
Theory of Reactive Systems

Jan Peleska and Elena Vorobev1,2

Centre of Information Technology
University of Bremen

Germany
July 20, 2011

1 Email:jp@tzi.de
2 Email:elenav@tzi.de

2011 This article uses the ENTCS style by Elsevier Science B. V.

mailto:jp@tzi.de
mailto:elenav@tzi.de

Peleska and Vorobev

1 Reactive Systems, Behaviour, Specifications and
Models

Reactive Systems.

A reactive computer system continuously interacts with its operational environ-

ment: at any point in time, inputs from the environment to the system may occur,

and the system should be ready to react on these inputs in an appropriate way.

In general, the interaction takes place over a longer period of time (think of an

aircraft engine controller that should certainly be operative during the duration of

the flight); in many applications reactive computer systems are not supposed to

terminate at all, because the services they deliver do not allow for any downtime

(so-called 24/7 systems).

Behaviour, States and Events.

As a consequence, the behaviour of reactive systems cannot simply be described

by initial and termination state, as would be possible for sequential terminating soft-

ware programs. Instead, behaviour is characterised by (possibly infinite) sequences

of state changes, called computations, executions or runs of the reactive system:

〈s0, s1, s2, . . .〉

denotes a sequence of states si which have been observed as “snapshots” of the sys-

tem state at several points in time during the execution. s0 was the first observation,

s1 the second, and so on. Observe that computations represent a discretised view on

the observable state components: it may be the case that between observations si
and si+1 additional state changes took place which we could not observe or were not

interested in. In theory it would be possible for digital computer systems to observe

every state change in a computation since the electronic circuits involved process

data in discrete steps timed by the digital clock. For physical systems, however,

when time-continuous observables are involved (e. g. change of temperature over

time), computations can never capture the complete evolution of system states.

It is possible to abstract from concrete states in the description of reactive system

behaviour by recording sequences of events. Events denote discrete points in time

where certain properties of the state space become true. This abstraction may help

to reduce the amount of information in computations to the data which is “relevant”

in the application context.

Example 1.1 Suppose we observe temperature changes temp in a reactor at dis-

crete points in time, and this results in a run

c =def 〈(t0, temp0), (t1, temp1), (t2, temp2), . . . , (tk, tempk), . . .〉

where the state observations consist of tuples (timestamp ti, temperature tempi
observed at time ti). Suppose further that we are interested in observing whether

2

Peleska and Vorobev

a temperature threshold max is exeeded, and that the computation satisfies

∀i ∈ {0, . . . , k − 1} : tempi ≤ max

∀i ∈ {k, . . . , k + 3} : tempi > max

∀i ∈ {k + 4, . . .} : tempi ≤ max

Introducing two events

• temp ok

• temp too high

the computation can be abstracted to a trace of events

cevent =def 〈(t0, temp ok), (tk, temp too high), (tk+4, temp ok)〉

2

Specifications.

A specification is a description of the expected or admissible behaviours of a

system. In general, first order predicate logic can be used to write specifications

by giving logical characterisations of the state sequences or event sequences which

are admissible in computations. Since these logical characterisations always deal

with sequences of states or events, more elegant logical formalisms (temporal logic,

trace logic) have been invented, in order to represent these logical formulas in a

more elegant way. Some of these logical formalisms will be presented in the sections

below.

Example 1.2 Suppose we require in Example 1.1 that the temperature threshold

in the reactor should never be exceeded for longer than δ time units. This can be

expressed by a formula referring to arbitrary computations

c =def 〈(t0, temp0), (t1, temp1), (t2, temp2), . . . , 〉

in the following way:

∀c : ∀i ≥ 0 : tempi > max⇒ (∃j > 0 : tempi+j ≤ max ∧ ti+j − ti ≤ δ)

On the event abstraction level, consider arbitrary computations

cevent =def 〈(t0, e0), (t1, e1), . . .〉

Now the requirement can be expressed as

∀cevent : ∀i ≥ 0 : ei = temp too high⇒ (ei+1 = temp ok ∧ ti+1 − ti ≤ δ)

2

3

Peleska and Vorobev

Models.

A model is a representation of the system from which all possible behaviours

can be theoretically derived in a mechanical way by means of simulations.

Model Checking.

A procedure to investigate whether the possible behaviours of a model satisfy a

given specification is called model checking, or, more specific, property checking.

Another variant of model checking investigates whether two given models pro-

duce the same computations (i. e., have the same behaviour). This technique is

called equivalence checking.

A third variant checks whether the sets of computations associated with two

models fulfil a more general relation than equality, as, for example, a subset

relation. This variant is usually called refinement checking.

Exercise. 1. Fig. 1 shows a laboratory which is equipped with a laser and a

door locking mechanism, both controlled by a controller component. When the

laboratory is empty, the door is locked and the laser is switched on. Anyone who

wants to enter the room has to push a button whereupon the controller switches

the laser off and unlocks the door.

Right after being switched on the laser is in the state on which, by itself, changes

to active after a certain period of time. The same applies to the states off and

passive.

At any time, the door is either open or closed. After the door has been opened,

it closes automatically. A counter counts how often the door has been opened or

closed. It can be assumed that at any time at most one person has access to the

open-request button and may enter the lab.

