifications or programs it is useful to extend the notion of transition systems by adding information about the basic properties which are true in each state. This leads to the definition of Kripke structures. The definitions below follow closely [2, pp. 14] and [1].

Definition 2.1 A State Transition System is a triple $TS = (S, S_0, R)$, where

- S is the set of states,
- $S_0 \subseteq S$ is the set of *initial states*,
- $R \subseteq S \times S$ is the transition relation.

Definition 2.2 A Labelled Transition System is a tuple $LTS = (S, S_0, \Sigma, R)$, where

- S is the set of states,
- $S_0 \subseteq S$ is the set of *initial states*,
- Σ is a set of *labels*, also called *events*,
- $R \subseteq S \times \Sigma \times S$ is the transition relation.

State transition systems are the preferred mathematical models to reason about state-based reactive systems, where communication takes place according to the shared variable paradigm. Labelled transition systems are the preferred model for reasoning on the event abstraction level. In the sections to follow we focus on state-based systems represented by state transition systems.

An atomic proposition is a logical proposition which cannot be divided further. Examples are a, x < y, but $x < y \wedge a$ is not considered as atomic because it represents the conjunction of a and x < y.

Definition 2.3 A Kripke Structure $K = (S, S_0, R, L)$ is a state transition system (S, S_0, R) augmented by a set AP of atomic propositions and a function

$$L: S \to 2^{AP}$$

mapping each state s of K to the set of atomic propositions valid in s. Furthermore it is required that the transition relation R is total in the sense that $\forall s \in S : \exists s' \in S : (s, s') \in R$.

If a state transition system contains terminal states, that is, states $s \in S$ satisfying $\forall s' \in S : (s, s') \notin R$, we can always extend R to a total transition relation \overline{R} suitable for Kripke structures by adding self loops to the terminal states in R:

$$\overline{R} = R \cup \{(s,s) \mid s \in S \land (\forall s' \in S : (s,s') \notin R)\}$$

State Space of Valuation Functions.

Next, we specialise on specification formalisms where the state space can always be defined by a vector of variables, together with their current values. In this context, a state is a mapping from symbols to current values. The mapping is partial, since the visibility of symbols may depend on scope rules. Let $V = \{x_0, x_1, \ldots\}$ be the set of all variable symbols associated with a specification, a model or a program. For each variable $x \in V$, let D_x denote its type (also called domain) comprising all possible values x can assume. We require a special element \top to be contained in each D_x , denoting an undefined variable state, such as an arbitrary input value or a stack variable which is still in an undefined state since no assignments to the variable have been performed so far. Let $D = \bigcup_{x \in V} D_x$ the union over all domains of variables from V. A valuation is a partial mapping

$$s:V \not\to D$$

which is compatible with the symbol types D_x in the sense that

$$\forall x \in \text{dom } s : s(x) \in D_x$$

Expression Valuation.

Given a valuation function $s: V \not\to D$ and a well-typed expression $e(x_1, \ldots, x_n)$ with free variables $x_i \in V$ we can *evaluate* e *in state* s by inserting the valuation of each x_i in state s into the expression. This extends the valuation function on variable symbols to well-typed expressions in a natural way:

$$s(e(x_1,\ldots,x_n)) =_{\text{def}} e(s(x_1),\ldots,s(x_n))$$

If $e(x_1, ..., x_n)$ is a Boolean expression and $s(e(x_1, ..., x_n)) =$ true then we say that $e(x_1, ..., x_n)$ holds in state s and write

$$s \models e(x_1, \dots, x_n)$$

Kripke Structures With State Spaces of Valuation Functions.

In the transition systems and Kripke structures to consider from now on the state space will always be represented by a set of valuation functions. This has a consequence on the atomic propositions to consider: All information that can be obtained from the fact that a system is in state $s: V \nrightarrow D$ is a consequence from the atomic propositions specifying exactly the valuation of each variable in the current state s, that is,

$$x_0 = s(x_0), x_1 = s(x_1), \dots$$
 (*)

Every other atomic proposition, say, $x_0 < x_1$ can be derived from the propositions (*): For example, $x_0 < x_1$ holds in state s if and only if $s(x_0) < s(x_1)$. For the moment, our set of atomic propositions will therefore be

$$AP = \{x = d \mid x \in V \land d \in D_x\} \tag{**}$$

Observe, however, that we will also consider other atomic propositions later on in order to avoid the state explosion that would occur if we enumerated AP from (**) for variables x with large data types, such as 32 and 64 bit integers and floats.

The special nature of the atomic propositions from AP in (**) implies that the mapping L can be easily determined for a Kripke structure as soon as their state space, initial state and transition relation is known: Considering (*) and (**), the atomic propositions valid in some state s are obviously

$$L(s) = \{x = d \mid x \in V \land s(x) = d\}$$

First Order Representations.

Let ϕ a first order logical formula, x a free variable in ϕ and ε an expression. Then $\phi[\varepsilon/x]$ denotes the formula which results from replacement of every free occurrence of x by ε . This term replacement can be applied more than once, which is written $\phi[\varepsilon_0/x_0, \varepsilon_1/x_1, \ldots]$; in which case the replacements are applied from left to right.

Let $s \in S$ a valuation and ϕ a (first order) logical formula with free variables from $V = \{x_0, x_1, \ldots\}$. We say that ϕ holds in state s and write $s \models \phi$, if the formula evaluates to true when replacing every free variable x occurring in ϕ by its valuation s(x); that is, $\phi[s(x_0)/x_0, s(x_1)/x_1, \ldots]$ is a tautology.

Based on the replacement concept, the initial state S_0 of a transition system based on variables and valuations can be specified by means of a first order logical formula I, if S_0 coincides with the set of all valuations where I holds, that is,

$$S_0 = \{s : V \not\rightarrow D \mid s \models I\}$$

Conversely, given S_0 and assuming that S_0 and D are finite, we can always construct such an I by setting

$$I \equiv \bigvee_{s \in S_0} (\bigwedge_{x \in V} x = s(x))$$

If the finiteness assumptions do not hold we can write

$$I \equiv \exists s \in S_0 : \forall x \in V : x = s(x)$$

In analogy, we can specify transition relations by means of first order formulas. In contrast to the initial state formula, however, we now have to consider pre- and post states. Therefore we consider formulas with free variables in V and $V' = \{x' \mid x \in V\}$ and associate unprimed variable symbols x with the prestate and primed variables with the poststate. Let s, s' two valuations and ψ a formula with free variables in V, V'. We say that ψ holds in (s, s') and write $(s, s') \models \psi$ if

$$\psi[s(x_0)/x_0, s(x_1)/x_1, \dots, s'(x_0)/x'_0, s'(x_1)/x'_1, \dots]$$

evaluates to true. With this notation a formula T with free variables in V, V' specifies a transition relation $R \subseteq S \times S$ by setting

$$R = \{(s, s') \in S \times S \mid (s, s') \models T\}$$

Conversely, given transition relation R we can construct a suitable formula T by

$$T \equiv \exists (s, s') \in R : \forall x \in V, x' \in V' : x = s(x) \land x' = s'(x)$$

Example 2.4 Consider two parallel processes P0, P1 acting on global variables s, c0, c1. Suppose the processes are executed on a single-core CPU such that each assignment is atomic but the both processes may have to release the CPU between two arbitrary statements.

```
int s = 0;
   int c0 = 0;
   int c1 = 0;
       P0 {
                                            P1 {
1
                                     1
        do { s = 0;
                                             do { s = 1;
2
         while (s == 0);
                                              while (s == 1);
                                     3
3
         c0 = 1; // process data
                                              c1 = 1; // process data
                                     4
4
         c0 = 0;
                                              c1 = 0;
                                     5
5
        } while (1);
                                             } while (1);
6
                                            }
7
```

To capture the complete state space, we add two program counters p_0, p_1 in range $\{1, 2, \ldots, 7\}$ indicating the next statement to be executed by P0, P1, respectively. The semantics of this little parallel program is specified as follows: The symbol set of the parallel system is $V = \{p_0, p_1, s, c_0, c_1\}$ with $p_0, p_1 \in \{1, 2, \ldots, 7\}, c_0, c_1, s \in \mathbb{B}$. The initial state is captured by the formula

$$I \equiv p_0 = 1 \land p_1 = 1 \land s = 0 \land c_0 = 0 \land c_1 = 0$$

The transition relation is specified by the formula

$$T \equiv (p_0 = 1 \land p'_0 = 2 \land p'_1 = p_1 \land s' = s \land c'_0 = c_0 \land c'_1 = c_1) \lor (p_0 = 2 \land p'_0 = 3 \land p'_1 = p_1 \land s' = 0 \land c'_0 = c_0 \land c'_1 = c_1) \lor (p_0 = 3 \land s = 0 \land p'_0 = 3 \land p'_1 = p_1 \land s' = s \land c'_0 = c_0 \land c'_1 = c_1) \lor (p_0 = 3 \land s \neq 0 \land p'_0 = 4 \land p'_1 = p_1 \land s' = s \land c'_0 = c_0 \land c'_1 = c_1) \lor (p_0 = 4 \land p'_0 = 5 \land p'_1 = p_1 \land s' = s \land c'_0 = 1 \land c'_1 = c_1) \lor (p_0 = 5 \land p'_0 = 6 \land p'_1 = p_1 \land s' = s \land c'_0 = 0 \land c'_1 = c_1) \lor (p_0 = 6 \land p'_0 = 2 \land p'_1 = p_1 \land s' = s \land c'_0 = 0 \land c'_1 = c_1) \lor (p_1 = 1 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 2 \land p'_1 = 3 \land p'_0 = p_0 \land s' = 1 \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 3 \land s = 1 \land p'_1 = 3 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 4 \land p'_1 = 5 \land p'_0 = p_0 \land s' = s \land c'_1 = 1 \land c'_0 = c_0) \lor (p_1 = 5 \land p'_1 = 6 \land p'_0 = p_0 \land s' = s \land c'_1 = 0 \land c'_0 = c_0) \lor (p_1 = 6 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = 0 \land c'_0 = c_0) \lor (p_1 = 6 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 6 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 6 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0) \lor (p_1 = 6 \land p'_1 = 2 \land p'_0 = p_0 \land s' = s \land c'_1 = c_1 \land c'_0 = c_0)$$

For representing the associated Kripke structure we use the encoding $\pi_0, \pi_1, \sigma, \zeta_0, \zeta_1$ for a Kripke state s where $L(s) = \{p_0 = \pi_0, p_1 = \pi_1, s = \sigma, c_0 = \zeta_0, c_1 = \zeta_1\}$. For unfolding the Kripke structure from the specification of the transition system we proceed as follows:

- (i) Construct the initial states: This is done by finding all solutions $s: V \not\to D$ of the formula I describing the initial state. In our example this is trivial since I specifies exactly one admissible initial value for each variable, so S_0 consists just of the one valuation $s_0 = \{p_0 \mapsto 1, p_1 \mapsto 1, s \mapsto 0, c_0 \mapsto 0, c_1 \mapsto 0\}$. In the general case the set of all valuations s with $s \models I$ has to be constructed. Each initial state s is labelled as described above by $L(s) = \{x_0 = s(x_0), x_1 = s(x_1), \ldots\}$. If the number of variables involved and their data ranges are small this can be done using truth tables for I. For more complex applications more sophisticated methods will be introduced later on.
- (ii) **Expand from the initial states:** Starting with each initial state, expand the Kripke structure by applying the transition relation. This process stops as soon as the expansions of all states generated so far have already been generated before, that is, as soon as the expansion process reaches a *fixed point*. More formally, given a state s which has already been reached by the expansion, we need to construct all solutions of $T[s(x_0)/x_0, s(x_1)/x_1, \ldots]$, that is T, with all prestate variables replaced by their actual values in s. Every solution s' gives rise to a new Kripke state with $L(s') = \{x_0 = s'(x_0), x_1 = s'(x_1), \ldots\}$.

Lets expand our initial state 1,1,0,0,0: Replacing the prestate variables in T with these values results in formula

$$T[1/p_0, 1/p_1, 0/s, 0/c_0, 0/c_1] \equiv$$

$$(p'_0 = 2 \land p'_1 = 1 \land s' = 0 \land c'_0 = 0 \land c'_1 = 0) \lor$$

$$(p'_1 = 2 \land p'_0 = 1 \land s' = 0 \land c'_1 = 0 \land c'_0 = 0)$$

so initial state 1,1,0,0,0 expands to 2,1,0,0,0 and 1,2,0,0,0. The resulting complete Kripke structure for the two interacting processes in this example is shown in Fig. 3. Observe that we can also represent the Kripke structure as an infinite tree which is called the *computation tree*.

Unwinding the Computation Tree.

The following algorithm formalises an unwinding procedure for a finite section of the computation tree associated with a Kripke structure, as illustrated in Example 2.4. Since a state s may occur in more than one place of the computation tree we use tree nodes $N = S \times 2^{AP} \times \mathbb{N}$: $(s, P, n) \in N$ denotes a state $s \in S$ which is inserted as a tree node at level n and has valid atomic propositions P = L(s). The computation tree to be constructed is a structure $TC = (N, \rho, \text{succ}, \text{pred})$ with

- $\rho \in N$ the root of the tree
- succ : $N \to \mathbb{P}(N)$ the successor function mapping each tree node to the set of its children. If $\operatorname{succ}(z) = \emptyset$ then z is called a *leaf* of the tree.
- pred : $N \to N \cup \{\bot\}$ the predecessor function mapping each node to its parent or in case of the root node to \bot

The algorithm is shown in Fig. 2. It unwinds the computation tree in a manner where a node becomes a leaf if it already occurs elsewhere on the same path on a higher level closer to the root. This representation is interesting in the context of test automation (to be discussed in later chapters) and suffices as a simplified model to prove or disprove assertions about the model with are of a certain restricted nature, to be discussed in the next section.

Exercise. 2. Consider the specification model of component C in Fig. 4. C inputs $x \in \{0,1,2\}$ and outputs to $y \in \{-1,0,1,2,\ldots\}$. Its behaviour is modelled in Statechart style: The rounded corner boxes denote *locations*, also called *control states*. Arrows between locations denote *transitions*; a transition arrow without source location marks the initial control state. Expressions in brackets (like [x > y]) specify guard conditions: The transition from location 10 to 11 can only be taken if x > y holds, which means, that the current valuation $s : V \not\to D$ results in s(x) > s(y). Expressions after a slash, like (y = -1); denote actions, that is, assignments to internal variables (if any) or outputs. An action is executed if its associated transition is taken.

Applying the informal description of the behaviour of C in Example 2.4, specify the initial state and the transition relation as logical formulas.

```
function computation Tree (in (S, S_0, R, L): KripkeStructure): (N, \rho, \text{succ}, \text{pred})
  n := 1; M := \{(s, L(s), n) \mid s \in S_0\}; N := \{\rho\} \cup M;
  succ := \{ \rho \mapsto M \} \cup \{ m \mapsto \emptyset \mid m \in M \};
  \operatorname{pred} := \{ m \mapsto \rho \mid m \in M \} \cup \{ \rho \mapsto \bot \}
  while M \neq \emptyset do
    M' := \emptyset;
    foreach (s, L(s), n) \in M do
       foreach s' \in S do
         if (s, s') \in R then
           N := N \cup \{(s', L(s'), n+1)\};
           succ(s, L(s), n) := succ(s, L(s), n) \cup \{(s', L(s'), n + 1)\};
           \operatorname{succ}(s', L(s'), n+1) := \varnothing;
           pred(s', L(s'), n + 1) := (s, L(s), n);
           if (\forall k \in \{1, ..., n\} : pr_1(\text{pred}^k(s', L(s'), n+1)) \neq s') then
              M' := M' \cup \{(s', L(s'), n+1)\}\
           endif
         endif
      enddo
    enddo
    M := M'
    n := n + 1;
  enddo
  computation Tree := (N, \rho, succ, pred);
end
```

Fig. 2. Algorithm for generating a finite portion of the computation tree associated with a Kripke Structure (S, S_0, R, L) .

Exercise. 3. Following the algorithm described in Fig. 2, draw the initial part of the computation tree associated with the Kripke structure of C in Exercise 2. For the first 3 nodes in the tree, explain how they are derived from the transition relation. For this exercise assume N = 2.

Use the GraphViz tool (program dot) to visualise the computation tree. □

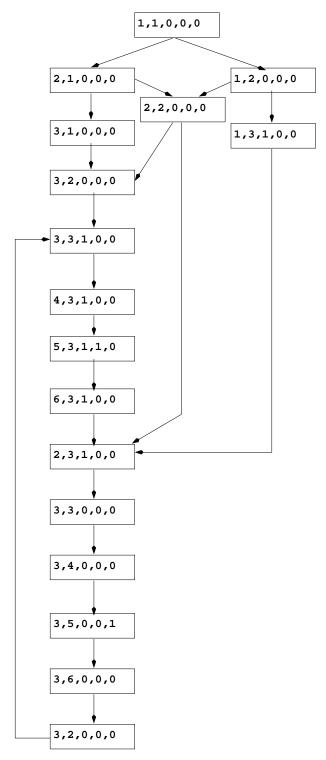
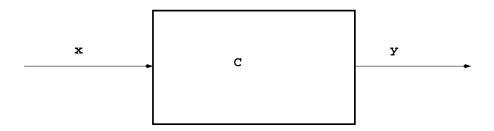


Fig. 3. Kripke structure for the processes $P_0 \parallel P_1$ from Example 2.4.



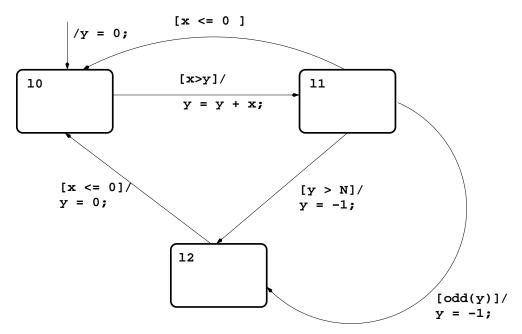


Fig. 4. Model of component C.

3 Property Specification With Temporal Logic

3.1 The Computation Tree Logic CTL^*

Operators.

 ${\rm CTL}^*$ formulas are based on the following operators:

- ullet The path quantifiers are
 - · **A** ("on every path")
 - **E** ("there exists a path")
- \bullet The $temporal\ operators$ are
 - · X ("next time")
 - · **G** ("globally" or "always")

- · **F** ("eventually" or "finally")
- · U ("until")
- · R ("release")

Apart from these new operators the conventional Boolean operators can be used, as will be specified in the syntax definition below.

Syntax of CTL* formulas.

CTL* distinguishes between

- state formulas which refer to properties of a specific Kripke state
- path formulas which specify properties of a path in the computation tree.

State and path formulas refer recursively to each other. The set of all valid CTL* formulas is given by the *state* formulas generated according to the following inductive rules:

- (i) Every atomic proposition $p \in AP$ is a state formula.
- (ii) If f and g are state formulas then $\neg f, f \land g, f \lor g$ are state formulas.
- (iii) If f is a path formula then $\mathbf{E} f, \mathbf{A} f$ are state formulas.

The path formulas are defined according to the following rules:

- (iv) Every state formula is also a path formula.
- (v) If f and g are path formulas, then $\neg f, f \land g, f \lor g$ are path formulas.
- (vi) If f and g are path formulas, then \mathbf{X} f, \mathbf{F} f, \mathbf{G} f, f \mathbf{U} g, f \mathbf{R} g are path formulas.

More formally, we can write these syntax rules in EBNF notation as follows, where $p \in AP$, ϕ denotes state formulas and ψ denotes path formulas

$$\begin{split} & \text{CTL*-formula} ::= \phi \\ & \phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \mathbf{E} \ \psi \mid \mathbf{A} \ \psi \\ & \psi ::= \phi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid \mathbf{X} \ \psi \mid \mathbf{F} \ \psi \mid \mathbf{G} \ \psi \mid \psi \ \mathbf{U} \ \psi \mid \psi \ \mathbf{R} \ \psi \end{split}$$

Semantics of CTL* formulas.