Assuming t, door, dcnt and laser being variables reflecting the point in time,

the door state, the door counter and the laser state respectively, computa-

tions c are of the form 〈(t0, door0, dcnt0, laser0) , (t1, door1, dcnt1, laser1) , . . .〉
with domains D(t) = R, D(door) = {open, closed}, D(dcnt) = N and

D(laser) = {on, active, off, passive}.

open−request button

door

laser

Controller

communication

laboratory

Fig. 1. Laboratory setup from Exercise 1

4

Peleska and Vorobev

1.1 Find logical formulae to express the following textual requirements:

a) In the initial state the door is closed, the counter is 0 and the laser is in the

passive state.

b) Whenever the laser is in the state on, it’s subsequent state has to be active.

The same applies to the states off and passive.

c) The change of laser state from off to passive takes at most X time units.

d) If the laser is not in the state passive, the room has to be empty and the door

has to be locked.

e) The laser has to be in the state passive, if the room is not empty or the door

is open.

1.2 Define events e0, . . . , en abstracting concrete computations c to abstract

computations cE of the form 〈(t0, e0) , (t1, e1) , . . .〉. Adapt the logical formulae from

part 1.1 to abstract computations over these events. 2

5

Peleska and Vorobev

2 Transition Systems and Kripke Structures

The operational semantics of specification formalisms for reactive systems, as well

as of computer programs, can be described by means of state transition systems.

For the verification of properties of specifications or programs it is useful to extend

the notion of transition systems by adding information about the basic properties

which are true in each state. This leads to the definition of Kripke structures. The

definitions below follow closely [2, pp. 14] and [1].

Definition 2.1 A State Transition System is a triple TS = (S, S0, R), where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S × S is the transition relation.

2

Definition 2.2 A Labelled Transition System is a tuple LTS = (S, S0,Σ, R), where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• Σ is a set of labels, also called events,

• R ⊆ S × Σ× S is the transition relation.

2

State transition systems are the preferred mathematical models to reason about

state-based reactive systems, where communication takes place according to the

shared variable paradigm. Labelled transition systems are the preferred model for

reasoning on the event abstraction level. In the sections to follow we focus on

state-based systems represented by state transition systems.

An atomic proposition is a logical proposition which cannot be divided further.

Examples are a, x < y, but x < y ∧ a is not considered as atomic because it

represents the conjunction of a and x < y.

Definition 2.3 A Kripke Structure K = (S, S0, R, L) is a state transition system

(S, S0, R) augmented by a set AP of atomic propositions and a function

L : S → 2AP

mapping each state s of K to the set of atomic propositions valid in s. Furthermore

it is required that the transition relation R is total in the sense that ∀s ∈ S : ∃s′ ∈
S : (s, s′) ∈ R. 2

If a state transition system contains terminal states, that is, states s ∈ S satis-

fying ∀s′ ∈ S : (s, s′) 6∈ R, we can always extend R to a total transition relation R

suitable for Kripke structures by adding self loops to the terminal states in R:

R = R ∪ {(s, s) | s ∈ S ∧ (∀s′ ∈ S : (s, s′) 6∈ R)}

6

Peleska and Vorobev

State Space of Valuation Functions.

Next, we specialise on specification formalisms where the state space can always

be defined by a vector of variables, together with their current values. In this con-

text, a state is a mapping from symbols to current values. The mapping is partial,

since the visibility of symbols may depend on scope rules. Let V = {x0, x1, . . .} be

the set of all variable symbols associated with a specification, a model or a program.

For each variable x ∈ V , let Dx denote its type (also called domain) comprising

all possible values x can assume. We require a special element > to be contained

in each Dx, denoting an undefined variable state, such as an arbitrary input value

or a stack variable which is still in an undefined state since no assignments to the

variable have been performed so far. Let D =
⋃
x∈V Dx the union over all domains

of variables from V . A valuation is a partial mapping

s : V 6→ D

which is compatible with the symbol types Dx in the sense that

∀x ∈ dom s : s(x) ∈ Dx

Expression Valuation.

Given a valuation function s : V 6→ D and a well-typed expression e(x1, . . . , xn)

with free variables xi ∈ V we can evaluate e in state s by inserting the valuation

of each xi in state s into the expression. This extends the valuation function on

variable symbols to well-typed expressions in a natural way:

s(e(x1, . . . , xn)) =def e(s(x1), . . . , s(xn))

If e(x1, . . . , xn) is a Boolean expression and s(e(x1, . . . , xn)) = true then we say

that e(x1, . . . , xn) holds in state s and write

s |= e(x1, . . . , xn)

Kripke Structures With State Spaces of Valuation Functions.

In the transition systems and Kripke structures to consider from now on the

state space will always be represented by a set of valuation functions. This has a

consequence on the atomic propositions to consider: All information that can be

obtained from the fact that a system is in state s : V 6→ D is a consequence from the

atomic propositions specifying exactly the valuation of each variable in the current

state s, that is,

x0 = s(x0), x1 = s(x1), . . . (∗)
Every other atomic proposition, say, x0 < x1 can be derived from the propositions

(*): For example, x0 < x1 holds in state s if and only if s(x0) < s(x1). For the

moment, our set of atomic propositions will therefore be

AP = {x = d | x ∈ V ∧ d ∈ Dx} (∗∗)

7

Peleska and Vorobev

Observe, however, that we will also consider other atomic propositions later on in

order to avoid the state explosion that would occur if we enumerated AP from (**)

for variables x with large data types, such as 32 and 64 bit integers and floats.

The special nature of the atomic propositions from AP in (**) implies that the

mapping L can be easily determined for a Kripke structure as soon as their state

space, initial state and transition relation is known: Considering (*) and (**), the

atomic propositions valid in some state s are obviously

L(s) = {x = d | x ∈ V ∧ s(x) = d}

First Order Representations.