The semantics of CTL* formulas is explained using a Kripke structure M, specific states s of M and paths π through the computation tree of M. We write

$$M, s \models \phi \ (\phi \text{ a state formula})$$

to express that ϕ holds in state s of M. We write

$$M, \pi \models \psi(\psi \text{ a path formula})$$

to express that ψ holds along path π through M. For CTL* formulas ϕ we say ϕ holds in the Kripke model M and write

$$M \models \phi$$

```
\begin{array}{lll} M,s \vDash p & \equiv p \in L(s) \\ M,s \vDash \neg \phi & \equiv M,s \nvDash \phi \\ M,s \vDash \phi_1 \lor \phi_2 \equiv M,s \vDash \phi_1 \text{ or } M,s \vDash \phi_2 \\ M,s \vDash \phi_1 \land \phi_2 \equiv M,s \vDash \phi_1 \text{ and } M,s \vDash \phi_2 \\ M,s \vDash \mathbf{E} \ \psi & \equiv \text{ there is a path } \pi \text{ from } s \text{ such that } M,\pi \vDash \psi \\ M,s \vDash \mathbf{A} \ \psi & \equiv \text{ on every path } \pi \text{ from } s \text{ holds } M,\pi \vDash \psi \\ M,\pi \vDash \phi & \equiv M,\pi(0) \vDash \phi \\ M,\pi \vDash \neg \psi & \equiv M,\pi \nvDash \psi \\ M,\pi \vDash \psi_1 \lor \psi_2 \equiv M,\pi \vDash \psi_1 \text{ or } M,\pi \vDash \psi_2 \\ M,\pi \vDash \mathbf{V} \psi_2 \equiv M,\pi \vDash \psi_1 \text{ and } M,\pi \vDash \psi_2 \\ M,\pi \vDash \mathbf{X} \ \psi & \equiv M,\pi^1 \vDash \psi \\ M,\pi \vDash \mathbf{F} \ \psi & \equiv \text{ there exists } k \geq 0 \text{ such that } M,\pi^k \vDash \psi \\ M,\pi \vDash \mathbf{G} \ \psi & \equiv \text{ For all } k \geq 0 \ M,\pi^k \vDash \psi \\ M,\pi \vDash \psi_1 \mathbf{U} \psi_2 \equiv \text{ there exists } k \geq 0 \text{ such that } M,\pi^k \vDash \psi_2 \text{ and for all } 0 \leq j < k \ M,\pi^j \vDash \psi_1 \\ M,\pi \vDash \psi_1 \mathbf{R} \psi_2 \equiv \text{ for all } j \geq 0 \text{ holds: if } M,\pi^i \nvDash \psi_1 \text{ for every } i < j \text{ then } M,\pi^j \vDash \psi_2 \end{array}
```

Fig. 5. Semantics of CTL^* formulas.

if and only if $\forall s_0 \in S_0 : M, s_0 \models \phi$. For paths $\pi = s_0 s_1 s_2 \dots \pi(i)$ denotes the *i*th element s_i of π , and $\pi^i = s_i s_{i+1} \dots$ the *i*th suffix of π .

The inductive definition of \models is given in Fig. 5, where p denotes atomic propositions from AP, ϕ , ϕ_i denote state formulas and ψ , ψ_i denote path formulas:

Exercise. 4. Using the syntax rules of CTL* formulas and a syntax tree representation, prove or disprove that the following formulas conform to the CTL*-syntax $(a, b, c \in AP)$:

- (i) $\mathbf{AG}(\mathbf{XF}a \wedge \neg (b\mathbf{UG}c))$
- (ii) $\mathbf{AXG} \neg a \wedge \mathbf{EFG}(a \vee \mathbf{A}(b\mathbf{U}a))$

Exercise. 5. Using the Kripke structure displayed in Fig. 3 prove or disprove the following CTL*-assertions, using the semantic definition described in Fig. 5 in a step-by step manner. For each of the formulas, give a textual interpretation of their meaning.

- (i) $\mathbf{AG} \neg (c_0 \wedge c_1)$
- (ii) $\mathbf{A}(\mathbf{F}c_0 \wedge \mathbf{G}(c_0 \Rightarrow \mathbf{F}(c_1 \wedge \mathbf{F}c_0)))$

Justify why the first assertion could be proved on the finite representation of the Kripke structure's computation tree as explained in algorithm 2 while this is not possible for the second assertion.

3.2 The Computation Tree Logic CTL

A frequently used subset of CTL* is called CTL. It is defined by the following restricted syntactic rule (CTL.vi) for the path formulas (the other rules (i), (ii), (iii), (iv), (v) for CTL* syntax apply in the same way to CTL):

(CTL.vi) If f and g are state formulas then \mathbf{X} f, \mathbf{F} f, \mathbf{G} f, f \mathbf{U} g, f \mathbf{R} g are path formulas. More formally, the CTL syntax is defined by (p denotes atomic propositions from AP)

CTL-formula ::=
$$\phi$$

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \mathbf{E} \ \psi \mid \mathbf{A} \ \psi$$

$$\psi ::= \phi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid \mathbf{X} \ \phi \mid \mathbf{F} \ \phi \mid \mathbf{G} \ \phi \mid \phi \ \mathbf{U} \ \phi \mid \phi \ \mathbf{R} \ \phi$$

As a consequence, the temporal operators $\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}, \mathbf{R}$ can never be prefixed by another temporal operator in CTL. Only pairs consisting of path quantifier and temporal operator can occur in a row.

Example 3.1 The CTL* formula $\mathbf{A}(\mathbf{FG}f)$ (On every path, f will finally hold in all states) has no equivalent in CTL.

Theorem 3.2 Every CTL formula can be expressed by means of the operators $\neg, \lor, \mathbf{EX}, \mathbf{EU}, \mathbf{EG}$.

Proof. Obviously $\psi_1 \wedge \psi_2$ can be expressed as $\neg(\neg \psi_1 \vee \neg \psi_2)$. The theorem now follows from the fact that the following equivalences hold for all CTL path formulas

 ψ, ψ_1, ψ_2 :

1.
$$\mathbf{AX}\psi \equiv \neg \mathbf{EX}(\neg \psi)$$

2.
$$\mathbf{EF}\psi \equiv \mathbf{E}(\mathsf{true}\mathbf{U}\psi)$$

3.
$$\mathbf{AG}\psi \equiv \neg \mathbf{EF}(\neg \psi)$$

4.
$$\mathbf{AF}\psi \equiv \neg \mathbf{EG}(\neg \psi)$$

5.
$$\mathbf{A}(\psi_1 \mathbf{U} \psi_2) \equiv \neg \mathbf{E}(\neg \psi_2 \mathbf{U}(\neg \psi_1 \wedge \neg \psi_2)) \wedge \neg \mathbf{E} \mathbf{G} \neg \psi_2$$

6.
$$\mathbf{A}(\psi_1 \mathbf{R} \psi_2) \equiv \neg \mathbf{E}(\neg \psi_1 \mathbf{U} \neg \psi_2)$$

7.
$$\mathbf{E}(\psi_1 \mathbf{R} \psi_2) \equiv \neg \mathbf{A}(\neg \psi_1 \mathbf{U} \neg \psi_2)$$

8.
$$\mathbf{E}\phi \equiv \mathbf{E}(\mathtt{false}\mathbf{U}\phi)$$
 if ϕ does not contain $\mathbf{E}, \mathbf{A}, \mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}, \mathbf{R}$

9.
$$\mathbf{A}\phi \equiv \neg \mathbf{E}(\mathtt{false}\mathbf{U}\neg \phi)$$
 if ϕ does not contain $\mathbf{E}, \mathbf{A}, \mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}, \mathbf{R}$

The proof of these equivalences is performed using the semantic rules given in Fig. 5, to be performed by the reader in Exercise 6. \Box

Exercise. 6. Prove the 9 semantic equivalences used in the proof of Theorem 3.2.

3.3 The Computation Tree Logics ACTL* and ACTL

If we restrict CTL* formulas to universal quantification only, the resulting computation tree logic is called ACTL*. More precisely, ACTL* only admits CTL* formulas satisfying

- The formula is in *positive normal form*, that is, the negation operator \neg is only applied to atomic propositions.
- The only occurring path quantifier is **A**.

The corresponding restriction of CTL formulas to universal quantification is called ACTL.

Example 3.3 AFAXa is an ACTL formula, but $\mathbf{AGEF}a$ is not in ACTL*, since its \mathbf{E} -free representation $\mathbf{AG} \neg \mathbf{AG} \neg a$ is not in positive normal form.

In Section 5.4 we will prove a theorem about simulation relations between Kripke structures, and the properties that may be transferred from an abstract Kripke structure to its associated concrete one. It will turn out that a sufficient condition for this implication from abstract to concrete level is for the formula to be in the subset of ACTL* or ACTL, respectively.

4 CTL Model Checking

Model checking distinguishes between

- Equivalence checking. Two models (these are usually given in state transition system or labelled transition system representation) are compared with respect to semantic equivalence.
- Refinement checking. Two models are compared by means of a (usually transitive) relation which is weaker than equivalence.
- Property checking. A model is checked with respect to an (implicit) specification: The specification is given by a logical formula stating some desired property of the model. The model is usually represented as a transition system or as a Kripke structure $K = (S, S_0, R, L)$. The specification is most frequently expressed by a temporal logic formula ϕ ; an alternative specification formalisms is trace logic.

In the general case we wish to identify all states $s \in S$ where ϕ holds, i. e., $s \models \phi$. In most practical applications the objective is to prove that ϕ holds in every initial state $s \in S_0$ and in every state which is reachable from some initial state by n-fold application of the transition relation R; this is written $K \models \phi$.

In this section we investigate property checking for Kripke structures against CTL formulas. The technique which is introduced here is called *explicit model checking* because it requires to represent the Kripke structure's state space in an explicit way, so that all the necessary atomic propositions of the form $x = \nu$ can be directly derived from each state's representation. This is the oldest form of model checking which is only applicable if state spaces are sufficiently small to be enumerated explicitly.

The basic idea of the property checking algorithm.

The property checking algorithm introduced formally below is based on the following concept:

- The CTL specification formula is decomposed into its (binary) syntax tree.
- Starting at the leaves of the syntax tree (the leaves represent atomic propositions) the algorithm processes a sequence of sub-formulas ϕ_i in bottom-up manner. This is implemented by means of a recursive in-order traversal of the syntax tree.
- The goal of each processing step is to annotate all states s statisfying $s \models \phi_i$ with the new sub-formula ϕ_i . To this end, a labelling function $L_{\phi}: S \to CTL$ is used.
- The algorithm stops when the last formula ϕ_i having been processed coincides with the specification ϕ .
- The result of the algorithm is the set $S_{\phi} =_{\text{def}} \{ s \in S \mid \phi \in L_{\phi}(s) \}.$
- The Kripke model (S, S_0, R, L) satisfies ϕ if its initial states are part of S_{ϕ} ,

```
function checkCTL(in (S, S_0, R, L): KripkeStructure; in \phi: CTL): \mathbb{P}(S) begin label: S \to 2^{\text{CTL}}; label:= \{s \mapsto \varnothing \mid s \in S\}; calcLabel((S, S_0, R, L), \phi, \text{label}); checkCTL:=\{s \in S \mid \phi \in \text{label}(s)\}; end
```

Fig. 6. Main algorithm for CTL property checking against Kripke structures.

that is,

$$(S, S_0, R, L) \models \phi \equiv S_0 \subseteq \{s \in S \mid \phi \in L_\phi(s)\}\$$

Syntax tree representation of CTL formulas.

From Section 3.2 we know that every CTL formula can be represented by means of the operators \neg , \lor , **EX**, **EU**, **EG** alone. The binary syntax tree representation of such a formula can be defined recursively using the tree notation

- ε : empty tree
- $T(t_0, n, t_1)$: tree with root n and left sub-tree t_0 and right sub-tree t_1 .

The recursive syntax tree definition $t(\phi)$ for a given CTL formula ϕ is as follows:

```
(i) If \phi \in AP then t(\phi) = T(\varepsilon, \phi, \varepsilon).
```

- (ii) If $\phi = \neg \phi_1$ then $t(\phi) = T(\varepsilon, \neg, t(\phi_1))$.
- (iii) If $\phi = \phi_0 \vee \phi_1$ then $t(\phi) = T(t(\phi_0), \vee, t(\phi_1))$.
- (iv) If $\phi = \mathbf{E} \mathbf{X} \phi_1$ then $t(\phi) = T(\varepsilon, \mathbf{E} \mathbf{X}, t(\phi_1))$.
- (v) If $\phi = \mathbf{E}(\phi_0 \mathbf{U} \phi_1)$ then $t(\phi) = T(t(\phi_0), \mathbf{E} \mathbf{U}, t(\phi_1))^{-3}$.
- (vi) If $\phi = \mathbf{E}\mathbf{G}\phi_1$ then $t(\phi) = T(\varepsilon, \mathbf{E}\mathbf{G}, t(\phi_1))$.

Given a tree representation $t(\phi)$ of a formula ϕ , its leaves (i. e. its atomic propositions) can be extracted by means of the function leaves: Tree $\to 2^{AP}$ by means of the following recursive definition:

- (i) leaves $(T(\varepsilon, \phi, \varepsilon)) = {\phi}$
- (ii) leaves $(T(\varepsilon, \neg, t(\phi_1))) = \text{leaves}(t(\phi_1))$
- (iii) leaves $(T(t(\phi_0), \vee, t(\phi_1))) = \text{leaves}(t(\phi_0)) \cup \text{leaves}(t(\phi_1))$
- (iv) leaves $(T(\varepsilon, \mathbf{EX}, t(\phi_1))) = \text{leaves}(t(\phi_1))$
- (v) leaves $(T(t(\phi_0), \mathbf{EU}, t(\phi_1))) = \text{leaves}(t(\phi_0)) \cup \text{leaves}(t(\phi_1))$
- (vi) leaves $(T(\varepsilon, \mathbf{EG}, t(\phi_1))) = \text{leaves}(t(\phi_1))$

³ We regard **EU** as a binary operator, so that formulas $\mathbf{E}(\phi_0\mathbf{U}\phi_1)$ could be equivalently written as $(\phi_0(\mathbf{EU})\phi_1)$. As a consequence its tree representation is $T(t(\phi_0),\mathbf{EU},t(\phi_1))$

```
procedure calcLabel(in (S, S_0, R, L) : KripkeStructure;
                             in \phi : CTL;
                             inout label : S \to 2^{\text{CTL}})
begin
  if \phi \in AP then
    for
each s \in S do
      if \phi \in L(s) then
         label(s) := label(s) \cup \{\phi\};
       endif
    enddo
  elseif t(\phi) = T(\varepsilon, \neg, t(\phi_1)) then
    calcLabel((S, S_0, R, L), \phi_1, label);
    for
each s \in S do
      if \phi_1 \not\in label(s) then
         label(s) := label(s) \cup \{\phi\};
       endif
    enddo
  elseif t(\phi) = T(t(\phi_0), \vee, t(\phi_1)) then
    calcLabel((S, S_0, R, L), \phi_0, label);
    calcLabel((S, S_0, R, L), \phi_1, label);
    foreach s \in S do
      if \phi_0 \in label(s) \vee \phi_1 \in label(s) then
         label(s) := label(s) \cup \{\phi\};
       endif
    enddo
  elseif t(\phi) = T(\varepsilon, \mathbf{EX}, t(\phi_1)) then
    calcLabel((S, S_0, R, L), \phi_1, label);
    for
each s \in S do
      if \exists s' \in S : R(s, s') \land \phi_1 \in label(s') then
         label(s) := label(s) \cup \{\phi\};
       endif
    enddo
  elseif t(\phi) = T(t(\phi_0), \mathbf{EU}, t(\phi_1)) then
    calcLabel((S, S_0, R, L), \phi_0, label); calcLabel((S, S_0, R, L), \phi_1, label);
    calcLabelEU((S, S_0, R, L), \phi_0, \phi_1, label);
  elseif t(\phi) = T(\varepsilon, \mathbf{EG}, t(\phi_1)) then
    calcLabel((S, S_0, R, L), \phi_1, label);
    calcLabelEG((S, S_0, R, L), \phi_1, label);
  endif
end
```

 ${\bf Fig.~7.~Label~calculation-syntax-driven~control~algorithm.}$

```
procedure calcLabelEU(in (S, S_0, R, L) : KripkeStructure;
                                     in \phi_0: CTL; in \phi_1: CTL;
                                     inout label: S \to 2^{\text{CTL}})
begin
  T := \langle s \in S \mid \phi_1 \in label(s) \rangle;
  foreach s \in T do label(s) := label(s) \cup \{\mathbf{E}(\phi_0 \mathbf{U} \phi_1)\};
  while T \neq \langle \rangle do
     s := hd(T);
    T := tail(T);
    foreach u \in \{v \in S \mid R(v,s)\} do
       if \mathbf{E}(\phi_0 \mathbf{U} \phi_1) \not\in label(u) \land \phi_0 \in label(u) then
          label(u) := label(u) \cup \{ \mathbf{E}(\phi_0 \mathbf{U} \phi_1) \};
          T := T \frown \langle u \rangle;
       endif
    enddo
  enddo
end
```

Fig. 8. Algorithm for labelling states with $\mathbf{E}(\phi_0 \mathbf{U} \phi_1)$ formulas.

```
procedure calcLabelEG(in (S, S_0, R, L) : KripkeStructure;
                                  in \phi_1: CTL;
                                  inout label: S \to 2^{\text{CTL}})
begin
  S' := \{ s \in S \mid \phi_1 \in label(s) \};
  SCC := \{C \mid C \text{ is a nontrivial SCC of } S'\}
  T := \langle s \mid \exists C \in SCC : s \in C \rangle;
  foreach s \in T do label(s) := label(s) \cup \{ \mathbf{EG} \phi_1 \};
  while T \neq \langle \rangle do
    s := hd(T);
    T := tail(T);
    foreach u \in \{v \in S' \mid R(v,s)\} do
       if \mathbf{EG}\phi_1 \not\in label(u) then
         label(u) := label(u) \cup \{ \mathbf{EG}\phi_1 \};
         T := T \frown \langle u \rangle;
       endif
    enddo
  enddo
end
```

Fig. 9. Algorithm for labelling states with $\mathbf{EG}\phi_1$ formulas.

5 Data Abstraction

This section deals with state space reduction by means of data abstraction.

5.1 Equivalence Classes and Factorisation of Transition Systems

Let $TS = (S, S_0, R)$ a transition system and $\sim \subseteq S \times S$ an equivalence relation on S, that is,

- $\forall s \in S : s \sim s \text{ (reflexivity)}$
- $\forall s, s' \in S : s \sim s' \Rightarrow s' \sim s \text{ (symmetry)}$
- $\forall s, s', s'' \in S : s \sim s' \land s' \sim s'' \Rightarrow s \sim s'' \text{ (transitivity)}$

Let $S/_{\sim}$ denote the set of equivalence classes; each class is written in the form $[s] \in S/_{\sim}$, $[s] =_{\text{def}} \{u \mid s \sim u\}$. An equivalence relation gives rise to a transition system factorised by \sim which is defined by

$$TS/_{\sim} =_{\text{def}} (S/_{\sim}, S_0/_{\sim}, R/_{\sim})$$

$$S_0/_{\sim} =_{\text{def}} \{ [s_0] \mid s_0 \in S_0 \}$$

$$R/_{\sim} =_{\text{def}} \{ ([s], [s']) \mid \exists u \in [s], u' \in [s'] : R(u, u') \}$$
(1)

5.2 Auxiliary Variables and Associated Equivalence Classes

Let us consider now again only state spaces S whose elements are variable valuations $s: V \not\to D, V = \{x_1, x_2, \ldots\}$. Let $AUX = \{a_1, a_2, \ldots\}$ a set of fresh variables such that $V \cap AUX = \emptyset$. Let $e_i(x_1^i, x_2^i, \ldots)$ expressions associated with each $a_i \in AUX$. For a fixed set of auxiliary variables a_i and expressions e_i , extend valuation functions by

$$s_e: V \cup AUX \not\rightarrow D$$

$$\operatorname{dom} s_e = \operatorname{dom} s \cup \{a_i \in AUX \mid x_1^i, x_2^i, \dots \in \operatorname{dom} s\}$$

$$s_e|_V = s \text{ that is, } \forall x \in V \cap \operatorname{dom} s_e: s_e(x) = s(x)$$

$$\forall a_i \in AUX \cap \operatorname{dom} s_e: s_e(a_i) = e_i(s(x_1^i), s(x_2^i), \dots)$$

Observe that the expressions $e_i(x_1^i, x_2^i, ...)$ induce a type D_{a_i} on the corresponding auxiliary variables a_i . We denote the transition system extended by the variables from AUX and the extended valuations s_e by $TS_e = (S_e, S_{0e}, R_e)$, where the transition relation is defined by

$$R_e =_{\text{def}} \{ (s_e, s_o') \mid (s_e|_V, s_o'|_V) \in R \}$$

A collection of auxiliary variables induces an equivalence relation \sim on $TS_e = (S_e, S_{oe}, R_e)$ by defining

$$\forall s, s' \in S : s \sim s' \equiv_{\text{def}} (\forall a \in AUX : s_e(a) = s'_e(a))$$

 $TS_e/_{\sim}$ is called the factorisation of TS by means of the data abstraction

$$a_i = e_i(x_1^i, x_2^i, \ldots), i = 1, 2, \ldots$$

Observe that, given a valuation $(s: V \not\to D) \in S$, its equivalence class [s] may also be regarded as a valuation function on the variables from AUX by setting

$$\forall a_i \in AUX : [s](a_i) =_{\text{def}} e_i(s(x_1), s(x_2), \ldots)$$

The definition of \sim guarantees that this valuation function is well-defined, since all members $s' \in [s]$ fulfil

$$\forall i: e_i(s(x_1), s(x_2), \ldots) = e_i(s'(x_1), s'(x_2), \ldots)$$

Lemma 5.1 Suppose that the initial state S_0 is characterised by first-order predicate \mathcal{I} with free variables in $V = \{x_1, x_2, \ldots\}$, and that the transition relation $R \subseteq S \times S$ is characterised by predicate \mathcal{R} with free variables in V and $V' = def\{x'_1, x'_2, \ldots\}$. Then the respective predicates for $TS_e/_{\sim}$ are given by

$$\mathcal{I}/_{\sim}(a_1, a_2, \dots) =_{def} \exists \xi_1, \xi_2, \dots : (\forall i : a_i = e_i(\xi_1, \xi_2, \dots)) \land \mathcal{I}[\xi_1/x_1, \xi_2/x_2, \dots]$$
 (2)

$$\mathcal{R}/_{\sim}(a_{1}, a_{2}, \dots, a'_{1}, a'_{2}, \dots) =_{def} \exists \xi_{1}, \xi_{2}, \dots, \xi'_{1}, \xi'_{2}, \dots :$$

$$\forall i : (a_{i} = e_{i}(\xi_{1}, \xi_{2}, \dots) \land a'_{i} = e_{i}(\xi'_{1}, \xi'_{2}, \dots)) \land$$

$$\mathcal{R}[\xi_{1}/x_{1}, \xi_{2}/x_{2}, \dots, \xi'_{1}/x'_{1}, \xi'_{2}/x'_{2}, \dots]$$
(3)

Proof. From (1) and the fact that \mathcal{I} characterises S_0 we conclude that

$$S_{0e}/_{\sim} = \{ [s_0] : AUX \not\to D \mid s_0 : V \cup AUX \not\to D \land \mathcal{I}[s_0(x_1)/x_1, s_0(x_2)/x_2, \ldots] \}$$

Therefore, in order to prove correctness of $\mathcal{I}/_{\sim}$, it has to be shown that

$$\overline{S} =_{\text{def}} \{ s_a : AUX \not\to D \mid \mathcal{I}/_{\sim} [s_a(a_1)/a_1, s_a(x_a)/a_2, \ldots] \} =$$

$$\{ s_a : AUX \not\to D \mid \exists \xi_1, \xi_2, \ldots : (\forall i : s_a(a_i) = e_i(\xi_1, \xi_2, \ldots)) \land \mathcal{I}[\xi_1/x_1, \xi_2/x_2, \ldots] \}$$

equals $S_{0e}/_{\sim}$.

We show first that $S_{0e}/_{\sim} \subseteq \overline{S}$: Let $[s_0] \in S_{0e}/_{\sim}$. Define $\xi_i =_{\text{def}} s_0(x_i), i = 1, 2, \ldots$ Then, because $\mathcal{I}[s_0(x_1)/x_1, s_0(x_2)/x_2, \ldots]$ holds, this implies $\mathcal{I}[\xi_1/x_1, \xi_2/x_2, \ldots]$. Furthermore, $[s_0](a_i) = e_i(s_0(x_1), s_0(x_2), \ldots)$ by definition of $[\cdot]$, so $(\forall i : a_i = e_i(\xi_1, \xi_2, \ldots))$. As a consequence, $\mathcal{I}/_{\sim}[[s_0](a_1)/a_1, [s_0](a_2)/a_2, \ldots]$ holds which shows that $[s_0] \in \overline{S}$.

Now we show $\overline{S} \subseteq S_{0e}/_{\sim}$: Let $s_a \in \overline{S}$, then there exist ξ_1, ξ_2, \ldots such that $(\forall i: s_a(a_i) = e_i(\xi_1, \xi_2, \ldots)) \wedge \mathcal{I}[\xi_1/x_1, \xi_2/x_2, \ldots]$. Now define a valuation $s_0: V \not\to D$ by $s_0(x_i) =_{\text{def}} \xi_i, i = 1, 2, \ldots$ This s_0 is contained in S_0 and therefore $[s_0] \in S_{0e}/_{\sim}$, since $\mathcal{I}[\xi_1/x_1, \xi_2/x_2, \ldots]$ and therefore $\mathcal{I}[s_0(x_1)/x_1, s_0(x_2)/x_2, \ldots]$

holds. Since $s_a(a_i) = e_i(\xi_1, \xi_2, \ldots) = e_i(s_0(x_1), s_0(x_2), \ldots)$, the construction of s_0 implies $s_a = [s_0]$, so $s_a \in S_{0e}/_{\sim}$, and this shows $\overline{S} \subseteq S_{0e}/_{\sim}$ and proves (2).

For proving (3), recall from (1) that the transition relation of the factorised transition system $TS_e/_{\sim}$ is defined by

$$R/_{\sim} =_{\text{def}} \{ ([s], [s']) \mid \exists u \in [s], u' \in [s'] : R(u, u') \}$$

We define

$$\overline{R} =_{\text{def}} \{ (s_a, s'_a) \mid \mathcal{R} /_{\sim} [s_a(a_1) / a_1, s_a(a_2) / a_2, \dots, s'_a(a_1) / a'_1, s'_a(a_2) / a_2, \dots] \}$$

and show that $R/_{\sim}$ equals \overline{R} .

To show that $R/_{\sim} \subseteq \overline{R}$, suppose that $([s], [s']) \in R/_{\sim}$. By definition of $[\cdot]$, $R/_{\sim}$ and \mathcal{R} there exists $u, u' : V \not\to D$ such that

$$\forall i: (e_i(s(x_1), s(x_2), \ldots) = e_i(u(x_1), u(x_2), \ldots) \land$$

$$e_i(s'(x_1), s'(x_2), \ldots) = e_i(u'(x_1), u'(x_2), \ldots)) \land$$

$$\mathcal{R}[u(x_1)/x_1, u(x_2)/x_2, \ldots, u'(x_1)/x_1', u'(x_2)/x_2', \ldots]$$

holds. Setting $\xi_i = u(x_i), \xi_i' = u'(x_i), i = 1, 2, \dots$ yields

$$\forall i: (a_i = e_i(\xi_1, \xi_2, \dots) \land a_i' = e_i(\xi_1', \xi_2', \dots)) \land \mathcal{R}[\xi_1/x_1, \xi_2/x_2, \dots, \xi_1'/x_1', \xi_2'/x_2', \dots]$$

and, since $e_i(s(x_1), s(x_2), \ldots)$ equals $e_i(\xi_1, \xi_2, \ldots)$ and $e_i(s'(x_1), s'(x_2), \ldots)$ equals $e_i(\xi'_1, \xi'_2, \ldots)$, this implies that

$$\mathcal{R}/_{\sim}[[s](a_1)/a_1, [s](a_2)/a_2, \dots, [s'](a_1)/a'_1, [s'](a_2)/a'_2, \dots]$$

holds. This proves $([s], [s']) \in \overline{R}$.

It remains to show that $\overline{R} \subseteq R/_{\sim}$. To this end, assume that $(s_a, s'_a) \in \overline{R}$. By definition of \overline{R} and $R/_{\sim}$ this implies the existence of $\xi_i, \xi'_i, i = 1, 2, \ldots$ such that

$$\forall i: (s_a(a_i) = e_i(\xi_1, \xi_2, \dots) \land s'_a(a'_i) = e_i(\xi'_1, \xi'_2, \dots)) \land \mathcal{R}[\xi_1/x_1, \xi_2/x_2, \dots, \xi'_1/x'_1, \xi'_2/x'_2, \dots]$$

Now define

$$s: V \nrightarrow D; s(x_i) \mapsto \xi_i, \quad s': V \nrightarrow D; s'(x_i) \mapsto \xi_i', i = 1, 2, \dots$$

Then $[s] = s_a$ and $[s'] = s'_a$ and $\mathcal{R}[s(x_1)/x_1, s(x_2)/x_2, \dots, s'(x_1)/x'_1, s'(x_2)/x'_2, \dots]$ by construction and this implies R(s, s') and finally yields $([s], [s']) \in R/_{\sim}$. This shows $(s_a, s'_a) \in R/_{\sim}$ and completes the proof.

5.3 Data Abstraction on Kripke Structures

Given a Kripke structure $K = (S, S_0, R, L)$ and a set AUX of auxiliary variables a_i with associated expressions $e_i(x_1^i, x_2^i, \ldots)$ we can extend K to a Kripke structure

 $K_e =_{\text{def}} (S_e, S_{oe}, R_e, L_e)$ by defining its set of atomic propositions and the labelling function as

$$AP_e =_{\text{def}} AP \cup AP_{AUX}$$

$$AP_{AUX} =_{\text{def}} \{ a_i = \alpha \mid a_i \in AUX \land \alpha \in D_{a_i} \}$$

$$L_e : S_e \to 2^{AP_e}$$

$$L_e(s) = L(s) \cup \{ a_i = e_i(s(x_1^i), s(x_2^i), \dots) \mid a_i \in AUX \}$$

If we now factorise K_e 's transition system (S_e, S_{oe}, R_e) by the equivalence relation \sim introduced by AUX then we can extend the abstracted transition system to a Kripke structure by "forgetting" about the original variables in V and considering only the propositions on abstraction variables of AUX. This is done in the obvious way by defining a labelling function

$$L_e/_{\sim}: S_e/_{\sim} \to 2^{AP_{AUX}}; [s] \mapsto \{a_i = e_i(s(x_1^i), s(x_2^i), \dots) \mid a_i \in AUX\}$$

Note that $L_e/_{\sim}$ is well-defined since all members of [s] induce the same valuations for all $a_i \in AUX$. As a consequence

$$K_e/_{\sim} = (S_e/_{\sim}, S_{0e}/_{\sim}, R_e/_{\sim}, L_e/_{\sim})$$

is a well-defined Kripke structure, and the explicit model checking algorithms introduced in Section 4 can be applied to $K_e/_{\sim}$, as long as we only consider CTL formulas φ over the auxiliary variables from AUX, without any reference to the variables from V. Such a formula would also be applicable to the unfactorised Kripke structure K_e . Therefore we would like to know when a formula φ proven to be valid in $K_e/_{\sim}$ is also valid in K_e .

Example 5.2 Consider the Kripke Structure depicted in Fig. 10, which is associated with a specification model of a traffic light controller. As is well known to every law-abiding citizen we always stop our cars on red *and* on yellow. Therefore, if we are only interested in knowing when cars are in a halt-state in front of the traffic light, it makes sense to introduce a Boolean auxiliary variable

$$stops =_{def} (tl = red \lor tl = yellow)$$

Factorisation against the equivalence relation introduced by **stops** leads to the abstracted Kripke structure shown in Fig. 11.

Now suppose we wish to prove that $\mathbf{EF}(\mathtt{tl} = \mathtt{green})$ holds for the Kripke structure of the original model in Fig. 10. The assertion can be readily expressed on abstract level as $\mathbf{EF}(\neg\mathtt{stops})$ which obviously holds on abstract level, since every path in Fig. 11 visits $(\mathtt{m1}, \neg\mathtt{stops})$. Similarly, the concrete condition $\mathbf{AF}(\mathtt{tl} = \mathtt{red} \lor \mathtt{tl} = \mathtt{yellow})$ can be expressed in an abstract way as $\mathbf{AFstops}$. It is easy to see that it holds on abstract level.

In these special cases, the assertions also hold on concrete level, but this is not always the case: On abstracted level we can also prove the formula **EG**(stops)

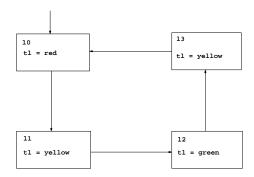


Fig. 10. Kripke structure of traffic light controller from Example 5.2.

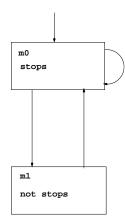


Fig. 11. Abstracted Kripke structure induced by auxiliary variable stops in Example 5.2.

which obviously does not hold in the concrete model with its concrete formula representation $\mathbf{EG}(\mathtt{tl} = \mathtt{red} \lor \mathtt{tl} = \mathtt{yellow})$. Conversely, the concrete model satisfies $\mathbf{AF}(\mathtt{tl} = \mathtt{green})$, while the corresponding formula $\mathbf{AF}(\neg\mathtt{stop})$ is not fulfilled on abstract level.

Exercise. 7. Consider the slightly modified specification model from Exercise 2, now shown in Fig. 12. Assume now that x and y have unbounded range $D_x = D_y = \mathbb{Z}$, so that explicit model checking becomes infeasible. Chose suitable abstraction variables and construct the corresponding factorisation of the model's Kripke structure such that the following assertion can be proved using the explicit CTL model checking algorithms on the abstracted Kripke structure:

$$\neg \mathbf{EF}(10 \land odd(y))$$

Give informal justifications for

- the completeness and correctness of your abstracted Kripke structure (since you do not want to enumerate the concrete (infinite!) Kripke structure of the model),
- the fact that the proof for the abstracted model implies that the assertion also holds for the concrete model.

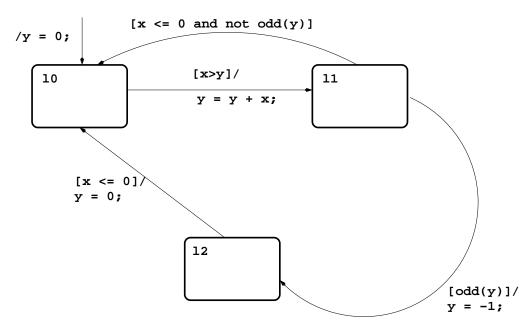


Fig. 12. Model for Exercise 7.

5.4 Simulations

In order to investigate the situations where assertions on auxiliary variables proven on abstract level also hold for the concrete level we introduce the concept of *simu*lations:

Definition 5.3 [Simulation] Given two Kripke structures $K = (S, S_0, R, L), K' = (S', S'_0, R', L')$ such that K refers to atomic propositions AP and K' refers to atomic propositions AP' and $AP' \subseteq AP$. The relation $H \subseteq S \times S'$ is called a *simulation*, if the following conditions hold for all $(s, s') \in H$:

- (i) $L(s) \cap AP' = L'(s')$
- (ii) $\forall s_1 \in S : R(s, s_1) \Rightarrow \exists s_1' \in S' : R'(s', s_1') \land H(s_1, s_1')$

We write $K \leq K'$ (K is simulated by K') if such a simulation H exists and

$$\forall s_0 \in S_0 : \exists s_0' \in S_0' : H(s_0, s_0')$$

Before exploiting the simulation concept in Theorem 5.7 below it is necessary to show that the equivalence relation \sim induced by auxiliary variables as introduced above establishes a simulation relation between original Kripke structure K_e and its factorisation $K_e/_{\sim}$:

Theorem 5.4 Given \sim , equivalence classes [s], AP_e , L_e , K_e , $K_e/_{\sim}$ as introduced in Section 5.3 above, define

$$H =_{def} \{(s, [s]) \mid s \in S_e\} \subseteq S_e \times S_e /_{\sim}$$

Then H is a simulation between K_e and $K_e/_{\sim}$ and $K_e \preccurlyeq K_e/\sim$ holds.

Proof. Let H be defined according to the precondition of the theorem and $s \in S_e$, so that $(s, [s]) \in H$. By the construction rules given in Section 5.3, the states of K_e are labelled with atomic propositions from $AP \cup AP_{AUX}$, and the states (i. e., equivalence classes) of $K_e/_{\sim}$ are labelled with atomic propositions from AP_{AUX} . As a consequence, the construction of the labelling functions L_e on K_e and $L_e/_{\sim}$ on $K_e/_{\sim}$ implies

$$L_e(s) \cap AP_{AUX} = \{a_i = e_i(s(x_1^i), s(x_2^i), \ldots) \mid a_i \in AUX\} = L_e/_{\sim}([s])$$

Therefore condition (i) of Definition 5.3 holds.

Now let $s_1 \in S_e$ such that $R(s, s_1)$. By construction of $R/_{\sim}$ in Section 5.1 this implies $R/_{\sim}([s], [s_1])$ and by construction of H this also implies $H(s_1, [s_1])$. Therefore condition (ii) of Definition 5.3 is also fulfilled.

Finally, we note that $\forall s_0 \in S_0 : H(s_0, [s_0])$ holds by construction of H, and $[s_0] \in S_{0e}/_{\sim}$ by construction of $K_e/_{\sim}$. As a consequence, $K_e \preceq K_e/\sim$, and this completes the proof.

Definition 5.5 Let $K \leq K'$ with simulation relation $H \subset S \times S'$ and H(s, s'). Suppose π is a path in K starting at s and π' a path starting at s' in K'. We say that π and π' correspond to each other if

$$\forall i \geq 0 : H(\pi(i), \pi'(i))$$

Lemma 5.6 Let $K \leq K'$ with simulation relation $H \subset S \times S'$ and H(s, s'). Then for every path π in K starting at s there is a corresponding path π' in K' starting at s'.

Proof. Since π is a path starting at s,

$$\pi(0) = s \wedge (\forall i > 0 : R(\pi(i), \pi(i+1)))$$

follows. Since $s = \pi(0)$ and H(s, s'), this implies $H(\pi(0), s')$. Applying condition (ii) of Definition 5.3 successively on $\pi(0), \pi(1), \pi(2), \ldots$ this yields the existence of states $\pi'(i) \in S', i \geq 0$, such that

$$\pi'(0) = s' \wedge (\forall i > 0 : R'(\pi'(i), \pi'(i+1)) \wedge H(\pi(i+1), \pi'(i+1))),$$

so π' is a path in K', and it corresponds to π by construction.

Theorem 5.7 Assume $K \leq K'$. Then for every $ACTL^*$ formula ϕ with atomic propositions in AP'

$$(K' \models \phi) \text{ implies } (K \models \phi)$$

Proof. Let ϕ an ACTL* formula as defined in Section 3.3. Suppose $K' \models \phi$, which is equivalent to $\forall s'_0 \in S'_0 : (K', s'_0) \models \phi$. We have to show that for any $s_0 \in S_0$, $(K, s_0) \models \phi$ holds. This is achieved by proving the more general fact that

$$\forall (s, s') \in H : ((K', s') \models \phi) \Rightarrow ((K, s) \models \phi) \tag{*}$$

which implies our original proof goal. The proof of (*) is performed by structural induction over the formula ϕ . Assume $(s, s') \in H$ and $(K', s') \models \phi$ for the rest of this proof.