Let φ a first order logical formula, x a free variable in φ and ε an expression. Then

φ[ε/x] denotes the formula which results from replacement of every free occurrence

of x by ε. This term replacement can be applied more than once, which is written

φ[ε0/x0, ε1/x1, . . .]; in which case the replacements are applied from left to right.

Let s ∈ S a valuation and φ a (first order) logical formula with free variables

from V = {x0, x1, . . .}. We say that φ holds in state s and write s |= φ, if the

formula evaluates to true when replacing every free variable x occurring in φ by its

valuation s(x); that is, φ[s(x0)/x0, s(x1)/x1, . . .] is a tautology.

Based on the replacement concept, the initial state S0 of a transition system

based on variables and valuations can be specified by means of a first order logical

formula I, if S0 coincides with the set of all valuations where I holds, that is,

S0 = {s : V 6→ D | s |= I}

Conversely, given S0 and assuming that S0 and D are finite, we can always construct

such an I by setting

I ≡
∨
s∈S0

(
∧
x∈V

x = s(x))

If the finiteness assumptions do not hold we can write

I ≡ ∃s ∈ S0 : ∀x ∈ V : x = s(x)

In analogy, we can specify transition relations by means of first order formulas.

In contrast to the initial state formula, however, we now have to consider pre- and

post states. Therefore we consider formulas with free variables in V and V ′ =

{x′ | x ∈ V } and associate unprimed variable symbols x with the prestate and

primed variables with the poststate. Let s, s′ two valuations and ψ a formula with

free variables in V, V ′. We say that ψ holds in (s, s′) and write (s, s′) |= ψ if

ψ[s(x0)/x0, s(x1)/x1, . . . , s
′(x0)/x′0, s

′(x1)/x′1, . . .]

evaluates to true. With this notation a formula T with free variables in V, V ′

specifies a transition relation R ⊆ S × S by setting

R = {(s, s′) ∈ S × S | (s, s′) |= T}

8

Peleska and Vorobev

Conversely, given transition relation R we can construct a suitable formula T by

T ≡ ∃(s, s′) ∈ R : ∀x ∈ V, x′ ∈ V ′ : x = s(x) ∧ x′ = s′(x)

Example 2.4 Consider two parallel processes P0, P1 acting on global variables s,

c0, c1. Suppose the processes are executed on a single-core CPU such that each

assignment is atomic but the both processes may have to release the CPU between

two arbitrary statements.

int s = 0;

int c0 = 0;

int c1 = 0;

1 P0 {

2 do { s = 0;

3 while (s == 0);

4 c0 = 1; // process data

5 c0 = 0;

6 } while (1);

7 }

8

1 P1 {

2 do { s = 1;

3 while (s == 1);

4 c1 = 1; // process data

5 c1 = 0;

6 } while (1);

7 }

8
To capture the complete state space, we add two program counters p0, p1 in range

{1, 2, . . . , 7} indicating the next statement to be executed by P0, P1, respectively.

The semantics of this little parallel program is specified as follows: The symbol set of

the parallel system is V = {p0, p1, s, c0, c1} with p0, p1 ∈ {1, 2, . . . , 7}, c0, c1, s ∈ B.

The initial state is captured by the formula

I ≡ p0 = 1 ∧ p1 = 1 ∧ s = 0 ∧ c0 = 0 ∧ c1 = 0

9

Peleska and Vorobev

The transition relation is specified by the formula

T ≡ (p0 = 1 ∧ p′0 = 2 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 2 ∧ p′0 = 3 ∧ p′1 = p1 ∧ s′ = 0 ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 3 ∧ s = 0 ∧ p′0 = 3 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 3 ∧ s 6= 0 ∧ p′0 = 4 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p0 = 4 ∧ p′0 = 5 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = 1 ∧ c′1 = c1) ∨

(p0 = 5 ∧ p′0 = 6 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = 0 ∧ c′1 = c1) ∨

(p0 = 6 ∧ p′0 = 2 ∧ p′1 = p1 ∧ s′ = s ∧ c′0 = c0 ∧ c′1 = c1) ∨

(p1 = 1 ∧ p′1 = 2 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 2 ∧ p′1 = 3 ∧ p′0 = p0 ∧ s′ = 1 ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 3 ∧ s = 1 ∧ p′1 = 3 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 3 ∧ s 6= 1 ∧ p′1 = 4 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0) ∨

(p1 = 4 ∧ p′1 = 5 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = 1 ∧ c′0 = c0) ∨

(p1 = 5 ∧ p′1 = 6 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = 0 ∧ c′0 = c0) ∨

(p1 = 6 ∧ p′1 = 2 ∧ p′0 = p0 ∧ s′ = s ∧ c′1 = c1 ∧ c′0 = c0)

For representing the associated Kripke structure we use the encoding

π0, π1, σ, ζ0, ζ1 for a Kripke state s where L(s) = {p0 = π0, p1 = π1, s = σ, c0 =

ζ0, c1 = ζ1}. For unfolding the Kripke structure from the specification of the tran-

sition system we proceed as follows:

(i) Construct the initial states: This is done by finding all solutions s : V 6→ D

of the formula I describing the initial state. In our example this is trivial since

I specifies exactly one admissible initial value for each variable, so S0 consists

just of the one valuation s0 = {p0 7→ 1, p1 7→ 1, s 7→ 0, c0 7→ 0, c1 7→ 0}. In

the general case the set of all valuations s with s |= I has to be constructed.

Each initial state s is labelled as described above by L(s) = {x0 = s(x0), x1 =

s(x1), . . .}. If the number of variables involved and their data ranges are small

this can be done using truth tables for I. For more complex applications more

sophisticated methods will be introduced later on.

(ii) Expand from the initial states: Starting with each initial state, expand the

Kripke structure by applying the transition relation. This process stops as soon

as the expansions of all states generated so far have already been generated

before, that is, as soon as the expansion process reaches a fixed point. More

formally, given a state s which has already been reached by the expansion, we

need to construct all solutions of T [s(x0)/x0, s(x1)/x1, . . .], that is T , with all

prestate variables replaced by their actual values in s. Every solution s′ gives

rise to a new Kripke state with L(s′) = {x0 = s′(x0), x1 = s′(x1), . . .}.

10

Peleska and Vorobev

Lets expand our initial state 1,1,0,0,0 : Replacing the prestate variables in T with

these values results in formula

T [1/p0, 1/p1, 0/s, 0/c0, 0/c1] ≡

(p′0 = 2 ∧ p′1 = 1 ∧ s′ = 0 ∧ c′0 = 0 ∧ c′1 = 0) ∨

(p′1 = 2 ∧ p′0 = 1 ∧ s′ = 0 ∧ c′1 = 0 ∧ c′0 = 0)

so initial state 1,1,0,0,0 expands to 2,1,0,0,0 and 1,2,0,0,0 . The resulting

complete Kripke structure for the two interacting processes in this example is shown

in Fig. 3. Observe that we can also represent the Kripke structure as an infinite

tree which is called the computation tree. 2

Unwinding the Computation Tree.

The following algorithm formalises an unwinding procedure for a finite section

of the computation tree associated with a Kripke structure, as illustrated in Exam-

ple 2.4. Since a state s may occur in more than one place of the computation tree

we use tree nodes N = S × 2AP × N: (s, P, n) ∈ N denotes a state s ∈ S which is

inserted as a tree node at level n and has valid atomic propositions P = L(s). The

computation tree to be constructed is a structure TC = (N, ρ, succ,pred) with

• ρ ∈ N the root of the tree

• succ : N → P(N) the successor function mapping each tree node to the set of

its children. If succ(z) = ∅ then z is called a leaf of the tree.

• pred : N → N ∪{⊥} the predecessor function mapping each node to its parent

or – in case of the root node – to ⊥

The algorithm is shown in Fig. 2. It unwinds the computation tree in a manner

where a node becomes a leaf if it already occurs elsewhere on the same path on

a higher level closer to the root. This representation is interesting in the context

of test automation (to be discussed in later chapters) and suffices as a simplified

model to prove or disprove assertions about the model with are of a certain restricted

nature, to be discussed in the next section.

Exercise. 2. Consider the specification model of component C in Fig. 4. C inputs

x ∈ {0, 1, 2} and outputs to y ∈ {−1, 0, 1, 2, . . .}. Its behaviour is modelled in

Statechart style: The rounded corner boxes denote locations, also called control

states. Arrows between locations denote transitions; a transition arrow without

source location marks the initial control state. Expressions in brackets (like [x >

y]) specify guard conditions: The transition from location l0 to l1 can only be

taken if x > y holds, which means, that the current valuation s : V 6→ D results

in s(x) > s(y). Expressions after a slash, like / y = -1;, denote actions, that is,

assignments to internal variables (if any) or outputs. An action is executed if its

associated transition is taken.

Applying the informal description of the behaviour of C in Example 2.4, specify

the initial state and the transition relation as logical formulas. 2

11

Peleska and Vorobev

function computationTree(in (S, S0, R, L) : KripkeStructure) : (N, ρ, succ, pred)

begin

n := 1; M := {(s, L(s), n) | s ∈ S0}; N := {ρ} ∪M ;

succ := {ρ 7→M} ∪ {m 7→ ∅ | m ∈M};
pred := {m 7→ ρ | m ∈M} ∪ {ρ 7→ ⊥}
while M 6= ∅ do

M ′ := ∅;

foreach (s, L(s), n) ∈M do

foreach s′ ∈ S do

if (s, s′) ∈ R then

N := N ∪ {(s′, L(s′), n+ 1)};
succ(s, L(s), n) := succ(s, L(s), n) ∪ {(s′, L(s′), n+ 1)};
succ(s′, L(s′), n+ 1) := ∅;

pred(s′, L(s′), n+ 1) := (s, L(s), n);

if (∀k ∈ {1, . . . , n} : pr1(predk(s′, L(s′), n+ 1)) 6= s′) then

M ′ := M ′ ∪ {(s′, L(s′), n+ 1)}
endif

endif

enddo

enddo

M := M ′

n := n+ 1;

enddo

computationTree := (N, ρ, succ, pred);

end

Fig. 2. Algorithm for generating a finite portion of the computation tree associated with a Kripke Structure
(S, S0, R, L).

Exercise. 3. Following the algorithm described in Fig. 2, draw the initial part

of the computation tree associated with the Kripke structure of C in Exercise 2.

For the first 3 nodes in the tree, explain how they are derived from the transition

relation. For this exercise assume N = 2.

Use the GraphViz tool (program dot) to visualise the computation tree. 2

12

Peleska and Vorobev

2,2,0,0,0

1,1,0,0,0

2,1,0,0,0

3,1,0,0,0

3,2,0,0,0

3,3,1,0,0

1,2,0,0,0

1,3,1,0,0

4,3,1,0,0

2,3,1,0,0

3,3,0,0,0

3,4,0,0,0

6,3,1,0,0

5,3,1,1,0

3,6,0,0,0

3,5,0,0,1

3,2,0,0,0

Fig. 3. Kripke structure for the processes P0 ‖ P1 from Example 2.4.