- (1) If ϕ is an atomic proposition, then $(K, s) \models \phi$ if and only if $\phi \in L(s)$. Since $(K', s') \models \phi$ by assumption, ϕ must be contained in AP'. Because K' simulates K and $L(s) \cap AP' = L'(s')$ holds (condition (i) of Definition 5.3). Now $K' \models \phi$, and therefore $\phi \in L'(s')$ and $L'(s') = L(s) \cap AP'$, so $\phi \in L(s)$ follows.
- (2) Let $\phi = \neg \phi_1$ and suppose $(K', s') \models \phi$. Since ϕ is an ACTL* formula ϕ_1 must be an atomic proposition. This implies that $\phi_1 \notin L'(s')$ and, since $L'(s') = L(s) \cap AP'$ and $\phi_1 \in AP'$ also $\phi_1 \notin L(s)$. This means $K, s \not\models \phi_1$ and therefore $K, s \models \neg \phi_1$ which is equivalent to $K, s \models \phi$.
- (3) Let $\phi = \phi_1 \lor \phi_2$ such that ϕ_i are state formulas for i = 1, 2 and $(K, s) \models \phi_i$ whenever $(K', s') \models \phi_i$. Since $(K', s') \models \phi$, $(K', s') \models \phi_1$ or $(K', s') \models \phi_2$ follows. If $(K', s') \models \phi_1$ then we know already that $(K, s) \models \phi_1$ follows, and this implies $(K, s) \models \phi_1 \lor \phi_2$. The same argument applies if $(K', s') \models \phi_2$. As a consequence $(K, s) \models \phi_1$ or $(K, s) \models \phi_2$ holds, which proves $(K, s) \models \phi_1 \lor \phi_2$.
- (4) Let $\phi = \phi_1 \wedge \phi_2$ such that ϕ_i are state formulas for i = 1, 2 and $(K, s) \models \phi_i$ whenever $(K', s') \models \phi_i$. This case is handled in analogy to (3).
- (5) Let ϕ a state formula, such that $(K, s) \models \phi$ whenever $(K', s') \models \phi$. Let π a path with $\pi(0) = s$, and π' its corresponding path in K', starting at $s' = \pi'(0)$ (this path exists according to Lemma 5.6). Suppose that $K', \pi' \models \phi$ (remember that every state formula is also a path formula). This is equivalent to $K', \pi'(0) \models \phi$, so by our assumption $K, \pi(0) \models \phi$. This implies that $K, \pi \models \phi$. Now we have shown that $K, \pi \models \phi$ whenever $K', \pi' \models \phi$ on a path π' corresponding to π .
- (6) Let $\phi = \mathbf{A}\psi$ such that ψ is a path formula and $K, \pi \models \psi$ whenever $K', \pi' \models \psi$, where π, π' are corresponding paths starting in s and s', respectively. Now $K, s \models \mathbf{A}\psi$ is equivalent to the condition that every path π emanating from s satisfies $K, \pi \models \psi$. Since $K', s' \models \mathbf{A}\psi$ we know that $K', \pi'' \models \psi$ for every π'' starting at s', so this holds in particular for the path π' corresponding to π . Therefore also $K, \pi \models \psi$ holds, and this implies $K, s \models \mathbf{A}\psi$ since π was an arbitrary path starting at s.
- (7) Let $\phi = \psi_1 \vee \psi_2$, such that ψ_i are path formulas where $K, \pi \models \psi_i$ whenever $K', \pi' \models \psi_i$ for i = 1, 2 on a path π' corresponding to π . Suppose $K', \pi' \models \psi_1 \vee \psi_2$. This means that $K', \pi' \models \psi_1$ or $K', \pi' \models \psi_2$. By (5) we can deduce that $K, \pi \models \psi_1$ or $K, \pi \models \psi_2$, and we have shown that $K, \pi \models \psi_1 \vee \psi_2$ whenever $K', \pi' \models \psi_1 \vee \psi_2$ on a path π' corresponding to π .
- (8) Let $\phi = \psi_1 \wedge \psi_2$, such that ψ_i are path formulas where $K, \pi \models \psi_i$ whenever $K', \pi' \models \psi_i$ for i = 1, 2 on a path π' corresponding to π . With an argument analogous to (7) it is shown that $K, \pi \models \psi_1 \wedge \psi_2$ whenever $K', \pi' \models \psi_1 \wedge \psi_2$ on a path π' corresponding to π .
- (9) Let $\phi = \mathbf{X}\psi$ and ψ a path formula such that $K, \pi \models \psi$ holds whenever $K', \pi' \models \psi$ holds on a path π' corresponding to π . Now $K', \pi' \models \mathbf{X}\psi$ is equivalent to $K', \pi'^1 \models \psi$. Since π'^1 corresponds to π^1 we know already that $K', \pi'^1 \models \psi$ implies $K, \pi^1 \models \psi$. As a consequence $K, \pi \models \mathbf{X}\psi$ also holds.
- (10) The cases $\phi = \mathbf{F}\psi$, $\phi = \mathbf{G}\psi$, $\phi = \psi_1 \mathbf{U}\psi_2$, $\phi = \psi_1 \mathbf{R}\psi_2$ are shown in analogy to (9), and this completes the proof.

Exercise. 8.a Give the following explanations regarding the proof of Theorem 5.7:

- (i) Give a detailed formal explanation why the theorem follows from (*).
- (ii) Give a formal syntax specification for ACTL* similar to EBNF notation introduced for CTL* formulas in Section 3.1.
- (iii) Explain how ACTL* is inductively defined according to Definition A.1:
 - (a) What might be a suitable universe U?
 - (b) What is the base set B?
 - (c) Which are the constructors $r \in K$?
- (iv) Explain how the proof of Theorem 5.7 applies the principle of structural induction.

Theorem 5.8 Let $K = (S, S_0, R, L)$ and $K' = (S, S'_0, R', L)$ Kripke structures with variable symbols from V and atomic propositions AP, using the same set of states S and the same labelling function $L: S \to 2^{AP}$. Let $\mathcal{I}, \mathcal{I}'$ be the first order predicates characterising the initial states S_0 and S'_0 , respectively, and $\mathcal{R}, \mathcal{R}'$ the first order predicates characterising the transition relations R and R', respectively. Suppose that

- $\mathcal{I} \Rightarrow \mathcal{I}'$
- $\mathcal{R} \Rightarrow \mathcal{R}'$

Then $K \leq K'$.

Proof. See Exercise 8.

Exercise. 8. Prove Theorem 5.8, using the facts on first order representations given in Section 2. \Box

5.5 Bisimulations

Having studied simulations it is natural to ask how much we have to strengthen the simulation definition in order to be sure that *all* CTL* formulas valid in one Kripke structure are also valid in the other one and vice versa. This leads us to the concept of *bisimulation*.

Definition 5.9 [Bisimulation] Given two Kripke structures $K = (S, S_0, R, L), K' = (S', S'_0, R', L')$ such that K, K' refer to the same set of atomic propositions AP. A relation $B \subseteq S \times S'$ is called *bisimulation* (relation) between K and K', if and only if the following conditions hold for all $s \in S, s' \in S'$ with B(s, s'):

- (i) L(s) = L'(s')
- (ii) $\forall s_1 \in S : R(s, s_1) \Rightarrow \exists s_1' \in S' : R'(s', s_1') \land B(s_1, s_1')$
- (iii) $\forall s_1' \in S' : R'(s', s_1') \Rightarrow \exists s_1 \in S : R(s, s_1) \land B(s_1, s_1')$

We write $K \equiv K'$ if there exists a bisimulation B between K and K' such that

$$(\forall s_0 \in S_0 : \exists s_0' \in S_0' : B(s_0, s_0')) \land (\forall s_0' \in S_0' : \exists s_0 \in S_0 : B(s_0, s_0'))$$

Bisimilar Kripke structures satisfy the same CTL* formulas ⁴:

Theorem 5.10 If $K \equiv K'$ and $\phi \in CTL^*$, then

$$(K \models \phi)$$
 if and only if $(K' \models \phi)$

5.6 Predicate Abstraction

With the knowledge of Section 5.3 alone we could construct abstractions only from the original Kripke structure $K = (S, S_0, R, L)$. This is unsatisfactory, since the very objective of abstraction is to help in situations where the original Kripke structure is too large to be represented in an explicit way. Fortunately there is an alternative for constructing abstractions: Having defined auxiliary variables a_i and associated expressions $a_i = e_i(x_1^i, x_2^i, \ldots)$ we can lift the original predicates \mathcal{I}, \mathcal{R} over $x_j \in V$ specifying initial state and transition relation of K to predicates over a_i specifying initial state and transition relation of the abstracted Kripke structure $K' = (S', S'_0, R', L')$. In the next section we will see that this relation can be further approximated by simpler predicates that still preserve the simulation relation but are coarser and therefore even simpler to compute.

Definition 5.11 Let $K = (S, S_0, R, L)$ a Kripke structure with variables from $V = \{x_1, \ldots, x_n\}$ and ϕ a predicate with free variables over V. Let $AUX = \{a_1, \ldots, a_k\}$ a set of auxiliary variables defining an abstraction relation via expressions $a_i = e_i(x_1^i, x_2^i, \ldots), i = 1, \ldots, k$. Then the *lifting of* ϕ with respect to this abstraction is denoted by $[\phi]$ and defined as

$$[\phi] \equiv_{\text{def}} \exists \xi_1, \dots, \xi_n : (\forall i = 1, \dots, k : a_i = e_i(\xi_1^i, \dots, \xi_n^i)) \land \phi[\xi_1/x_1, \dots, \xi_n/x_n]$$

Theorem 5.12 Let $K = (S, S_0, R, L)$ a Kripke structure with variables from $V = \{x_1, \ldots, x_n\}$ and ϕ a predicate with free variables over V. Let $AUX = \{a_1, \ldots, a_k\}$ a set of auxiliary variables defining an abstraction relation via expressions $a_i = e_i(x_1^i, x_2^i, \ldots), i = 1, \ldots, k$. Let $K' = (S', S'_0, R', L')$ denote the abstracted Kripke structure obtained by factorisation with \sim as described in Section 5.3. Let \mathcal{I}, \mathcal{R} denote initial condition and transition relation of K.

Then initial condition and transition relation of K' are given by the lifted predicates

$$[\mathcal{I}]$$
 and $[\mathcal{R}]$

⁴ For a proof, see [2, pp. 171].

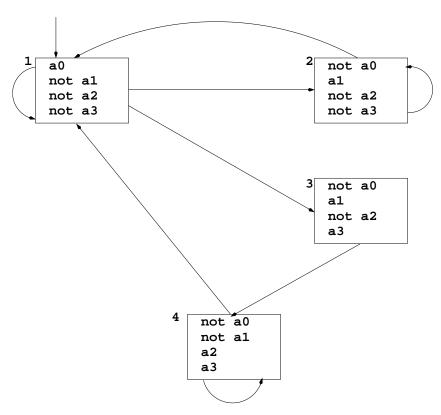


Fig. 13. Kripke structure for abstracted model from Example 5.13.

Proof. Applying Definition 5.11 on \mathcal{I} and \mathcal{R} yields

$$[\mathcal{I}] \equiv \exists \xi_1, \dots, \xi_n : (\forall i = 1, \dots, k : a_i = e_i(\xi_1, \dots, \xi_n)) \land \mathcal{I}[\xi_1/x_1, \dots, \xi_n/x_n]$$

$$[\mathcal{R}] \equiv \exists \xi_1, \dots, \xi_n : \exists \xi'_1, \dots, \xi'_n : (\forall i = 1, \dots, k : a_i = e_i(\xi_1, \dots, \xi_n)) \land$$

$$(\forall i = 1, \dots, k : a'_i = e_i(\xi'_1, \dots, \xi'_n)) \land$$

$$\mathcal{R}[\xi_1/x_1, \dots, \xi_n/x_n, \xi'_1/x'_1, \dots, \xi'_n/x'_n]$$

According to Lemma 5.1 these formulas represent initial condition $\mathcal{I}/_{\sim}$ and transition relation $\mathcal{R}/_{\sim}$ of K'.

Example 5.13 Consider again the model displayed in Fig. 12 with integer variables x, y having unbounded range. With the knowledge about simulations and predicate abstraction it is now possible to give a rigorous proof for the formula $\neg \mathbf{EF}(10 \land \text{odd}(y))$. First we observe that

$$\neg \mathbf{EF}(10 \land odd(y)) \equiv \mathbf{AG}(\neg 10 \lor \neg odd(y))$$

so our proof objective is an ACTL formula. As a possible abstraction for this

objective consider

$$a_0 = 10$$

$$a_1 = 11$$

$$a_2 = 12$$

$$a_3 = odd(y)$$
 (4)

Note, that a_0, \ldots, a_3 form not the simplest abstraction possible to show the required property - indeed, abstraction by a_0 and a_3 would suffice. The effect of the coarser abstraction would be, that proving several other formulas like $\mathbf{AG}(\neg 12 \lor \mathsf{odd}(y))$ becomes impossible in the resulting abstracted Kripke structure.

We proceed now to construct the resulting abstracted Kripke structure without first unfolding the one of the concrete system, but exploiting instead its predicates for initial state and transition relation.

Step. 1. Specify initial condition of the concrete system: From Fig. 12 we derive

$$\mathcal{I}(10,11,12,x,y) \equiv 10 \land \neg 11 \land \neg 12 \land y = 0$$

Step. 2. Specify formula for the transition relation of the concrete system: Evaluating Fig. 12 again, we derive

$$\mathcal{R}(10,11,12,x,y,10',11',12',x',y') \equiv \\ ((10 \land x \le y \land y' = y \land 10') \lor \\ (10 \land x > y \land y' = y + x \land 11') \lor \\ (11 \land x \le 0 \land \neg odd(y) \land y' = y \land 10') \lor \\ (11 \land odd(y) \land y' = -1 \land 12') \lor \\ (11 \land x > 0 \land \neg odd(y) \land y' = y \land 11') \lor \\ (12 \land x \ge 0 \land y' = 0 \land 10') \lor \\ (12 \land x > 0 \land y' = y \land 12')) \land \\ ((10 \land \neg 11 \land \neg 12) \lor (\neg 10 \land 11 \land \neg 12) \lor (\neg 10 \land \neg 11 \land 12)) \land \\ ((10' \land \neg 11' \land \neg 12') \lor (\neg 10' \land 11' \land \neg 12') \lor (\neg 10' \land \neg 11' \land 12'))$$

Step. 3. Compute the abstracted initial condition $\mathcal{I}/_{\sim} = [\mathcal{I}]$: Applying Definition 5.11 on $[\mathcal{I}]$ for the given abstraction (4) results in

$$\begin{split} [\mathcal{I}](a_0, a_1, a_2, a_3) &\equiv \exists \xi_0, \xi_1, \xi_2, \xi_3, \xi_4: \\ a_0 &= \xi_0 \wedge a_1 = \xi_1 \wedge a_2 = \xi_2 \wedge a_3 = \mathrm{odd}(\xi_4) \wedge \\ \xi_0 \wedge \neg \xi_1 \wedge \neg \xi_2 \wedge \xi_4 &= 0 \\ &\equiv a_0 \wedge \neg a_1 \wedge \neg a_2 \wedge \neg a_3 \end{split}$$

Step. 4. Compute the abstracted transition relation $\mathcal{R}/_{\sim} = [\mathcal{R}]$: Applying Defini-

tion 5.11 on $[\mathcal{R}]$ for the given abstraction (4) results in

$$\begin{split} |\mathcal{R}|(a_0, a_1, a_2, a_3, a_0', a_1', a_2', a_3') &\equiv \\ \exists \xi_0, \xi_1, \xi_2, \xi_3, \xi_4, \xi_0', \xi_1', \xi_2', \xi_3', \xi_4' : \\ a_0 &= \xi_0 \wedge a_1 = \xi_1 \wedge a_2 = \xi_2 \wedge a_3 = \mathrm{odd}(\xi_4) \wedge \\ a_0' &= \xi_0' \wedge a_1' = \xi_1' \wedge a_2' = \xi_2' \wedge a_3' = \mathrm{odd}(\xi_4') \wedge \\ ((\xi_0 \wedge \xi_3 \leq \xi_4 \wedge \xi_4' = \xi_4 \wedge \xi_0') \vee \\ (\xi_0 \wedge \xi_3 > \xi_4 \wedge \xi_4' = \xi_4 + \xi_3 \wedge \xi_1') \vee \\ (\xi_1 \wedge \xi_3 \leq 0 \wedge -\mathrm{odd}(\xi_4) \wedge \xi_4' = \xi_4 \wedge \xi_0') \vee \\ (\xi_1 \wedge \delta_3 > 0 \wedge -\mathrm{odd}(\xi_4) \wedge \xi_4' = \xi_4 \wedge \xi_1') \vee \\ (\xi_1 \wedge \delta_3 > 0 \wedge -\mathrm{odd}(\xi_4) \wedge \xi_4' = \xi_4 \wedge \xi_1') \vee \\ (\xi_2 \wedge \xi_3 \leq 0 \wedge \xi_4' = 0 \wedge \xi_0') \vee \\ (\xi_2 \wedge \xi_3 \leq 0 \wedge \xi_4' = 0 \wedge \xi_0') \vee \\ ((\xi_0 \wedge -\xi_1 \wedge -\xi_2) \vee (-\xi_0 \wedge \xi_1 \wedge -\xi_2) \vee (-\xi_0 \wedge -\xi_1 \wedge \xi_2)) \wedge \\ ((\xi_0' \wedge -\xi_1' \wedge -\xi_2') \vee (-\xi_0' \wedge \xi_1' \wedge -\xi_2') \vee (-\xi_0' \wedge -\xi_1' \wedge \xi_2')) \equiv \\ ((a_0 \wedge a_3' = a_3 \wedge a_0') \vee (a_0 \wedge a_3' \wedge a_1') \vee (a_0 \wedge -a_3' \wedge a_1') \vee \\ (a_1 \wedge -a_3 \wedge a_3' = a_3 \wedge a_0') \vee (a_1 \wedge -a_3 \wedge a_3' = a_3 \wedge a_1') \vee (a_1 \wedge a_3 \wedge a_3' \wedge a_2') \vee \\ (a_2 \wedge -a_3' \wedge a_0') \vee (a_2 \wedge a_3' = a_3 \wedge a_2')) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1' \wedge -a_2') \vee (-a_0' \wedge a_1' \wedge -a_2') \vee (-a_0' \wedge -a_1' \wedge a_2')) = \\ ((a_0 \wedge a_3' = a_3 \wedge a_0') \vee (a_2 \wedge a_3' = a_3 \wedge a_2')) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1' \wedge -a_2') \vee (-a_0' \wedge a_1' \wedge -a_2') \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \wedge \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \otimes \\ ((a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge -a_2) \vee (-a_0 \wedge -a_1 \wedge a_2)) \otimes \\ (a_0 \wedge -a_1 \wedge -a_2) \vee (-a_0 \wedge a_1 \wedge$$

The resulting abstracted Kripke structure is displayed in Fig. 13, and it is trivial to see from the graphic representation that $\mathbf{AG}(\neg 10 \lor \neg odd(y))$ holds, because this formula is equivalent to $\mathbf{AG}(\neg a_0 \lor \neg a_3)$ and the Kripke structure in Fig. 13 simulates the concrete system from Fig. 12 by construction.

Exercise. 9. Check whether the following C program fragment terminates:

```
uint32_t x,y;
1
2
      y = 1;
      while ( y < 256 ) {
3
       x = input(); // Assume 0 <= x <= 15
4
       if (x > y) {
5
         y = y * x;
6
7
       }
      }
8
      exit();
```

Perform this check by means of an abstraction function α that calculates the minimal number of bits needed to represent an integral number:

$$\alpha: \mathbb{N}_0 \to \mathbb{N}_0; \quad x \mapsto |\log_2 x| + 1$$

Observe that, since $\log_b x \cdot y = \log_b x + \log_b y$, the following estimates hold:

$$\alpha(x \cdot y) \le \alpha(x) + \alpha(y)$$

$$N \le \alpha(x) + \alpha(y) \Rightarrow N - 1 \le \alpha(x \cdot y)$$

$$\alpha(x) + \alpha(y) \le N \Rightarrow \alpha(x \cdot y) \le N$$

Prove termination or non-termination along the following lines:

- (i) Specify initial condition \mathcal{I} and transition formula \mathcal{R} of the concrete program fragment above.
- (ii) Now use the abstraction $a_1 = \alpha(x), a_2 = \alpha(y)$. and calculate the abstracted formulas $[\mathcal{I}]$ and $[\mathcal{R}]$.
- (iii) Unfold the Kripke structure of the abstracted system given by $[\mathcal{I}]$ and $[\mathcal{R}]$ and sketch how the model checking algorithms introduced in Section 4 come to a conclusion about termination or non-termination.

Example 5.14 We present an alternative solution for Exercise 9 which uses another abstraction and motivates the concept of abstract interpretation.