13

Peleska and Vorobev

y

l0 l1

l2

[x>y]/

y = y + x;

[x <= 0]

[y > N]/
y = −1;

[odd(y)]/
y = −1;

[x <= 0]/
y = 0;

/y = 0;

C
x

Fig. 4. Model of component C.

3 Property Specification With Temporal Logic

3.1 The Computation Tree Logic CTL∗

Operators.

CTL∗ formulas are based on the following operators:

• The path quantifiers are

· A (“on every path”)

· E (“there exists a path”)

• The temporal operators are

· X (“next time”)

· G (“globally” or “always”)

14

Peleska and Vorobev

· F (“eventually” or “finally”)

· U (“until”)

· R (“release”)

Apart from these new operators the conventional Boolean operators can be used,

as will be specified in the syntax definition below.

Syntax of CTL∗ formulas.

CTL∗ distinguishes between

• state formulas which refer to properties of a specific Kripke state

• path formulas which specify properties of a path in the computation tree.

State and path formulas refer recursively to each other. The set of all valid

CTL∗ formulas is given by the state formulas generated according to the following

inductive rules:

(i) Every atomic proposition p ∈ AP is a state formula.

(ii) If f and g are state formulas then ¬f, f ∧ g, f ∨ g are state formulas.

(iii) If f is a path formula then E f,A f are state formulas.

The path formulas are defined according to the following rules:

(iv) Every state formula is also a path formula.

(v) If f and g are path formulas, then ¬f, f ∧ g, f ∨ g are path formulas.

(vi) If f and g are path formulas, then X f,F f,G f, f U g, f R g are path

formulas.

More formally, we can write these syntax rules in EBNF notation as follows,

where p ∈ AP , φ denotes state formulas and ψ denotes path formulas

CTL∗-formula ::= φ

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X ψ | F ψ | G ψ | ψ U ψ | ψ R ψ

Semantics of CTL∗ formulas.

The semantics of CTL∗ formulas is explained using a Kripke structureM , specific

states s of M and paths π through the computation tree of M . We write

M, s |= φ (φ a state formula)

to express that φ holds in state s of M . We write

M,π |= ψ(ψ a path formula)

to express that ψ holds along path π through M . For CTL∗ formulas φ we say φ

holds in the Kripke model M and write

M |= φ

15

Peleska and Vorobev

M, s |= p ≡ p ∈ L(s)

M, s |= ¬φ ≡ M, s 6|= φ

M, s |= φ1 ∨ φ2 ≡ M, s |= φ1 or M, s |= φ2

M, s |= φ1 ∧ φ2 ≡ M, s |= φ1 and M, s |= φ2

M, s |= E ψ ≡ there is a path π from s such that M,π |= ψ

M, s |= A ψ ≡ on every path π from s holds M,π |= ψ

M,π |= φ ≡ M,π(0) |= φ

M, π |= ¬ψ ≡ M,π 6|= ψ

M,π |= ψ1 ∨ ψ2 ≡ M,π |= ψ1 or M,π |= ψ2

M,π |= ψ1 ∧ ψ2 ≡ M,π |= ψ1 and M,π |= ψ2

M,π |= X ψ ≡ M,π1 |= ψ

M,π |= F ψ ≡ there exists k ≥ 0 such that M,πk |= ψ

M,π |= G ψ ≡ For all k ≥ 0 M,πk |= ψ

M,π |= ψ1Uψ2 ≡ there exists k ≥ 0 such that M,πk |= ψ2 and for all 0 ≤ j < k M, πj |= ψ1

M,π |= ψ1Rψ2 ≡ for all j ≥ 0 holds: if M,πi 6|= ψ1 for every i < j then M,πj |= ψ2

Fig. 5. Semantics of CTL∗ formulas.

if and only if ∀s0 ∈ S0 : M, s0 |= φ. For paths π = s0s1s2 . . . π(i) denotes the ith

element si of π, and πi = sisi+1 . . . the ith suffix of π.

The inductive definition of |= is given in Fig. 5, where p denotes atomic propo-

sitions from AP , φ, φi denote state formulas and ψ,ψj denote path formulas:

Exercise. 4. Using the syntax rules of CTL∗ formulas and a syntax tree represen-

tation, prove or disprove that the following formulas conform to the CTL∗-syntax

(a, b, c ∈ AP):

(i) AG(XFa ∧ ¬(bUGc))

(ii) AXG¬a ∧EFG(a ∨A(bUa))

2

16

Peleska and Vorobev

Exercise. 5. Using the Kripke structure displayed in Fig. 3 prove or disprove the

following CTL∗-assertions, using the semantic definition described in Fig. 5 in a

step-by step manner. For each of the formulas, give a textual interpretation of their

meaning.

(i) AG¬(c0 ∧ c1)

(ii) A(Fc0 ∧G(c0 ⇒ F(c1 ∧ Fc0)))

Justify why the first assertion could be proved on the finite representation of the

Kripke structure’s computation tree as explained in algorithm 2 while this is not

possible for the second assertion. 2

3.2 The Computation Tree Logic CTL

A frequently used subset of CTL∗ is called CTL. It is defined by the following

restricted syntactic rule (CTL.vi) for the path formulas (the other rules (i), (ii),

(iii), (iv), (v) for CTL∗ syntax apply in the same way to CTL):

(CTL.vi) If f and g are state formulas then X f,F f,G f, f U g, f R g are path formulas.

More formally, the CTL syntax is defined by (p denotes atomic propositions from

AP)

CTL-formula ::= φ

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X φ | F φ | G φ | φ U φ | φ R φ

As a consequence, the temporal operators X,F,G,U,R can never be prefixed by

another temporal operator in CTL. Only pairs consisting of path quantifier and

temporal operator can occur in a row.

Example 3.1 The CTL∗ formula A(FGf) (On every path, f will finally hold in

all states) has no equivalent in CTL. 2

Theorem 3.2 Every CTL formula can be expressed by means of the operators

¬,∨,EX,EU,EG.

Proof. Obviously ψ1 ∧ ψ2 can be expressed as ¬(¬ψ1 ∨ ¬ψ2). The theorem now

follows from the fact that the following equivalences hold for all CTL path formulas

17

Peleska and Vorobev

ψ,ψ1, ψ2:

1. AXψ ≡ ¬EX(¬ψ)

2. EFψ ≡ E(trueUψ)

3. AGψ ≡ ¬EF(¬ψ)

4. AFψ ≡ ¬EG(¬ψ)

5. A(ψ1Uψ2) ≡ ¬E(¬ψ2U(¬ψ1 ∧ ¬ψ2)) ∧ ¬EG¬ψ2

6. A(ψ1Rψ2) ≡ ¬E(¬ψ1U¬ψ2)

7. E(ψ1Rψ2) ≡ ¬A(¬ψ1U¬ψ2)

8. Eφ ≡ E(falseUφ) if φ does not contain E,A,X,F,G,U,R

9. Aφ ≡ ¬E(falseU¬φ) if φ does not contain E,A,X,F,G,U,R

The proof of these equivalences is performed using the semantic rules given in Fig. 5,

to be performed by the reader in Exercise 6. 2

Exercise. 6. Prove the 9 semantic equivalences used in the proof of Theorem 3.2.

3.3 The Computation Tree Logics ACTL∗ and ACTL

If we restrict CTL∗ formulas to universal quantification only, the resulting computa-

tion tree logic is called ACTL∗. More precisely, ACTL∗ only admits CTL∗ formulas

satisfying

• The formula is in positive normal form, that is, the negation operator ¬ is only

applied to atomic propositions.

• The only occurring path quantifier is A.

The corresponding restriction of CTL formulas to universal quantification is

called ACTL.

Example 3.3 AFAXa is an ACTL formula, but AGEFa is not in ACTL∗, since

its E-free representation AG¬AG¬a is not in positive normal form. 2

In Section 5.4 we will prove a theorem about simulation relations between Kripke

structures, and the properties that may be transferred from an abstract Kripke

structure to its associated concrete one. It will turn out that a sufficient condition

for this implication from abstract to concrete level is for the formula to be in the

subset of ACTL∗ or ACTL, respectively.

18

Peleska and Vorobev

4 CTL Model Checking

Model checking distinguishes between

• Equivalence checking. Two models (these are usually given in state transition

system or labelled transition system representation) are compared with respect

to semantic equivalence.

• Refinement checking. Two models are compared by means of a (usually tran-

sitive) relation which is weaker than equivalence.

• Property checking. A model is checked with respect to an (implicit) speci-

fication: The specification is given by a logical formula stating some desired

property of the model. The model is usually represented as a transition system

or as a Kripke structure K = (S, S0, R, L). The specification is most frequently

expressed by a temporal logic formula φ; an alternative specification formalisms

is trace logic.

In the general case we wish to identify all states s ∈ S where φ holds, i. e.,

s |= φ. In most practical applications the objective is to prove that φ holds

in every initial state s ∈ S0 and in every state which is reachable from some

initial state by n-fold application of the transition relation R; this is written

K |= φ.

In this section we investigate property checking for Kripke structures against

CTL formulas. The technique which is introduced here is called explicit model

checking because it requires to represent the Kripke structure’s state space in an

explicit way, so that all the necessary atomic propositions of the form x = ν can

be directly derived from each state’s representation. This is the oldest form of

model checking which is only applicable if state spaces are sufficiently small to be

enumerated explicitly.

The basic idea of the property checking algorithm.

The property checking algorithm introduced formally below is based on the

following concept:

• The CTL specification formula is decomposed into its (binary) syntax tree.

• Starting at the leaves of the syntax tree (the leaves represent atomic propo-

sitions) the algorithm processes a sequence of sub-formulas φi in bottom-up

manner. This is implemented by means of a recursive in-order traversal of the

syntax tree.

• The goal of each processing step is to annotate all states s statisfying s |= φi
with the new sub-formula φi. To this end, a labelling function Lφ : S → CTL

is used.

• The algorithm stops when the last formula φi having been processed coincides

with the specification φ.

• The result of the algorithm is the set Sφ =def {s ∈ S | φ ∈ Lφ(s)}.
• The Kripke model (S, S0, R, L) satisfies φ if its initial states are part of Sφ,

19

Peleska and Vorobev

function checkCTL(in (S, S0, R, L) : KripkeStructure; in φ : CTL) : P(S)

begin

label : S → 2CTL;

label := {s 7→ ∅ | s ∈ S};
calcLabel((S, S0, R, L), φ, label);

checkCTL := {s ∈ S | φ ∈ label(s)};
end

Fig. 6. Main algorithm for CTL property checking against Kripke structures.

that is,

(S, S0, R, L) |= φ ≡ S0 ⊆ {s ∈ S | φ ∈ Lφ(s)}

Syntax tree representation of CTL formulas.

From Section 3.2 we know that every CTL formula can be represented by means

of the operators ¬,∨,EX,EU,EG alone. The binary syntax tree representation of

such a formula can be defined recursively using the tree notation

• ε: empty tree

• T (t0, n, t1): tree with root n and left sub-tree t0 and right sub-tree t1.