The initial condition of the program from Exercise 9 is

$$\mathcal{I}(p, x, y) \equiv p = 1$$

The transition relation is specified by the predicate

$$\mathcal{R}(p, x, y, p', x', y') \equiv$$

$$(p = 1 \land p' = 2 \land x' = x \land y' = y) \lor$$

$$(p = 2 \land p' = 3 \land x' = x \land y' = 1) \lor$$

$$(p = 3 \land p' = 9 \land y \ge 256 \land x' = x \land y' = y) \lor$$

$$(p = 3 \land p' = 4 \land y < 256 \land x' = x \land y' = y) \lor$$

$$(p = 4 \land p' = 5 \land 0 \le x' \le 15 \land y' = y) \lor$$

$$(p = 5 \land p' = 3 \land x \le y \land x' = x \land y' = y) \lor$$

$$(p = 5 \land p' = 6 \land x > y \land x' = x \land y' = y) \lor$$

$$(p = 6 \land p' = 3 \land x' = x \land y' = y \cdot x)$$

We choose the following abstraction functions – they are induced by a scan of "relevant" decisions in the program:

$$a_0(p, x, y) = p$$

$$a_1(p, x, y) = (x \in [0, 15])$$

$$a_2(p, x, y) = (y < 256)$$

$$a_3(p, x, y) = (x > y)$$

In order to prove that the program never terminates we try to prove ACTL formula

AG
$$(a_0 \neq 9)$$

which exactly expresses non-termination.

Applying the predicate abstraction principle on abstraction functions a_0,\ldots,a_3 results in

$$[\mathcal{I}] \equiv a_0 = 1$$

$$37$$

for the initial condition; for the abstracted transition relation we get 5

$$[\mathcal{R}] \equiv \exists p, x, y, p', x', y' :$$

$$a_0 = p \land a_1 = (x \in [0, 15]) \land a_2 = (y < 256) \land a_3 = (x > y) \land$$

$$a'_0 = p' \land a'_1 = (x' \in [0, 15]) \land a'_2 = (y' < 256) \land a'_3 = (x' > y') \land$$

$$((p = 1 \land p' = 2 \land x' = x \land y' = y) \lor$$

$$(p = 2 \land p' = 3 \land x' = x \land y' = 1) \lor$$

$$(p = 3 \land p' = 9 \land y \ge 256 \land x' = x \land y' = y) \lor$$

$$(p = 3 \land p' = 4 \land y < 256 \land x' = x \land y' = y) \lor$$

$$(p = 4 \land p' = 5 \land 0 \le x' \le 15 \land y' = y) \lor$$

$$(p = 5 \land p' = 3 \land x \le y \land x' = x \land y' = y) \lor$$

$$(p = 5 \land p' = 6 \land x > y \land x' = x \land y' = y) \lor$$

$$(p = 6 \land p' = 3 \land x' = x \land y' = y \lor)$$

Replacing terms which may be directly expressed by a_i or $\neg a_i$ due to equality or direct implication results in the fact that $[\mathcal{R}]$ implies

$$R_{1} \equiv \exists x, y, x', y' :$$

$$a_{1} = (x \in [0, 15]) \land a_{2} = (y < 256) \land a_{3} = (x > y) \land$$

$$a'_{1} = (x' \in [0, 15]) \land a'_{2} = (y' < 256) \land a'_{3} = (x' > y') \land$$

$$((a_{0} = 1 \land a'_{0} = 2 \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 2 \land a'_{0} = 3 \land a'_{1} = a_{1} \land a'_{2}) \lor$$

$$(a_{0} = 3 \land a'_{0} = 9 \land \neg a_{2} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 3 \land a'_{0} = 4 \land a_{2} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 4 \land a'_{0} = 5 \land a'_{1} \land a'_{2} = a_{2}) \lor$$

$$(a_{0} = 5 \land a'_{0} = 3 \land \neg a_{3} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 5 \land a'_{0} = 6 \land a_{3} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 6 \land a'_{0} = 3 \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 6 \land a'_{0} = 3 \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

⁵ Observe that we still use p, x, y as in the original transition relation above, but now these symbols are bound to the existential quantifier.

We use the following observation.

$$a_1 \wedge a_2 \wedge a_3 \wedge y' = y \cdot x \Rightarrow$$

$$(x \in [0, 15]) \wedge (y < 256) \wedge (x > y) \wedge y' = y \cdot x \Rightarrow$$

$$(x \in [0, 15]) \wedge (y < 15) \wedge (x > y) \wedge y' = y \cdot x \Rightarrow$$

$$(y' \le 210) \Rightarrow$$

$$a'_2$$

Therefore $R_1 \Rightarrow R_2$ with

$$R_2 \equiv \exists x, y, x', y' :$$

$$a_1 = (x \in [0, 15]) \land a_2 = (y < 256) \land a_3 = (x > y) \land$$

$$a'_1 = (x' \in [0, 15]) \land a'_2 = (y' < 256) \land a'_3 = (x' > y') \land$$

$$((a_0 = 1 \land a'_0 = 2 \land a'_1 = a_1 \land a'_2 = a_2 \land a'_3 = a_3) \lor$$

$$(a_0 = 2 \land a'_0 = 3 \land a'_1 = a_1 \land a'_2) \lor$$

$$(a_0 = 3 \land a'_0 = 9 \land \neg a_2 \land a'_1 = a_1 \land a'_2 = a_2 \land a'_3 = a_3) \lor$$

$$(a_0 = 3 \land a'_0 = 4 \land a_2 \land a'_1 = a_1 \land a'_2 = a_2 \land a'_3 = a_3) \lor$$

$$(a_0 = 3 \land a'_0 = 5 \land a'_1 \land a'_2 = a_2) \lor$$

$$(a_0 = 4 \land a'_0 = 5 \land a'_1 \land a'_2 = a_2) \lor$$

$$(a_0 = 5 \land a'_0 = 3 \land \neg a_3 \land a'_1 = a_1 \land a'_2 = a_2 \land a'_3 = a_3) \lor$$

$$(a_0 = 5 \land a'_0 = 6 \land a_3 \land a'_1 = a_1 \land a'_2 = a_2 \land a'_3 = a_3) \lor$$

$$(a_0 = 6 \land a'_0 = 3 \land \neg a_1 \land a_2 \land a_3 \land a'_2 \land a'_1 = a_1) \lor$$

$$(a_0 = 6 \land a'_0 = 3 \land \neg (a_1 \land a_2 \land a_3) \land a'_1 = a_1))$$

Finally $R_2 \Rightarrow R_3$ with

$$R_{3} \equiv (a_{0} = 1 \land a'_{0} = 2 \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 2 \land a'_{0} = 3 \land a'_{1} = a_{1} \land a'_{2}) \lor$$

$$(a_{0} = 3 \land a'_{0} = 9 \land \neg a_{2} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 3 \land a'_{0} = 4 \land a_{2} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 4 \land a'_{0} = 5 \land a'_{1} \land a'_{2} = a_{2}) \lor$$

$$(a_{0} = 5 \land a'_{0} = 3 \land \neg a_{3} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 5 \land a'_{0} = 6 \land a_{3} \land a'_{1} = a_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3}) \lor$$

$$(a_{0} = 6 \land a'_{0} = 3 \land a_{1} \land a_{2} \land a_{3} \land a'_{2} \land a'_{1} = a_{1}) \lor$$

$$(a_{0} = 6 \land a'_{0} = 3 \land \neg(a_{1} \land a_{2} \land a_{3}) \land a'_{1} = a_{1})$$

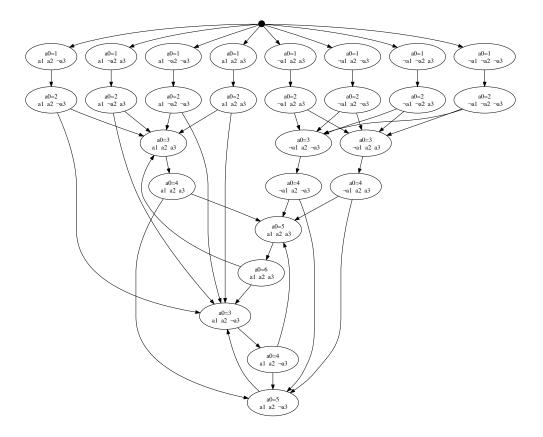


Fig. 14. Kripke structure associated with $([\mathcal{I}], R_3)$ from Example 5.14.

Applying Theorem 5.8 we conclude that if the Kripke structure associated with R_3 fulfills $\mathbf{AG}(a_0 \neq 9)$, the same holds for the structure associated with $[\mathcal{R}]$, and therefore the same holds for the concrete structure associated with \mathcal{R} (Theorem 5.12). For $([\mathcal{I}], R_3)$, the Kripke structure looks as shown in Fig. 14, and obviously every reachable Kripke state fulfills $a_0 \neq 9$. This proves non-termination of our sample program.

5.7 Predicate Approximation

Depending on the complexity of initial conditions \mathcal{I} and transition relations \mathcal{R} it may be quite hard to compute $[\mathcal{I}]$ and $[\mathcal{R}]$. It is therefore useful to have a technique at hand for further simplifying this computation, at the cost of not arriving exactly at $[\mathcal{I}]$ and $[\mathcal{R}]$, but at approximations of these predicates, denoted by $\mathcal{A}(\mathcal{I})$ and $\mathcal{A}(\mathcal{R})$, respectively. We say that predicate ϕ' approximates ϕ if $\phi \Rightarrow \phi'$.

Definition 5.15 Let ϕ a predicate in negation normal form with free variables in $V = \{x_1, x_2, \ldots\}$. Given an abstraction $a_i = e_i(x_1, x_2, \ldots), i = 1, 2, \ldots$, the approximation of ϕ is denoted by $\mathcal{A}(\phi)$. $\mathcal{A}(\phi)$ has free variables in $\{a_1, a_2, \ldots\}$ and is defined inductively by the following rules:

- (i) If ϕ is an atomic proposition ⁶, then $\mathcal{A}(\phi) =_{\text{def}} [\phi]$.
- (ii) If $\neg \phi$ is a negated atomic proposition, then $\mathcal{A}(\neg \phi) =_{\text{def}} [\neg \phi]$.
- (iii) $\mathcal{A}(\phi_1 \wedge \phi_2) =_{\text{def}} \mathcal{A}(\phi_1) \wedge \mathcal{A}(\phi_2)$
- (iv) $\mathcal{A}(\phi_1 \vee \phi_2) =_{\text{def}} \mathcal{A}(\phi_1) \vee \mathcal{A}(\phi_2)$
- (v) $\mathcal{A}(\exists x : \phi) =_{\text{def}} \exists a : \mathcal{A}(\phi)$
- (vi) $\mathcal{A}(\forall x : \phi) =_{\text{def}} \forall a : \mathcal{A}(\phi)$

Theorem 5.16 Let ϕ a predicate in negation normal form with free variables in $V = \{x_1, x_2, \ldots\}$. Given an abstraction $a_i = e_i(x_1, x_2, \ldots), i = 1, 2, \ldots$, the lifted version of ϕ implies its approximated version, i. e.,

$$[\phi](a_1, a_2, \ldots) \Rightarrow \mathcal{A}(a_1, a_2, \ldots)$$

Proof. The proof is performed by structural induction over the formula ϕ .

Step 1. If ϕ is atomic or the negation of an atom, $\mathcal{A}(\phi) = [\phi]$, so there is nothing to prove.

Step 2. Suppose $\phi \equiv \phi_1 \wedge \phi_2$ and $[\phi_j] \Rightarrow \mathcal{A}(\phi_j), \ j = 1, 2$. From the definition of $[\cdot]$ we calculate

$$[\phi_{1} \wedge \phi_{2}] \equiv \exists \xi_{1}, \xi_{2}, \dots : (\forall i : a_{i} = e_{i}(\xi_{1}, \xi_{2}, \dots)) \wedge \\ \phi_{1}(\xi_{1}/x_{1}, \xi_{2}/x_{2}, \dots) \wedge \phi_{2}(\xi_{1}/x_{1}, \xi_{2}/x_{2}, \dots) \\ \Rightarrow (\exists \xi_{1}, \xi_{2}, \dots : (\forall i : a_{i} = e_{i}(\xi_{1}, \xi_{2}, \dots)) \wedge \phi_{1}(\xi_{1}/x_{1}, \xi_{2}/x_{2}, \dots)) \wedge \\ (\exists \xi_{1}, \xi_{2}, \dots : (\forall i : a_{i} = e_{i}(\xi_{1}, \xi_{2}, \dots)) \wedge \phi_{2}(\xi_{1}/x_{1}, \xi_{2}/x_{2}, \dots)) \\ \Rightarrow \mathcal{A}(\phi_{1}) \wedge \mathcal{A}(\phi_{2})$$

Step 3. Suppose $\phi \equiv \phi_1 \vee \phi_2$ and $[\phi_j] \Rightarrow \mathcal{A}(\phi_j), \ j = 1, 2$. This case is handled in analogy to Step. 2.

Step 4. Suppose $\phi \equiv \exists x : \phi_1 \text{ and } [\phi_1] \Rightarrow \mathcal{A}(\phi_1)$. Assume without loss of generality that $x \neq x_i$ for all i = 1, 2, ... and that $\phi = \phi(x, x_1, x_2, ...)$. Then

$$[\exists x : \phi_1] \equiv \exists \xi_1, \xi_2, \dots : (\forall i : a_i = e_i(\xi_1, \xi_2, \dots)) \land (\exists \xi : \phi_1(\xi/x, \xi_1/x_1, \xi_2/x_2, \dots))$$

$$\Rightarrow \exists \xi, \xi_1, \xi_2, \dots : (\forall i : a_i = e_i(\xi_1, \xi_2, \dots)) \land \phi_1(\xi/x, \xi_1/x_1, \xi_2/x_2, \dots)$$

$$\Rightarrow \exists \xi : (\exists \xi_1, \xi_2, \dots : (\forall i : a_i = e_i(\xi_1, \xi_2, \dots)) \land \phi_1(\xi/x, \xi_1/x_1, \xi_2/x_2, \dots))$$

$$\Rightarrow \exists a : \mathcal{A}(\phi_1)$$

Step 5. Suppose $\phi \equiv \forall x : \phi_1$ and $[\phi_1] \Rightarrow \mathcal{A}(\phi_1)$. This step is handled in analogy to Step 4.

⁶ Observe that this includes all primitive relations such as x < y, x = f(y, z).

Theorem 5.17 Given a Kripke structure $K = (S, S_0, R, L)$ with variables in $V = \{x_1, x_2, \ldots\}$, initial condition \mathcal{I} and transition formula \mathcal{R} . Given an abstraction $a_i = e_i(x_1, x_2, \ldots), i = 1, 2, \ldots$ Let $K' = (S', S'_0, R', L')$ denote the Kripke structure with variables $\{a_1, a_2, \ldots\}$, initial condition $\mathcal{A}(\mathcal{I})$ and transition relation $\mathcal{A}(\mathcal{R})$. Then

$$K \preccurlyeq K'$$

Proof. Let K'' denote the abstracted Kripke structure with variables $\{a_1, a_2, \ldots\}$, initial condition $[\mathcal{I}]$ and transition formula $[\mathcal{R}]$. From Theorem 5.12 and Theorem 5.4 we know that K'' simulates K. From Theorem 5.16 we know that $[\mathcal{I}] \Rightarrow \mathcal{A}(\mathcal{I})$ and $[\mathcal{R}] \Rightarrow \mathcal{A}(\mathcal{R})$. Now Theorem 5.8 implies that K' simulates K''. Since \leq is transitive, the theorem follows.

Exercise. 10. Given a Kripke structure $K = (S, S_0, R, L)$ we use the following notation:

- $K_s =_{\text{def}} (S, \{s\}, R, L) \text{ for } s \in S$
- $s_0 \leq s_1 \equiv_{\text{def}}$ there exists a simulation relation $H \subseteq S \times S$ such that $H(s_0, s_1)$ Consider the following algorithm:

$$H := \{(s_0, s_1) \mid L(s_0) = L(s_1)\};$$

while H is not a simulation relation do

Choose (s_0, s_1) such that

$$\exists s_0' \in S : R(s_0, s_0') \land (\forall s_1' \in S : R(s_1, s_1') \Rightarrow (s_0', s_1') \notin H);$$

$$H := H - \{(s_0, s_1)\};$$

enddo

- (i) Justify informally why H, as computed by this algorithm, is a simulation relation.
- (ii) Explain the relation between H as computed by this algorithm, $s_0 \leq s_1$, K_{s_0} and K_{s_1} .

6 Abstract Interpretation

6.1 Lattices

For the introduction of abstract interpretation it is useful to introduce partial orders and lattices; a more detailed introduction into these topics is given in [3].

Recall that a binary relation \sqsubseteq on a set L is called a (partial) order if \sqsubseteq is reflexive, transitive and anti-symmetric. An element $y \in L$ is called an *upper bound* of $X \subseteq L$ if $x \sqsubseteq y$ holds for all $x \in X$. The lower bound of a set is defined dually. An upper bound y' of X is called a *least upper bound of* X and denoted by $\sqcup X$ if $y' \sqsubseteq y$ holds for all upper bounds y of X. Dually, the *greatest lower bound* $\sqcap X$ of a set X is defined.

An ordered set (L, \sqsubseteq) is called a *complete lattice*, if $\sqcap X$ and $\sqcup X$ exist for all subsets $X \subseteq L$. Lattice L has a *largest element* (or *top*) denoted by $\top = \sqcup L$ and a *smallest element* (or *bottom*) denoted by $\bot = \sqcap L$. Least upper bounds and greatest lower bounds induce binary operations $\sqcup, \sqcap : L \times L \to L$ by defining $x \sqcup y =_{\operatorname{def}} \sqcup \{x,y\}$ (the *join* of x and y) and $x \sqcap y =_{\operatorname{def}} \sqcap \{x,y\}$ (the *meet* of x and y), respectively. If the join and meet are well-defined for an ordered set (L, \sqsubseteq) but $\sqcup X, \sqcap X$ do not exist for all $X \subseteq L$ then (L, \sqsubseteq) is called an *(incomplete) lattice*.

- **Example 6.1** (i) For every set M the power set lattice is defined by $(\mathbf{P}(M), \subseteq)$. The join is defined by $m \sqcup m' =_{\mathrm{def}} m \cup m'$, the meet by $m \sqcap m' =_{\mathrm{def}} m \cap m'$. Top and bottom elements are $\top = M$, $\bot = \varnothing$, respectively.
- (ii) For every set M wie can introduce a nearly trivial ordering \sqsubseteq by adding two new elements $\top, \bot \not\in M$ and defining a lattice $(M \cup \{\top, \bot\}, \sqsubseteq)$ such that all $m \neq m' \in M$ are incomparable and $\forall m \in M : \bot \sqsubseteq m \sqsubseteq \top$.
- (iii) Applying the construction (ii) to Booleans $\mathbb{B} = \{ \mathtt{false}, \mathtt{true} \}$ results in the lattice $(L(\mathbb{B}), \sqsubseteq)$ with $L(\mathbb{B}) =_{\mathrm{def}} \{ \bot, \mathtt{false}, \mathtt{true}, \top \}, \bot \sqsubseteq \mathtt{false} \sqsubseteq \top, \bot \sqsubseteq \mathtt{true} \sqsubseteq \top$ and $\mathtt{true}, \mathtt{false}$ incomparable. The top element \top has the intuitive interpretation "undecided maybe true or false".
- (iv) (\mathbb{Q}, \leq) is an *incomplete* lattice: Take any infinite set $S \subseteq \mathbb{Q}$ whose elements are converging towards a transcendent number, say $\sqrt{2}$, from below. Then $\sqcup S \notin \mathbb{Q}$.
- (v) The lattice of *intervals* over reals including $\pm \infty$ is defined as (\mathbb{R}, \subseteq) with $[\underline{a}, \overline{a}] \cap [\underline{b}, \overline{b}] =_{\text{def}} [\underline{a}, \overline{a}] \cap [\underline{b}, \overline{b}]$ and $[\underline{a}, \overline{a}] \sqcup [\underline{b}, \overline{b}] =_{\text{def}} [\min\{\underline{a}, \underline{b}\}, \max\{\overline{a}, \overline{b}\}]$. The join of $[\underline{a}, \overline{a}]$ and $[\underline{b}, \overline{b}]$ is also called the *interval hull* of $[\underline{a}, \overline{a}]$ and $[\underline{b}, \overline{b}]$. The maximal element is $\top = [-\infty, +\infty], \bot = [] = \emptyset$.
- (vi) Interval lattices may be introduced over integral numbers from \mathbb{Z} or \mathbb{N} and over rational numbers \mathbb{Q} in analogy to (v). Interval lattices over \mathbb{Z} and \mathbb{N} are complete. The interval lattice over \mathbb{Q} is not not complete, because an infinite sequence of intervals may have a supremum which is an interval of (\mathbb{R}, \subseteq) , but is not an interval of \mathbb{Q} , since its boundaries are irrational numbers.