The recursive syntax tree definition t(φ) for a given CTL formula φ is as follows:

(i) If φ ∈ AP then t(φ) = T (ε, φ, ε).

(ii) If φ = ¬φ1 then t(φ) = T (ε,¬, t(φ1)).

(iii) If φ = φ0 ∨ φ1 then t(φ) = T (t(φ0),∨, t(φ1)).

(iv) If φ = EXφ1 then t(φ) = T (ε,EX, t(φ1)).

(v) If φ = E(φ0Uφ1) then t(φ) = T (t(φ0),EU, t(φ1)) 3 .

(vi) If φ = EGφ1 then t(φ) = T (ε,EG, t(φ1)).

Given a tree representation t(φ) of a formula φ, its leaves (i. e. its atomic propo-

sitions) can be extracted by means of the function leaves : Tree→ 2AP by means of

the following recursive definition:

(i) leaves(T (ε, φ, ε)) = {φ}
(ii) leaves(T (ε,¬, t(φ1))) = leaves(t(φ1))

(iii) leaves(T (t(φ0),∨, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

(iv) leaves(T (ε,EX, t(φ1))) = leaves(t(φ1))

(v) leaves(T (t(φ0),EU, t(φ1))) = leaves(t(φ0)) ∪ leaves(t(φ1))

(vi) leaves(T (ε,EG, t(φ1))) = leaves(t(φ1))

3 We regard EU as a binary operator, so that formulas E(φ0Uφ1) could be equivalently written as
(φ0(EU)φ1). As a consequence its tree representation is T (t(φ0),EU, t(φ1))

20

Peleska and Vorobev

procedure calcLabel(in (S, S0, R, L) : KripkeStructure;

in φ : CTL;

inout label : S → 2CTL)

begin

if φ ∈ AP then

foreach s ∈ S do

if φ ∈ L(s) then

label(s) := label(s) ∪ {φ};
endif

enddo

elseif t(φ) = T (ε,¬, t(φ1)) then

calcLabel((S, S0, R, L), φ1, label);

foreach s ∈ S do

if φ1 6∈ label(s) then

label(s) := label(s) ∪ {φ};
endif

enddo

elseif t(φ) = T (t(φ0),∨, t(φ1)) then

calcLabel((S, S0, R, L), φ0, label);

calcLabel((S, S0, R, L), φ1, label);

foreach s ∈ S do

if φ0 ∈ label(s) ∨ φ1 ∈ label(s) then

label(s) := label(s) ∪ {φ};
endif

enddo

elseif t(φ) = T (ε,EX, t(φ1)) then

calcLabel((S, S0, R, L), φ1, label);

foreach s ∈ S do

if ∃s′ ∈ S : R(s, s′) ∧ φ1 ∈ label(s′) then

label(s) := label(s) ∪ {φ};
endif

enddo

elseif t(φ) = T (t(φ0),EU, t(φ1)) then

calcLabel((S, S0, R, L), φ0, label); calcLabel((S, S0, R, L), φ1, label);

calcLabelEU((S, S0, R, L), φ0, φ1, label);

elseif t(φ) = T (ε,EG, t(φ1)) then

calcLabel((S, S0, R, L), φ1, label);

calcLabelEG((S, S0, R, L), φ1, label);

endif

end

Fig. 7. Label calculation – syntax-driven control algorithm.

21

Peleska and Vorobev

procedure calcLabelEU (in (S, S0, R, L) : KripkeStructure;

in φ0 : CTL; in φ1 : CTL;

inout label : S → 2CTL)

begin

T := 〈s ∈ S | φ1 ∈ label(s)〉;
foreach s ∈ T do label(s) := label(s) ∪ {E(φ0Uφ1)};
while T 6= 〈 〉 do

s := hd(T);

T := tail(T);

foreach u ∈ {v ∈ S | R(v, s)} do

if E(φ0Uφ1) 6∈ label(u) ∧ φ0 ∈ label(u) then

label(u) := label(u) ∪ {E(φ0Uφ1)};
T := T _ 〈u〉;

endif

enddo

enddo

end

Fig. 8. Algorithm for labelling states with E(φ0Uφ1) formulas.

procedure calcLabelEG(in (S, S0, R, L) : KripkeStructure;

in φ1 : CTL;

inout label : S → 2CTL)

begin

S′ := {s ∈ S | φ1 ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S′}
T := 〈s | ∃C ∈ SCC : s ∈ C〉;
foreach s ∈ T do label(s) := label(s) ∪ {EGφ1};
while T 6= 〈 〉 do

s := hd(T);

T := tail(T);

foreach u ∈ {v ∈ S′ | R(v, s)} do

if EGφ1 6∈ label(u) then

label(u) := label(u) ∪ {EGφ1};
T := T _ 〈u〉;

endif

enddo

enddo

end

Fig. 9. Algorithm for labelling states with EGφ1 formulas.

22

Peleska and Vorobev

5 Data Abstraction

This section deals with state space reduction by means of data abstraction.