For the simplest form of abstract interpretation which is introduced in this section, concrete data types int, float, bool will be abstracted to their interval lattice counterparts as described in the example above. It is also possible to lift

concrete n-ary functions

$$f: t_1 \times \ldots \times t_n \to t_0$$

with $t_i \in \{\text{int}, \text{float}, \text{bool}\}$ to n-ary functions over their concrete data types' lattice counterparts,

$$[f]: L(t_1) \times \ldots \times L(t_n) \to L(t_0)$$

This lifting operation is performed according to the following construction (arguments a_i in the following definition are intervals over the concrete data types t_i).

$$[f](a_1, \dots, a_n) =_{\text{def}} \bigsqcup \{ [f(x_1, \dots, x_n), f(x_1, \dots, x_n)] \mid x_i \in a_i, i = 1, \dots, n \}$$
(5)
= $[\inf \{ f(x_1, \dots, x_n) \mid x_i \in a_i, i = 1, \dots, n \},$ (6)
$$\sup \{ f(x_1, \dots, x_n) \mid x_i \in a_i, i = 1, \dots, n \}]$$
(7)

Intuitively speaking, function value $[f](a_1, \ldots, a_n)$ is constructed as follows:

- (i) Calculate each concrete function value $f(x_1, ..., x_n)$ over arguments x_i from intervals a_i supplied as lattice element arguments to [f].
- (ii) Represent every concrete function value $f(x_1, ..., x_n)$ as a single-point interval $[f(x_1, ..., x_n), f(x_1, ..., x_n)]$ of the interval latice over t_0 .
- (iii) The function value $[f](a_1, \ldots, a_n)$ is now determined by calculating the supremum over all of the single-point intervals constructed in step (ii); this may be expressed in the simpler form $[\inf\{f(x_1, \ldots, x_n) \mid x_i \in a_i, i = 1, \ldots, n\}, \sup\{f(x_1, \ldots, x_n) \mid x_i \in a_i, i = 1, \ldots, n\}].$

Observe that for datatype float which is a finite subset of \mathbb{Q} it is possible that the infimum and/or supremum used in the construction of $[f](a_1,\ldots,a_n)$ does not exist, because it cannot be represented as a floating point number. This problem can be addressed by widening the theoretically precise interval function value $[\underline{u},\overline{u}]$ to the closest lower and upper bounds $\underline{v},\overline{v}$ representable in datatype float. The widening operation ensures $[\underline{u},\overline{u}] \subseteq [\underline{v},\overline{v}]$, so we know that the exact result is conservatively approximated by the representable interval $[\underline{v},\overline{v}]$.

Applying the general lifting construction (5) to the arithmetic operations $+,-,\cdot,$ results in the following interval counterparts:

$$\begin{split} &[\underline{x},\overline{x}][+][\underline{y},\overline{y}] = [\underline{x}+\underline{y},\overline{x}+\overline{y}] \\ &[\underline{x},\overline{x}][-][\underline{y},\overline{y}] = [\underline{x}-\overline{y},\overline{x}-\underline{y}] \\ &[\underline{x},\overline{x}][\cdot][\underline{y},\overline{y}] = [\min S,\max S], \quad S = \{\underline{x}\underline{y},\underline{x}\overline{y},\overline{x}\underline{y},\overline{x}\underline{y}\} \\ &[\underline{x},\overline{x}][/][\underline{y},\overline{y}] = [\underline{x},\overline{x}][\cdot]1/[\underline{y},\overline{y}] \\ &1/[0,0] = \bot \\ &1/[\underline{y},\overline{y}] = [1/\overline{y},1/\underline{y}] \quad \text{if } 0 \not\in [\underline{y},\overline{y}] \\ &1/[\underline{y},\overline{y}] = [1/\overline{y},\infty[\quad \text{if } \underline{y}=0 \land 0 < \overline{y} \\ &1/[\underline{y},\overline{y}] =] - \infty,1/\underline{y}] \quad \text{if } \underline{y} < 0 \land \overline{y} = 0 \\ &1/[\underline{y},\overline{y}] =] - \infty,\infty[\quad \text{if } \underline{y} < 0 \land \overline{y} > 0 \end{split}$$

Boolean operations $b(x_1, \ldots, x_n)$ are lifted to $L(\mathbb{B})$ -valued operations

$$[b](a_1, \dots, a_n) = \begin{cases} [0, 0] & \text{if } \forall x_i \in a_i, i = 1, \dots, n : b(x_1, \dots, x_n) = 0 \\ [1, 1] & \text{if } \forall x_i \in a_i, i = 1, \dots, n : b(x_1, \dots, x_n) = 1 \\ [0, 1] & \text{otherwise} \end{cases}$$

Applying this to the Boolean comparisons $<, \leq, >, \geq, =, \neq$ yields the following lattice counterparts.

$$[\underline{x}, \overline{x}][<][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{y} \leq \underline{x} \\ [1, 1] \text{ if } \overline{x} < \underline{y} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][\leq][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{y} < \underline{x} \\ [1, 1] \text{ if } \overline{x} \leq \underline{y} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][>][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{x} \leq \underline{y} \\ [1, 1] \text{ if } \overline{y} < \underline{x} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][\geq][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{x} < \underline{y} \\ [1, 1] \text{ if } \overline{y} \leq \underline{x} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][=][y, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{x} < \underline{y} \vee \overline{y} < \underline{x} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][=][y, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{x} < \underline{y} \vee \overline{y} < \underline{x} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][=][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \overline{x} < \underline{y} \lor \overline{y} < \underline{x} \\ [1, 1] \text{ if } \underline{x} = \overline{x} = \underline{y} = \overline{y} \\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][\neq][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \underline{x} = \overline{x} = \underline{y} = \overline{y} \\ [1, 1] \text{ if } \overline{x} < \underline{y} \vee \overline{y} < \underline{x} \\ [0, 1] \text{ otherwise} \end{cases}$$

Boolean operators \land, \lor, \neg are lifted to interval counterparts well-known from 3-valued logic:

$$[\underline{x}, \overline{x}][\wedge][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \underline{x} = \overline{x} = 0 \lor \underline{y} = \overline{y} = 0\\ [1, 1] \text{ if } \overline{x} = \underline{x} = 1 \land \underline{y} = \overline{y} = 1\\ [0, 1] \text{ otherwise} \end{cases}$$

$$[\underline{x}, \overline{x}][\vee][\underline{y}, \overline{y}] = \begin{cases} [0, 0] \text{ if } \underline{x} = \overline{x} = 0 \land \underline{y} = \overline{y} = 0 \\ [1, 1] \text{ if } \underline{x} = \overline{x} = 1 \lor \underline{y} = \overline{y} = 1 \\ [0, 1] \text{ otherwise} \end{cases}$$
$$[\neg][\underline{x}, \overline{x}] = \begin{cases} [0, 0] \text{ if } \underline{x} = \overline{x} = 1 \\ [1, 1] \text{ if } \underline{x} = \overline{x} = 0 \\ [0, 1] \text{ otherwise} \end{cases}$$

6.2 Abstract Interpretation Concepts

The objective of abstract interpretation is to associate a single abstract computation sequence

$$a = \langle \alpha_0, \alpha_1, \alpha_2, \ldots \rangle$$

with a program, function or method. Each element of a is an abstract valuation function α mapping each variable symbol to its current lattice valuation (which is an interval valuation in the simplest case considered here). The basic principles for obtaining such an abstract interpretation computation are as follows:

Assignments.

An assignment $x_0 = f(x_1, ..., x_n)$; performed in program state α_i maps to a new state α_{i+1} which differs from α_i in two arguments only:

• The program counter p (evaluated as a concrete natural number and not as an interval for the simplest form of abstract interpretation) is incremented by one,

$$\alpha_{i+1}(p) = \alpha_i(p) + 1$$

• The new interval valuation of x_0 is equals the interval valuation of f with argument valuations taken from state α_i :

$$\alpha_{i+1}(x_0) = [f](\alpha_i(x_1), \dots, \alpha_i(x_n))$$

Conditional statements.

A conditional statement

```
if ( BooleanCondition ) {
    ifBlock
}
else {
    elseBlock
}
```

evaluates to

• the valuation of the if-block if the interval valuation of [BooleanCondition] results in [1, 1],

- the valuation of the else-block if the interval valuation of [BooleanCondition] results in [0, 0],
- the join of the if-block and else-block valuations otherwise.

Loops.

```
While loops of the form
          while ( BooleanCondition ) {
               whileBlock
           }
are interpreted as (potentially infinite) if-else sequences
          if ( BooleanCondition ) {
               whileBlock;
               if ( BooleanCondition ) {
                   whileBlock;
                   if ( BooleanCondition ) {
                       whileBlock;
                       if ( ....
                       . . . .
                   }
               }
          }
```

The properties of complete lattices (for incomplete ones widening has to be applied) guarantee that repetitive application of the if-else rules to this expanded loop representation results in a fixpoint, where no interval valuations change any further.

6.3 Abstract Interpretation Example

Example 6.2 Consider the following C-function which inputs x, y, z and returns a computed value.

```
1
        Opre x in [0,100] and y in [0,100] and z in [-2000,-1001]
2
     */
3
    int f(int x, int y, int z) {
4
        int w = 10;
5
        if (x > w & w > x + y)
6
7
           w = w*x + y - 1000;
8
        }
9
        else
10
11
          w = x*y;
12
13
        return 1000 / (z - w);
14
    }
15
```

We wish to explore whether a divide-by-zero runtime error may occur, provided that the pre-condition of the function is met. Since the only devision in this function occurs in line 13, the verification goal can be expressed as usual as a CTL^* formula which is indeed an ACTL formula (we use p to denote the "program counter" indicating the current line number of the execution):

$$\mathbf{AG}(p=13 \Rightarrow (z-w) \neq 0)$$

Performing the simplest form of abstract interpretation over integer intervals without using contractors gives us the following interpretation results which are marked as comments in the listing:

```
/**
    Opre x in [0,100] and y in [0,100] and z in [-2000,-1001]
int f(int x, int y, int z) {
   int w = 10; // w in [10,10]
  if (x > w & w > x + y)
  // ([0,100] > [10,10] && [10,10] > [0,100] + [0,100])
  // = [0,1]
                (top)
   {
      w = w*x + y - 1000; // w in [-1000,100]
  }
  else
   {
    w = x*y; // w in [0,10000]
  }
  // join of if-else branches: w in [-1000,10000] ;
  // this implies (z-w) in [-12000,-1]
  return 1000 / (z - w);
  // return in [-1000,0] (rules for integer division)
}
```

As a consequence, the function will not produce divide-by-zero runtime errors as long as the pre-condition is observed, because the verification goal $\mathbf{AG}(p=13\Rightarrow (z-w)\neq 0)$ is a direct consequence of the stricter assertion

$$AG(p = 13 \Rightarrow (z - w) \in [-12000, -1])$$

obtained from the abstract interpretation.

In the remainder of this section we will justify, using the abstraction concepts introduced in Section 5, why abstract interpretation is a sound abstraction concept. Indeed, it will become apparent that abstract interpretation induces a Boolean simulation of the concrete program, and the interval valuations obtained in the abstract interpretation each lead to one Boolean abstraction variable expressing "The concrete variable valuation at this program execution point lies within the range indicated by its interval valuation". The justification will be performed using the function from the example above, so it does not represent a comprehensive

proof. The procedure we use, however, can be easily seen to apply to abstract interpretations of any program.

Initial condition and transition relation of the concrete system.

As usual, we start by associating the C function with its predicates specifying intial state and transition relation. In addition to program variables x, y, z, w we use p to denote the "program counter" indicating the current line of the program execution (line numbering as indicated in the first listing of Example 6.2).

$$I(p, x, y, z, w) \equiv_{\text{def}}$$

$$p = 5 \land x \in [0, 100] \land y \in [0, 100] \land z \in [-2000, -1001]$$

$$R(p, x, y, z, w, p', x', y', z', w', return') \equiv_{\text{def}}$$

$$(p = 5 \land p' = 6 \land w' = 10 \land x' = x \land y' = y \land z' = z) \lor$$

$$(p = 6 \land x > w \land w > x + y \land p' = 8 \land x' = x \land y' = y \land z' = z \land w' = w) \lor$$

$$(p = 6 \land (x \le w \lor w \le x + y) \land p' = 11 \land x' = x \land y' = y \land z' = z \land w' = w) \lor$$

$$(p = 8 \land p' = 13 \land w' = w \cdot x + y - 1000 \land x' = x \land y' = y \land z' = z) \lor$$

$$(p = 11 \land p' = 13 \land w' = x \cdot y \land x' = x \land y' = y \land z' = z) \lor$$

$$(p = 13 \land return' = 1000/(z - w) \land p' = 14)$$

Identification of abstraction variables.

 $a_8 = (z - w) \in [-12000, -1]$

The next step of the justification introduces one Boolean abstraction variable for every interval valuation obtained in the abstract interpretation for any expression of interest.

$$a_{0} = p$$

$$a_{1} = w \in [10, 10]$$

$$a_{2} = x \in [0, 100]$$

$$a_{3} = y \in [0, 100]$$

$$a_{4} = z \in [-2000, -1001]$$

$$a_{5} = w \in [-1000, 100]$$

$$a_{6} = w \in [0, 10000]$$

$$a_{7} = w \in [-1000, 10000]$$
(8)
(10)
(11)
(12)
(12)
(13)
(14)

(16)

The intuition for selection a_1, \ldots, a_7 is obvious: one Boolean abstraction variable for each concrete variable and associated interval valuation encountered during abstract interpretation; $a_i = \text{true}$ indicates that the variable is in the range specified by the interval involved. Variable a_8 has been introduced because the interval valuation of (z - w) can be used to prove that a divide-by-zero runtime error does not occur.

In the current example only a finite number of interval valuations exist. An abstraction constructed as the a_i above only works if this number is always finite.

For terminating programs only containing bounded loops this is quite obvious, for non-terminating programs or programs containing unbounded while-loops an additional argument is required: the result of each loop execution can be recorded in an interval valuation per variable. For two consecutive loop executions, the join of each valuation results again in a single valuation per variable. For complete lattices this continued join operation will result in a fixpoint which is again an element of the lattice. Since intervals over integral numbers form a complete lattice, we can rest assured that application of the fixpoint technique will result in one valuation result per variable for each loop. Since program text is finite, the finiteness of interval valuations follows.

Predicate abstraction of initial condition and transition relation.

Using the predicate abstraction techniques introduced in Section 5, the intial condition and transition relation of the abstracted Kripke structure constructed via the abstraction variables $a_0 \dots a_8$ look as follows.

$$[I](a_0, \dots, a_8) \equiv_{\text{def}}$$

$$\exists \xi_0, \dots, \xi_4 : (a_0 = \xi_0 \land a_1 = \xi_4 \in [10, 10] \land a_2 = \xi_1 \in [0, 100] \land$$

$$a_3 = \xi_2 \in [0, 100] \land a_4 = \xi_3 \in [-2000, -1001] \land a_5 = \xi_4 \in [-1000, 100] \land$$

$$a_6 = \xi_4 \in [0, 10000] \land a_7 = \xi_4 \in [-1000, 10000] \land a_8 = (\xi_3 - \xi_4) \in [-12000, -1]) \land$$

$$(\xi_0 = 5 \land \xi_1 \in [0, 100] \land \xi_2 \in [0, 100] \land \xi_3 \in [-2000, -1001])$$

Dropping binding information about a_1, a_5, \ldots, a_8 not needed in the initial state leads to the fact that

$$[I](a_0,\ldots,a_8) \Rightarrow A(I)$$
 with $A(I) =_{\text{def}} (a_0 = 5 \land a_2 \land a_3 \land a_4)$

For the transition relation, predicate abstraction results in (we have already

performed term replacement of a_0 for p or ξ_0 , respectively)

For the next step we use the abbreviations

$$a =_{\text{def}} (a_1, \dots, a_8)$$

$$a' =_{\text{def}} (a'_1, \dots, a'_8)$$

$$\xi =_{\text{def}} (\xi_1, \dots, \xi_4)$$

$$\xi' =_{\text{def}} (\xi'_1, \dots, \xi'_4)$$

$$B(a, \xi, a', \xi') \equiv_{\text{def}}$$

$$a_1 = \xi_4 \in [10, 10] \land a_2 = \xi_1 \in [0, 100] \land$$

$$a_3 = \xi_2 \in [0, 100] \land a_4 = \xi_3 \in [-2000, -1001] \land a_5 = \xi_4 \in [-1000, 100] \land$$

$$a_6 = \xi_4 \in [0, 10000] \land a_7 = \xi_4 \in [-1000, 10000] \land a_8 = (\xi_3 - \xi_4) \in [-12000, -1] \land$$

$$a'_1 = \xi'_4 \in [10, 10] \land a'_2 = \xi'_1 \in [0, 100] \land$$

$$a'_3 = \xi'_2 \in [0, 100] \land a'_4 = \xi'_3 \in [-2000, -1001] \land a'_5 = \xi'_4 \in [-1000, 100] \land$$

$$a'_6 = \xi'_4 \in [0, 10000] \land a'_7 = \xi'_4 \in [-1000, 10000] \land a'_8 = (\xi'_3 - \xi'_4) \in [-12000, -1]$$

Applying predicate approximation we get

$$[R](a_0, \dots, a_8, a'_0, \dots, a'_8) \Rightarrow A(R)(a_0, \dots, a_8, a'_0, \dots, a'_8)$$
51

with

$$A(R)(a_{0}, \dots, a_{8}, a'_{0}, \dots, a'_{8}) \equiv$$

$$((a_{0} = 5 \land a'_{0} = 6 \land a'_{1} \land a'_{2} = a_{2} \land a'_{3} = a_{3} \land a'_{4} = a_{4} \land a'_{5} \land a'_{6} \land a'_{7}) \lor$$

$$(a_{0} = 6 \land a'_{0} = 8 \land$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land \xi_{1} > \xi_{4} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3} \land \xi'_{4} = \xi_{4}) \land$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land \xi_{4} > \xi_{1} + \xi_{2} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3} \land \xi'_{4} = \xi_{4})) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 6 \land \xi_{1} \leq \xi_{4} \land a'_{0} = 11 \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3} \land \xi'_{4} = \xi_{4}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 6 \land \xi_{4} \leq \xi_{1} + \xi_{2} \land a'_{0} = 11 \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3} \land \xi'_{4} = \xi_{4}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 8 \land a'_{0} = 13 \land \xi'_{4} = \xi_{4} \cdot \xi_{1} + \xi_{2} - 1000 \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 11 \land a'_{0} = 13 \land \xi'_{4} = \xi_{1} \cdot \xi_{2} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 11 \land a'_{0} = 13 \land \xi'_{4} = \xi_{1} \cdot \xi_{2} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 11 \land a'_{0} = 13 \land \xi'_{4} = \xi_{1} \cdot \xi_{2} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3}) \lor$$

$$(\exists \boldsymbol{\xi}, \boldsymbol{\xi}' : B(\boldsymbol{a}, \boldsymbol{\xi}, \boldsymbol{a}', \boldsymbol{\xi}') \land$$

$$a_{0} = 11 \land a'_{0} = 13 \land \xi'_{4} = \xi_{1} \cdot \xi_{2} \land \xi'_{1} = \xi_{1} \land \xi'_{2} = \xi_{2} \land \xi'_{3} = \xi_{3}) \lor$$

Construction of abstracted and approximated Kripke structure.

The Kripke structure resulting from the abstraction and approximation (A(I), A(R)) of the concrete C function's initial condition and transition relation is depicted in Fig. 15; it is derived from constructing all possible solutions of (A(I), A(R)). We have adopted a 3-valued valuation of atomic propositions for this Kripke structure, where each predicate a may be true (a), false $(not\ a)$ or undecided (a = T). This allows us to omit branches and additional nodes in the Kripke graph if we are not interested in the current valuation of predicates.

Construction of the final linear Kripke structure.

Abstract interpretation in its most simple form which is discussed in this section does not perform any branching: by taking join operations for the resulting valuations of if-, else- and while-blocks we achieve one linear abstracted computation. This process can be repeated on the level of the Kripke structure by introducing additional "undecided"-valuations or weaker predicates for some atomic propositions: observe that nodes n3 and n4 only differ in the program counter value a_0 . We my collapse these two nodes into a single one by choosing a weaker predicate $a_0 = 8 \lor a_0 = 11$, which results in a Kripke structure as shown in Fig. 16.

Finally we observe that – since the truth value of a_8 alone decides about absence of devide-by-zero errors – the actual valuations of a_6 , a_7 are not relevant as long as a_8 holds. This leads us to the final linear Kripke structure shown in Fig. 17.

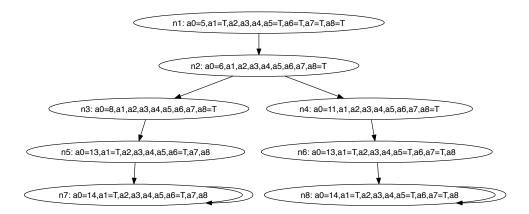


Fig. 15. Kripke structure associated with abstracted and approximated initial condition and transition relation (A(I), A(R)).

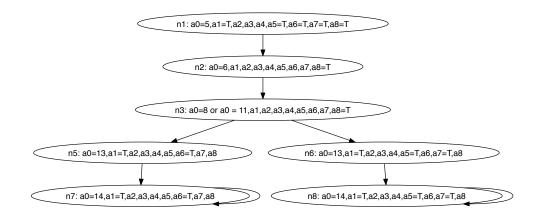


Fig. 16. Kripke structure of Fig. 15 with collapsed nodes n3 and n4.

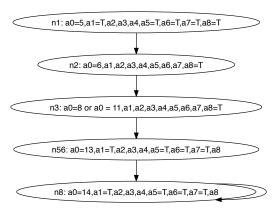


Fig. 17. Final linear Kripke structure which is in one-one-correspondence with the abstract interpretation.

7 Real-Time Formalisms Based on State-Transition Systems and Shared Variables

In this section we introduce a description formalism incorporating the notion of real time: Time is captured in a new model variable \hat{t} typed over $\mathbb{R}_+ = [0, \infty)$. This allows to describe time-continuous evolutions as needed in the description of physical models. Real-time formalisms supporting a notion of time in \mathbb{R}_+ are called dense-time formalisms, in contrast to discrete-time formalisms, where time is described by a counter recording the number of discrete clock ticks that occurred since the start of a computation. Variables are taken as usual from a set V which is now partitioned into five disjoint subsets $I, O, V_L, T, \{\hat{t}\}$ denoting input variables, outputs, local variables, timer variables and the current time, respectively.

7.1 Abstract Syntax of Timed State Machines

Timed State Machines s consist of locations $\ell \in Loc(s)$ (also called control states) and transitions

$$\tau = (\ell, p, g, \alpha, \ell') \in \Sigma(s) \subseteq L(s) \times P \times G \times A \times L(s)$$

connecting source and target locations ℓ and ℓ' , respectively. Value $p \in P = \mathbb{N}_0$ denotes the priority of the transition (0 is the best priority) and is used to enforce determinism for state machines. Transition component $g \in \operatorname{Bexpr}(V)$ denotes the guard condition of τ which is a Boolean expression over symbols from V. For timer symbols $t \in T$ occurring in g we only allow Boolean conditions elapsed(t, c) with constants c. Intuitively speaking, elapsed(t, c) evaluates to true if at least c time units have passed since t's most recent reset.

Transition component $\alpha \in A = \mathbb{P}(V \times \operatorname{Expr}(V))$ denotes a set of value assignments to variables in V, according to expressions from $\operatorname{Expr}(V)$. For a pair $a = (v, e) \in A$, $var(a) =_{\operatorname{def}} v$ and $expr(a) =_{\operatorname{def}} e$ denote the projections on variable and expression, respectively. For timer symbols $t \in T$ only resets $(t, \operatorname{reset})$ are allowed. A transition without accompanying assignments is associated with an empty set $\alpha = \emptyset$. Function

$$\omega: L(s) \to \mathbb{P}(\Sigma(s)); \ \ell \mapsto \{(\overline{\ell}, p, g, \alpha, \ell') \in \Sigma(s) \mid \overline{\ell} = \ell\}$$

maps locations to their outgoing transitions. Each state machine s has a specific start location start(s). Exactly one transition must leave start(s), and the guard of this transition has to be true.

The parallel composition of timed state machines s_1, \ldots, s_n operating over the same set V of variables is denoted by

$$||_{i=1,...,n} s_i|$$

If more than one machine write to the same variables from $V_L \cup O$ then these are called *shared variables*. Timer variables must never be shared, and inputs must never be written to.

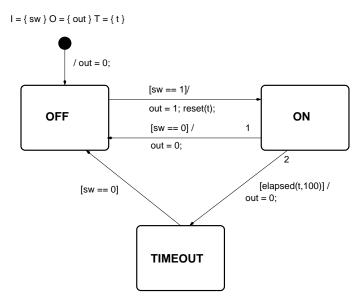


Fig. 18. Timed state machine s for switch with timeout.

Example 7.1 Fig. 18 shows an example of a simple switching mechanism involving a timer t: The start location is marked by the black bullet. Initially, the device controlled by this mechanism is switched off by setting the control output out to 0. If the switch sw is set to 1 then the device is switched on by means of output out = 1. A timer is set, so that the device is automatically switched off after 100 time units. In that case, the input switch sw has to be reset first, before the device can be switched on again. Otherwise, if the switch sw is reset to 0 before the timer elapses, the device is switched off at once and switched on again as soon as sw = 1.

7.2 Semantics of Timed State Machines

The semantics of timed state machines is based on timed state transition systems $TSTS = (S, S_0, R)$: The state space S consists of valuation functions $s: L \cup V \to D$ satisfying $s(\hat{t}), s(t) \in \mathbb{R}_+$ for valuation of global time \hat{t} and timer variables t. As a consequence, S has uncountable cardinality. For locations ℓ , $s(\ell) \in \mathbb{B}$, $s(\ell) = \text{true}$ signifying that the state machine is currently in this location. Initial states reside in the start location and have current time $\hat{t} = 0$, but may be associated with arbitrary input values. Also, local variables, outputs and timer have arbitrary values which are typically reset during the first transition from the start location to its target.

Current time \hat{t} changes over physical time z like an ideal clock: if the model execution starts at physical point in time z_0 , then the current time always fulfils

$$\hat{t} = z - z_0$$

or, equivalently,

$$\frac{d\hat{t}}{dz} = 1$$

which will occur in the invariants introduced below, which are part of the transition relation.

Example 7.2 For the example from Fig. 18, this results in the following initial state:

$$\begin{split} S_0 &= \{ s \in S \mid s \models I \} \\ I &\equiv \operatorname{start}(s) \land \hat{t} = 0 \land \operatorname{INV} \\ \operatorname{INV} &\equiv (\operatorname{start}(s) \lor \operatorname{OFF} \lor \operatorname{ON} \lor \operatorname{TIMEOUT}) \land \\ &\neg (\operatorname{start}(s) \land \operatorname{OFF}) \land \neg (\operatorname{start}(s) \land \operatorname{ON}) \land \neg (\operatorname{start}(s) \land \operatorname{TIMEOUT})) \land \\ &\neg (\operatorname{OFF} \land \operatorname{ON}) \land \neg (\operatorname{OFF} \land \operatorname{TIMEOUT}) \land \neg (\operatorname{ON} \land \operatorname{TIMEOUT}) \land \frac{d\hat{t}}{dz} = 1 \end{split}$$

Transitions are classified as

- discrete transitions
- delay transitions

which is the canonical approach for dense-time formalisms: Discrete transitions take place in zero time; they may change outputs, local variables, timers and locations, while inputs and current time \hat{t} remain stable. Delay transitions can only happen when no discrete transition is enabled. In that case the current time is advanced by a positive value, but only as far as the point in time where the next timers elapse, because this might enable another discrete transition. Obviously, TSTS contains uncountably many transitions, since time may proceed in infinitesimally small units, each unit inducing a delay transition.

The effect of an action $\alpha = \{a_1, \ldots, a_k\}$ is defined as

$$\epsilon(\alpha) \equiv_{\text{def}} (\forall a \in \alpha \land var(a) \in V - T : var(a)' = expr(a)) \land (\forall a \in \alpha \land var(a) \in T : var(a)' = \hat{t})$$

A state machine transition $\tau = (\ell_0, p, g, \alpha, \ell_1)$ may be triggered (or, synonymously, it may fire) if

$$\operatorname{trigger}_{\mathfrak{s}}(\ell_0, p, q, \alpha, \ell_1) \equiv_{\operatorname{def}} \ell_0 \wedge q \wedge (\forall (\ell_0, \overline{p}, \overline{q}, \overline{\alpha}, \overline{\ell_1}) \in \omega_{\mathfrak{s}}(\ell_0) : \overline{p} \geq p \vee \neg \overline{q})$$

holds. This means that for τ to fire, s must reside in location ℓ_0 , τ 's guard condition has to evaluate to **true** and no higher-priority transition emanating from ℓ_0 can be triggered. The *effect* of a state machine transition $\tau = (\ell_0, p, g, \alpha, \ell_1)$ that can be triggered is specified as

$$\epsilon(\ell_0, p, q, \alpha, \ell_1) \equiv_{\text{def}} \epsilon(\alpha) \wedge \ell_1'$$

The write set of an action α is defined by the set of left-hand side variables and timers that are changed by this action:

$$W(\alpha) =_{\text{def}} \{ var(a) \mid a \in \alpha \}$$

The write set of a transition $\tau = (\ell_0, p, g, \alpha, \ell_1)$ is defined by the write set of its action:

$$W(\tau) =_{\text{def}} W(\alpha)$$

The complete transition relation of a parallel system $||_{i=1,\dots,n} s_i|$ is defined by

$$\Phi \equiv_{\operatorname{def}} ((\operatorname{trigger}_D \wedge \Phi_D) \vee (\neg \operatorname{trigger}_D \wedge \Phi_T)) \wedge \operatorname{Inv}'$$

where predicate $\operatorname{trigger}_D$ is defined as follows:

$$\operatorname{trigger}_D \equiv_{\operatorname{def}} \exists i \in \{1, \dots, n\}, \tau \in \Sigma(s_i) : \operatorname{trigger}_{s_i}(\tau)$$

The invariant Inv states that

- every state machine may be in at most one location at time,
- every variable only takes values in its specified domain,
- the current time behaves like an ideal clock.

Inv
$$\equiv_{\text{def}}$$

$$(\forall i \in \{1, \dots, n\}, \ell_0, \ell_1 \in Loc(s_i) : \ell_0 \land \ell_1 \Rightarrow \ell_0 = \ell_1) \land (\forall v \in V : v \in D_v) \land \frac{d\hat{t}}{dz} = 1$$

Components Φ_D and Φ_T denote the discrete and and delay transition aspects of the complete transition relation Φ , respectively: if trigger_D evaluates to true we get the effect of a discrete transition, and if it evaluates to false, a delay transition is performed. For discrete transitions we define

$$\Phi_D \equiv_{\text{def}} (\hat{t}' = \hat{t}) \land (\forall v \in I : v' = v) \land (\forall i \in \{1, \dots, n\}, \tau \in \Sigma(s_i) : \text{trigger}(\tau) \Rightarrow \epsilon(\tau)) \land (\forall v \in V - I : \text{written}(v) \lor v' = v)$$

the current time and the inputs remain unchanged during a discrete transition; all transitions of state machines s_i that may fire are performed simultaneously, and variables that are not written to by any transition remain unchanged. Formally, written(v) is defined as

written
$$(v) \equiv_{\text{def}} (\exists i \in \{1, \dots, n\}, \tau \in \Sigma(s_i) : \text{trigger}(\tau) \land v \in W(\tau))$$

The delay component Φ_T formalises the following rules:

- The current time has to be advanced.
- All locations, local variables and outputs remain unchanged.
- The current time may be advanced at most up to the point in time where the next timer will elapse.
- Timers which are already elapsed do not restrict the amount of time \hat{t} is advanced.

$$\Phi_{T} \equiv_{\text{def}} (\hat{t}' > \hat{t}) \land \\
(\forall i \in \{1, \dots, n\}, \ell \in Loc(s_{i}) : \ell' \Leftrightarrow \ell) \land \\
(\forall v \in V - I : v' = v) \land \\
(\forall i \in \{1, \dots, n\}, (\ell_{0}, p, g, \alpha, \ell_{1}) \in \Sigma(s_{i}) : \\
(l_{0} \land \exists \overline{g} \in \text{Bexpr}, t \in T, c \in \mathbb{N} : g \equiv \overline{g} \land \text{elapsed}(t, c)) \Rightarrow \\
(\hat{t}' \leq c + t \lor \hat{t} \geq c + t))$$

Example 7.3 For the example from Fig. 18, this results in the following transition relation:

$$R \equiv \text{INV} \land \text{INV'} \land ((\text{start}(s) \land \text{sw'} = \text{sw} \land t' = t \land \hat{t}' = \hat{t} \land \text{out'} = 0 \land \text{OFF'}) \lor (\text{OFF} \land \text{sw} = 0 \land \hat{t}' > \hat{t} \land \text{out'} = \text{out} \land t' = t \land \text{OFF'}) \lor (\text{OFF} \land \text{sw} = 1 \land \text{sw'} = \text{sw} \land \hat{t}' = \hat{t} \land \text{out'} = 1 \land t' = \hat{t} \land \text{ON'}) \lor (\text{ON} \land \text{sw} = 1 \land \hat{t}' > \hat{t} \land (\hat{t} - t) < 100 \land (\hat{t}' - t) \leq 100 \land \text{out'} = \text{out} \land t' = t \land \text{ON'}) \lor (\text{ON} \land \text{sw} = 1 \land (\hat{t} - t) \geq 100 \land \hat{t}' = \hat{t} \land \text{sw'} = \text{sw} \land \text{out'} = 0 \land t' = t \land \text{TIMEOUT'}) \lor (\text{ON} \land \text{sw} = 0 \land \hat{t}' = \hat{t} \land \text{sw'} = \text{sw} \land \text{out'} = 0 \land t' = t \land \text{OFF'}) \lor (\text{TIMEOUT} \land \text{sw} = 1 \land \hat{t}' > \hat{t} \land t' = t \land \text{out'} = \text{out} \land \text{TIMEOUT'}) \lor (\text{TIMEOUT} \land \text{sw} = 0 \land \hat{t}' = \hat{t} \land \text{sw'} = \text{sw} \land \text{out'} = \text{out} \land \text{TIMEOUT'}) \lor (\text{TIMEOUT} \land \text{sw} = 0 \land \hat{t}' = \hat{t} \land \text{sw'} = \text{sw} \land \text{out'} = \text{out} \land t' = t \land \text{OFF'}))$$

Exercise. 11. Apply the concept of predicate abstraction introduced in Section 5.6 in order to prove that the sample model displayed in Fig. 18 satisfies the properties

(i) $\mathbf{AG}(\neg ON \lor (\hat{t} - t \le 100))$

(ii)
$$\mathbf{A}(\mathbf{G}(sw = 1) \Rightarrow \mathbf{F}(ON \land (\hat{t} - t) > 50))$$

To this end, for each property,

- 1. Define the relevant auxiliary variables a_i and the associated abstraction expressions $e_i(\dots$ concrete variables...).
- 2. Lift the initial state predicate I defined above to its abstracted predicate [I], as defined in Definition 5.11.
- 3. Lift the transition relation predicate R defined above to its abstracted version [R].
- 4. From [I] and [R], formally derive the Kripke structure of the abstracted system.
- 5. Evaluating the Kripke structure, give an informal argument why the property is satisfied.

7.3 Discussion

Modelling formalisms where all parallel components fire transitions simultaneously in zero time, as soon as their trigger conditions are fulfilled are called *synchronous*;

it is also said that they implement the true parallelism paradigm. They are appropriate for modelling multi-core systems or distributed systems where different tasks can perform computation steps in a truly simultaneous way. Since parallelism is basically expressed by logical conjunction, the model deadlocks as soon as racing conditions occur: If one action or several actions executed by simultaneous transitions try to write different values to the same variable, say $\alpha = \{(x, 5), (x, 6)\}$, this leads to a logical contradiction, such as $x' = 5 \land x' = 6$. As a consequence, the transition relation predicate has no solution, and the system is blocked. As a consequence, models containing racing conditions are not allowed.

In contrast to true parallelism, formalisms using interleaving semantics do not block in presence of racing conditions: These semantics stipulate that no two events – say $e_1 =_{\text{def}} x := 5$; $e_2 =_{\text{def}} x := 6$; may happen simultaneously, but are always causally related. So either e_1 happens before e_2 or vice versa, and you get the result of the event that has been executed last. This paradigm corresponds to quasi-parallel execution of events. It is only applicable if it can be assured that events are atomic. This is not the case, for example, if assignments to wide integers or floats are made, which need two memory bus transfers for one assignments: as consequence, two "interleaved" assignments may lead to a result where the upper word contains the value of the first assignment while the lower word contains the value of the second assignment or the other way round. If these situations have to be taken into account, it is better to use synchronous semantics and disallow racing conditions, because the atomicity assumption of interleaving semantics is not justified.

The transition relation specified above is non-compositional in the sense that it is not just defined by the conjunction of local transition relations for isolated state machines, but additional predicates specify the conditions when variables remain unchanged. This is the price to pay for being allowed to use shared variables in $V_L \cup O$, which can be written to by more than one state machine.

7.4 Clock Abstraction

In order to perform finite-state model checking of timed state machine properties we introduce clock variables, applying the well-known abstraction techniques introduced in Section 5. Given a timed state machine s with timers $t_i \in T$ and current time \hat{t} the auxiliary variables

$$x_i(\hat{t}, t_i) =_{\text{def}} (\hat{t} - t_i), \ t_i \in T$$

are called clock variables; let C denote the set of all these x_i . Observe that, since \hat{t} is an ideal clock, x_i satisfies

$$\frac{dx_i}{dz} = 1$$

where z denotes physical time.

Now we take AUX to be the set of all these clock variables together with all original variables used in s with exception of the timers, that is,

$$AUX =_{\text{def}} C \cup (V - T)$$

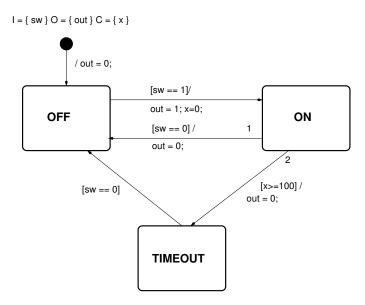


Fig. 19. Timed state machine s with clock instead of timer variable.

Let \sim denote the equivalence relation induced by AUX according to the factorisation principle described in Section 5.2. Then, if K denotes the Kripke structure associated with s, it is easy to see that $K/_{\sim}$ is bisimilar to K.

Since the original expressions involving timers t_i and model execution time \hat{t} were assignments $t_i = \hat{t}$ and conditions $(\hat{t} - t_i) \ge c$, the only operations of interest on clock variables x_i are assignments $x_i = 0$ and conditions of the form $x_i \ge c$; the latter are called atomic clock constraints. The set ACC(C) denotes the set of all atomic clock constraints. Just as timer conditions $(\hat{t} - t_i) \ge c$ may be combined by conjunction, atomic clock constraints can be connected by \wedge . If σ is a state of $K/_{\sim}$ then the valuation of (atomic and non atomic) clock constraints g is defined in the obvious way by

$$\sigma \models x < c \text{ iff } \sigma(x) < c$$

$$\sigma \models x \le c \text{ iff } \sigma(x) \le c$$

$$\sigma \models x > c \text{ iff } \sigma(x) > c$$

$$\sigma \models x \ge c \text{ iff } \sigma(x) \ge c$$

$$\sigma \models x \ge c \text{ iff } \sigma(x) \ge c$$

$$\sigma \models \neg g \text{ iff } \sigma \not\models g$$

$$\sigma \models g \land g' \text{ iff } \sigma \models g \text{ and } \sigma \models g'$$

$$\sigma \models g \lor g' \text{ iff } \sigma \models g \text{ or } \sigma \models g'$$

With these valuation rules at hand, a labelling function

$$L_C: S \to \mathbb{P}(ACC)$$

can be defined which maps every state σ to the set of atomic clock constraints valid in σ .

Example 7.4 The timed state machine shown in Fig. 18 and described in Example 7.3 can be modelled with clocks instead of timer variables as shown in Fig. 19:

instead of timer variable $t \in T$ we introduce a clock x. The reset(t) command is transformed into a reset of the clock to zero. The elapsed(t,c) guard condition is changed into a guard $x \geq c$. The initial condition and transition relation for the new model is easily derived from the original predicates shown in Example 7.3:

$$\begin{split} S_0/_{\sim} &= \{s \in S/_{\sim} \mid s \models I/_{\sim}\} \\ I/_{\sim} &\equiv \operatorname{start}(s) \wedge \hat{t} = 0 \wedge \operatorname{INV}/_{\sim} \\ \operatorname{INV}/_{\sim} &\equiv (\operatorname{start}(s) \vee \operatorname{OFF} \vee \operatorname{ON} \vee \operatorname{TIMEOUT}) \wedge \\ &\neg (\operatorname{start}(s) \wedge \operatorname{OFF}) \wedge \neg (\operatorname{start}(s) \wedge \operatorname{ON}) \wedge \neg (\operatorname{start}(s) \wedge \operatorname{TIMEOUT})) \wedge \\ &\neg (\operatorname{OFF} \wedge \operatorname{ON}) \wedge \neg (\operatorname{OFF} \wedge \operatorname{TIMEOUT}) \wedge \neg (\operatorname{ON} \wedge \operatorname{TIMEOUT}) \wedge \\ &\frac{d\hat{t}}{dz} = 1 \wedge \frac{dx}{dz} = 1 \end{split}$$

$$R/_{\sim} \equiv \text{INV}/_{\sim} \wedge \text{INV}/'_{\sim} \wedge ((\text{start}(s) \wedge \text{sw}' = \text{sw} \wedge x' = x \wedge \hat{t}' = \hat{t} \wedge \text{out}' = 0 \wedge \text{OFF}') \vee (\text{OFF} \wedge \text{sw} = 0 \wedge \hat{t}' > \hat{t} \wedge \text{out}' = \text{out} \wedge x' = x + \hat{t}' - \hat{t} \wedge \text{OFF}') \vee (\text{OFF} \wedge \text{sw} = 1 \wedge \text{sw}' = \text{sw} \wedge \hat{t}' = \hat{t} \wedge \text{out}' = 1 \wedge x' = 0 \wedge \text{ON}') \vee (\text{ON} \wedge \text{sw} = 1 \wedge \hat{t}' > \hat{t} \wedge x' = x + \hat{t}' - \hat{t} \wedge x < 100 \wedge x' \leq 100 \wedge \text{out}' = \text{out} \wedge \text{ON}') \vee (\text{ON} \wedge \text{sw} = 1 \wedge x \geq 100 \wedge \hat{t}' = \hat{t} \wedge \text{sw}' = \text{sw} \wedge \text{out}' = 0 \wedge x' = x \wedge \text{TIMEOUT}') \vee (\text{ON} \wedge \text{sw} = 0 \wedge \hat{t}' = \hat{t} \wedge \text{sw}' = \text{sw} \wedge \text{out}' = 0 \wedge x' = x \wedge \text{OFF}') \vee (\text{TIMEOUT} \wedge \text{sw} = 1 \wedge \hat{t}' > \hat{t} \wedge x' = x + \hat{t}' - \hat{t} \wedge \text{out}' = \text{out} \wedge \text{TIMEOUT}') \vee (\text{TIMEOUT} \wedge \text{sw} = 0 \wedge \hat{t}' = \hat{t} \wedge \text{sw}' = \text{sw} \wedge \text{out}' = \text{out} \wedge x' = x \wedge \text{OFF}'))$$

Note that in the definition of $R/_{\sim}$ we could drop the conjuncts $x' = x + \hat{t}' - \hat{t}$ because this is already implied by $\frac{d\hat{t}}{dz} = 1 \wedge \frac{dx}{dz} = 1$ which is part of the invariant. \Box

7.5 Property Specifications for Timed State Machines

As variants of CTL have been introduced to describe properties of reactive systems without timing aspects, we will now define TCTLX (Timed CTL With Next Operator) for property specification of timed state machines. Observe that TCTLX has been derived from TCTL which was introduced for reasoning about timed automata [1]. Since timed automata are non-deterministic and allow non-urgent execution of discrete transitions, a Next-operator has no meaning in this context, because uncountably many delays may occur in most situations before a discrete transition fires. In contrast to this, TCTLX has a well-defined meaning for the Next-operator:

 $\mathbf{X}\phi \equiv_{\mathrm{def}}$ the next transition is a discrete one and its post-state satisfies ϕ

Just as in TCTL, TCTLX defines timing properties by means of a timed variant

of the Until-operator:

$$\phi \mathbf{U}^J \psi$$

asserts that property ψ will be fulfilled within $t \in J$ time units, where t is taken from some interval $J \subseteq \mathbb{R}_+$, and until then ϕ holds. Any time interval $J \subseteq \mathbb{R}_+$ with open or closed boundaries is admissible; in particular unbounded restrictions like $J = [u, \infty), u \geq 0$ are allowed. Timed variants of the Globally and Finally operators are defined as syntactic abbreviations of constructs involving the timed Until-operator:

$$\mathbf{F}^{J}\phi \equiv_{\mathrm{def}} \mathtt{true} \mathbf{U}^{J}\phi$$
 $\mathbf{E}\mathbf{G}^{J}\phi \equiv_{\mathrm{def}} \neg \mathbf{A}\mathbf{F}^{J} \neg \phi$
 $\mathbf{A}\mathbf{G}^{J}\phi \equiv_{\mathrm{def}} \neg \mathbf{E}\mathbf{F}^{J} \neg \phi$

Observe that these definitions are quite intuitive: $\mathbf{AG}^{J}\phi$, for example, asserts that ϕ holds on every path and for every point in time $t \in J$.

More formally, TCTLX syntax is defined as follows.

TCTLX-formula ::=
$$\phi$$

$$\phi ::= p \mid g \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \mathbf{E} \ \psi \mid \mathbf{A} \ \psi$$

$$\psi ::= \phi \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi \mid \mathbf{X} \ \phi \mid \mathbf{F}^J \ \phi \mid \mathbf{G}^J \ \phi \mid \phi \ \mathbf{U}^J \ \phi$$

In this syntax definition, $p \in AP$ denotes an "ordinary" atomic proposition, and $g \in ACC(C)$ an atomic clock constraint.

Given a system of concurrent timed state machines whose initial condition is defined by predicate I and whose transition relation is given by Φ as introduced above, the semantics of a TCTLX formula is defined in Fig 20. All paths π referenced in this definition are assumed to be time-divergent. If

$$\pi = \langle \sigma_0, \sigma_1, \sigma_2, \ldots \rangle$$

then $d_i, i \geq 0$ are defined as the delays between consecutive states, that is,

$$d_i =_{\text{def}} (\sigma_{i+1}(\hat{t}) - \sigma_i(\hat{t}))$$

For $d \in \mathbb{R}_+$ a time shift $\sigma + d$ is defined on states σ by setting

$$(\sigma + d)(v) =_{\text{def}} \begin{cases} v & \text{if } v \in V - C \\ \sigma(\hat{t}) + d & \text{if } v = \hat{t} \\ \sigma(v) + d & \text{if } v \in C \end{cases}$$

7.6 Property Checking of Concurrent Timed State Machines

The fundamental idea for TCTLX property checking time state machines has been adopted from TCTL property checking of Timed Automata [2,1]. We follow, however, the general abstraction approach for Kripke Structures introduced in Section 5

```
M, s \models p \equiv p \in L(s)
M, s \models g \qquad \equiv p \in L_C(s)
M, s \models \neg \phi \qquad \equiv M, s \not\models \phi
M, s \models \phi_1 \lor \phi_2 \equiv M, s \models \phi_1 \text{ or } M, s \models \phi_2
M, s \models \phi_1 \land \phi_2 \equiv M, s \models \phi_1 \text{ and } M, s \models \phi_2
M, s \models \mathbf{E} \ \psi
                                \equiv there is a time-divergent path \pi from s such that M, \pi \models \psi
M, s \models \mathbf{A} \psi
                                \equiv on every time-divergent path \pi from s holds M, \pi \models \psi
M, \pi \models \phi
                     \equiv M, \pi(0) \models \phi
M, \pi \models \neg \psi \qquad \equiv M, \pi \not\models \psi
M, \pi \models \psi_1 \lor \psi_2 \equiv M, \pi \models \psi_1 \text{ or } M, \pi \models \psi_2
M, \pi \models \psi_1 \land \psi_2 \equiv M, \pi \models \psi_1 \text{ and } M, \pi \models \psi_2
M, \pi \models \mathbf{X} \ \psi \equiv M, \pi(0) \models \operatorname{trigger}_D \text{ and } M, \pi^1 \models \psi
M, \pi \models \psi_1 \mathbf{U}^J \psi_2 \equiv \text{there exists } i \geq 0, d \in \mathbb{R}_+ \text{ such that } d \in [0, d_i],
                                      d + \sum_{k=0}^{i-1} d_k \in J and M, \langle \pi(i) + d \rangle \frown \pi^{i+1} \models \psi_2
                                      and for all 0 \le j < i there exists d' \in [0, d_j] such that d' + \sum_{k=0}^{j-1} d_k \le d + \sum_{k=0}^{i-1} d_k and M, \langle \pi(j) + d' \rangle \frown \pi^{j+1} \models
```

Fig. 20. Semantics of TCTLX formulas.

and show that our usual construction technique is applicable to use classical model checking on timed state machines:

- A first abstraction is introduced by "forgetting" about all atomic propositions of the concrete Kripke structure referring to explicit model execution time \hat{t} and confine ourselves to atomic clock constraints only.
- Since both TCTLX formulas and timed state machine guard conditions refer to atomic clock constraints only, every property expressed in TCTLX can be verified on this first abstraction of the original Kripke structure.
- The originally uncountable state space is abstracted to a countable state space by collapsing all concrete system states whose clock valuations lie in the same clock region (a concept to be introduced in the next section) into a single equivalence class.
- By collapsing all clock regions referring to clock values no longer "relevant" for the verification goal under consideration, the countable collection of clock regions is reduced to a finite one.
- The finite collection of remaining "relevant" clock regions is specified by a finite number of abstractions $a_i = e_i(x_1, \dots, x_n)$ as introduced in Section 5.

- On the resulting finite Kripke Structure CTL property checking may be performed with the algorithms introduced in Section 4.
- It is shown that TCTLX formulas over the original system can be expressed as CTL formulas over the finite abstration.
- It is shown that the abstracted Kripke Structure is bi-similar to the original one. Therefore *every* CTL formula (an not only ACTL properties) which holds for the abstracted system hold for the original one.

We introduce the concepts for TCTLX property checking of timed state machines by means of Example 7.5.

Example 7.5 The control mechanism from Fig 19 is extended to a concurrent controller as depicted in Fig. 21. The original control state machine from Fig 19 is still present as state machine s1, but has been modified in the following way:

- The time scale has been changed so that the timeout occurs at time 1 instead of 100. This has only been done to reduce the number of clock regions which are introduced below.
- Whenever the machine is switched off due to the timeout $x \ge 1$ used as trigger in the transition $11 \rightarrow 12$, a counter is incremented in order to record the number of timeouts which had to be handled since the system has been activated.
- As soon as an internal shutdown command off = 1; is given by state machine s2, state machine s1 performs a transition into control state shutdown, stops the machine by setting out = 0; and remains passive.

State machine s1 has been augmented by a new state machine s2 which resets a clock y as soon as the switch sw has been activated for the first time. After two time units have elapsed, machine s2 shuts down the controller by setting off = 1;.

Observe that the number of transitions $11\rightarrow 10$ is unbounded because the amount of time spending in location 11 before switching sw manually back to 0 may be infinitesimally small. For the transition $11\rightarrow 12$ to occur, however, one time unit has to pass. We wish to prove via model checking whether our intuition is right that the counter ctr can never become greater than 2. A closer look shows that even the value 2 may never be reached: Incrementing ctr to 2 requires 2 transitions from 11 to 12, each transition requiring s1 to linger in 11 for 1 time unit. Transitions $12\rightarrow 10\rightarrow 11$ require a value change $0\rightarrow 1$ for input sw, and this requires at least one delay transition of duration $\varepsilon>0$. As a consequence s1 needs more than 2 time units to increment the counter to 2, while s2 sets the shutdown signal exactly after 2 time units have passed. Formally speaking, we wish to check the TCTLX formula

$$\mathbf{AG}(ctr < 2)$$

7.7 Clock Regions

Clock regions are constructed to identify vectors of clock valuations, each vector component for one clock, for which the system will behave in an equivalent way.

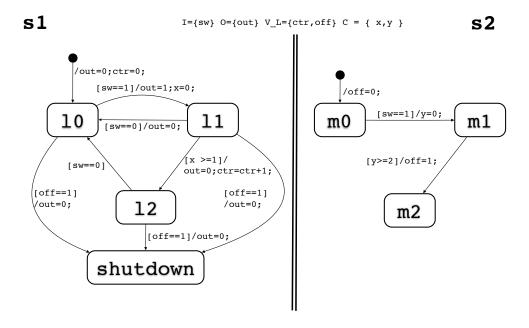


Fig. 21. Two concurrent timed state machines for controlling a machine via interface out with switch-off clock and a final-shutdown clock.

The construction "recipe" for clock regions is as follows.

Step 1.

For each clock $x \in C$, let $c_x \in \mathbb{N}$ the largest integer c occurring in an atomic clock constraint $x \ge c, x > c, x \le c, x < c, x = c$, either in a guard condition or in the TCTLX property.

Step 2.

For each clock $x \in C$, define elementary regions by the following atomic clock constraints.

$$x = 0$$

$$x \in (0,1)$$

$$x = 1$$

$$x \in (1,2)$$

$$x \in (c_x - 1, c_x)$$

$$x = c_x$$

$$x \in (c_x, \infty)$$
65

This defines $2 \cdot (c_x + 1)$ clock constraints, and we use function

$$\alpha: C \times \mathbb{N}_0 \longrightarrow ACC$$

as abbreviation for these constraints. For example, if $c_x = 5$, $\alpha(x, n)$ is defined for $n = 0, 1, \ldots, 9$, and $\alpha(x, 7) \equiv x \in (3, 4)$. More general,

$$\alpha(x,n) =_{\operatorname{def}} \left\{ \begin{aligned} x &= n \text{ div } 2, & \text{if } n \text{ mod } 2 = 0 \\ x &\in (n \text{ div } 2, (n \text{ div } 2) + 1), \text{ if } n \text{ mod } 2 = 1 \end{aligned} \right.$$

Step 4.

For different clocks whose current valuation is inside some open interval of length 1, it is necessary to know the ordering of their fractional parts frac(x), because the clock whose valuation has the largest fractional part will be the next to meet an integer threshold $x \geq c$, so that a discrete transition might become enabled. Let

$$\beta: \{0,\ldots,|C|-1\} \longrightarrow C$$

a permutation signifying the predicate

$$frac(\beta(0)) \leq frac(\beta(1)) \leq frac(\beta(|C|-1))$$

Since the valuations of some clocks may have the same fractional part we need another function

$$\gamma: \{1, \dots, |C|-1\} \longrightarrow \mathbb{B}$$

signifying whether $frac(\beta(i-1))$ ω $frac(\beta(i))$ holds with $\omega = " < "$ (for this case, we set $\gamma(i) = 1$) or $\omega = " \le "$ (for this case, we set $\gamma(i) = 0$).

Let

$$ord(\beta, \gamma)$$

denote the predicate stating the order of fractional parts of all clocks according to a given β, γ .

Step 5.

A clock region is a conjunction

$$\bigwedge_{x \in C} \alpha(x, n_x) \wedge ord(\beta, \gamma)$$

such that each (x, n_x) is in the domain of α and β, γ are defined as explained in Step 4.

7.8 Abstraction by Clock Regions

Given the full collection of constraints defining clock regions as described in the section above we can introduce abstractions using all atomic constraints created during this process.

Example 7.6 The clock regions associated with Example 7.5 induce the following abstraction functions (observe that $c_x = 1$ and $c_y = 2$):

$$\begin{array}{lll} a_0 = (x = 0) & b_0 = (y = 0) & f_0 = (frac(x) < frac(y)) \\ a_1 = (x \in (0,1)) & b_1 = (y \in (0,1)) & f_1 = (frac(x) = frac(y)) \\ a_2 = (x = 1) & b_2 = (y = 1) & f_2 = (frac(x) > frac(y)) \\ a_3 = (x \in (1,\infty)) & b_3 = (y \in (1,2)) \\ & b_4 = (y = 2) \\ & b_5 = (y \in (2,\infty)) \end{array}$$

Applying the usual construction of initial condition and transition relation (I, R) for the concrete system and abstracting to ([I], [R]) as explained in Section 5, yields the abstracted finite Kripke Structure depicted in Fig. 22. Evaluation of all graph nodes of the abstracted Kripke Structure immediately shows that the desired property $\mathbf{AG}(ctr < 2)$ holds.

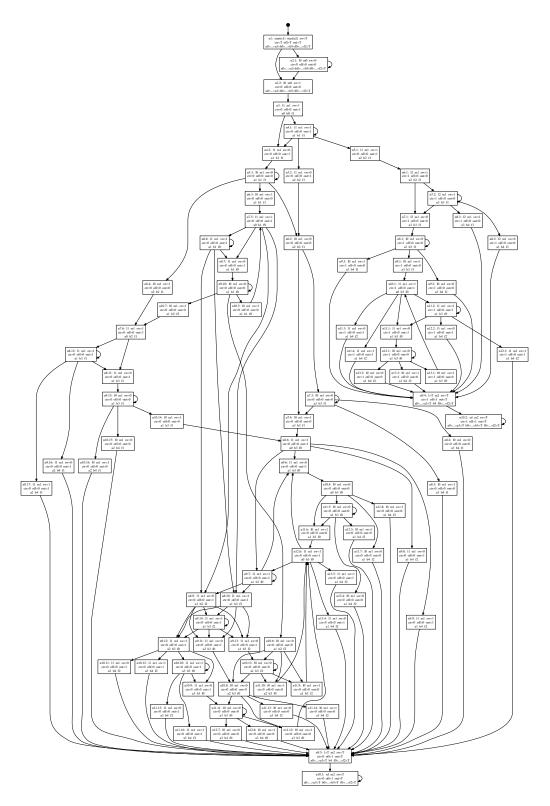


Fig. 22. Abstracted Kripke Structure for system from Example 7.5. (Best viewed with PDF reader, magnification.)

Peleska and Vorobev

References

- $[1] \ Christel \ Baier \ and \ Joost-Pieter \ Katoen. \ Principles \ of \ Model \ Checking. \ The \ MIT \ Press, \ 2008.$
- [2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. *Model Checking*. The MIT Press, 1999.
- [3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.
- [4] J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley, Teubner, Stuttgart, 2 edition, 1987.

A Structural Induction

In this section the principle of *structural induction* is introduced. The material is taken from [4, pp. 8].

Definition A.1 [Inductive Definition of Sets] Let U be a set called *universe* and $B \subseteq U$, called the *base set*. Let K a set of relations $r \subseteq U^n \times U$, where $n \in \mathbb{N}$ depends on r. K is called the *constructor set* and each $r \in K$ a *constructor*. A set $A \subseteq U$ is called *inductively defined* by B and K, if A is the smallest subset of U satisfying

- (i) $B \subseteq A$
- (ii) If $a_1, \ldots, a_n \in A$ and $((a_1, \ldots, a_n), a) \in r$ for some constructor $r \in K$, then $a \in A$.

Theorem A.2 (Principle of Structural Induction) let $A \subseteq U$ be inductively defined by base set B and constructor set K, and P(x) a property on elements of $x \in A$. Suppose that

- (i) Induction basis. P(x) holds for all $x \in B$.
- (ii) Induction step. If $P(a_i)$, i = 1, ..., n holds for $a_1, ..., a_n \in A$ (induction hypothesis) and $((a_1, ..., a_n), a) \in r$ for some constructor $r \in K$, then P(a) also holds.

Then P(a) holds for all $a \in A$.