5.1 Equivalence Classes and Factorisation of Transition Systems

Let TS = (S, S0, R) a transition system and ∼⊆ S × S an equivalence relation on

S, that is,

• ∀s ∈ S : s ∼ s (reflexivity)

• ∀s, s′ ∈ S : s ∼ s′ ⇒ s′ ∼ s (symmetry)

• ∀s, s′, s′′ ∈ S : s ∼ s′ ∧ s′ ∼ s′′ ⇒ s ∼ s′′ (transitivity)

Let S/∼ denote the set of equivalence classes; each class is written in the form

[s] ∈ S/∼, [s] =def {u | s ∼ u}. An equivalence relation gives rise to a transition

system factorised by ∼ which is defined by

TS/∼ =def (S/∼, S0/∼, R/∼)

S0/∼ =def {[s0] | s0 ∈ S0}

R/∼ =def {([s], [s′]) | ∃u ∈ [s], u′ ∈ [s′] : R(u, u′)}

(1)

5.2 Auxiliary Variables and Associated Equivalence Classes

Let us consider now again only state spaces S whose elements are variable valuations

s : V 6→ D,V = {x1, x2, . . .}. Let AUX = {a1, a2, . . .} a set of fresh variables such

that V ∩ AUX = ∅. Let ei(x
i
1, x

i
2, . . .) expressions associated with each ai ∈ AUX.

For a fixed set of auxiliary variables ai and expressions ei, extend valuation functions

by

se : V ∪AUX 6→ D

dom se = dom s ∪ {ai ∈ AUX | xi1, xi2, . . . ∈ dom s}

se|V = s that is, ∀x ∈ V ∩ dom se : se(x) = s(x)

∀ai ∈ AUX ∩ dom se : se(ai) = ei(s(x
i
1), s(xi2), . . .)

Observe that the expressions ei(x
i
1, x

i
2, . . .) induce a type Dai on the corresponding

auxiliary variables ai. We denote the transition system extended by the variables

from AUX and the extended valuations se by TSe = (Se, S0e, Re), where the tran-

sition relation is defined by

Re =def {(se, s′e) | (se|V , s′e|V) ∈ R}

A collection of auxiliary variables induces an equivalence relation ∼ on TSe =

(Se, Soe, Re) by defining

∀s, s′ ∈ S : s ∼ s′ ≡def (∀a ∈ AUX : se(a) = s′e(a))

23

Peleska and Vorobev

TSe/∼ is called the factorisation of TS by means of the data abstraction

ai = ei(x
i
1, x

i
2, . . .), i = 1, 2, . . .

Observe that, given a valuation (s : V 6→ D) ∈ S, its equivalence class [s] may

also be regarded as a valuation function on the variables from AUX by setting

∀ai ∈ AUX : [s](ai) =def ei(s(x1), s(x2), . . .)

The definition of ∼ guarantees that this valuation function is well-defined, since all

members s′ ∈ [s] fulfil

∀i : ei(s(x1), s(x2), . . .) = ei(s
′(x1), s′(x2), . . .)

Lemma 5.1 Suppose that the initial state S0 is characterised by first-order pred-

icate I with free variables in V = {x1, x2, . . .}, and that the transition rela-

tion R ⊆ S × S is characterised by predicate R with free variables in V and

V ′ =def {x′1, x′2, . . .}. Then the respective predicates for TSe/∼ are given by

I/∼(a1, a2, . . .) =def ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .] (2)

R/∼(a1, a2, . . . , a
′
1, a
′
2, . . .) =def ∃ξ1, ξ2, . . . , ξ

′
1, ξ
′
2, . . . :

∀i : (ai = ei(ξ1, ξ2, . . .) ∧ a′i = ei(ξ
′
1, ξ
′
2, . . .)) ∧

R[ξ1/x1, ξ2/x2, . . . , ξ
′
1/x
′
1, ξ
′
2/x
′
2, . . .]

(3)

Proof. From (1) and the fact that I characterises S0 we conclude that

S0e/∼ = {[s0] : AUX 6→ D | s0 : V ∪AUX 6→ D ∧ I[s0(x1)/x1, s0(x2)/x2, . . .]}

Therefore, in order to prove correctness of I/∼, it has to be shown that

S =def {sa : AUX 6→ D | I/∼[sa(a1)/a1, sa(xa)/a2, . . .]} =

{sa : AUX 6→ D | ∃ξ1, ξ2, . . . : (∀i : sa(ai) = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .]}

equals S0e/∼.

We show first that S0e/∼ ⊆ S: Let [s0] ∈ S0e/∼. Define ξi =def

s0(xi), i = 1, 2, Then, because I[s0(x1)/x1, s0(x2)/x2, . . .] holds, this implies

I[ξ1/x1, ξ2/x2, . . .]. Furthermore, [s0](ai) = ei(s0(x1), s0(x2), . . .) by definition of

[·], so (∀i : ai = ei(ξ1, ξ2, . . .)). As a consequence, I/∼[[s0](a1)/a1, [s0](a2)/a2, . . .]

holds which shows that [s0] ∈ S.

Now we show S ⊆ S0e/∼: Let sa ∈ S, then there exist ξ1, ξ2, . . . such

that (∀i : sa(ai) = ei(ξ1, ξ2, . . .)) ∧ I[ξ1/x1, ξ2/x2, . . .]. Now define a valuation

s0 : V 6→ D by s0(xi) =def ξi, i = 1, 2, This s0 is contained in S0 and there-

fore [s0] ∈ S0e/∼, since I[ξ1/x1, ξ2/x2, . . .] and therefore I[s0(x1)/x1, s0(x2)/x2, . . .]

24

Peleska and Vorobev

holds. Since sa(ai) = ei(ξ1, ξ2, . . .) = ei(s0(x1), s0(x2), . . .), the construction of s0

implies sa = [s0], so sa ∈ S0e/∼, and this shows S ⊆ S0e/∼ and proves (2).

For proving (3), recall from (1) that the transition relation of the factorised

transition system TSe/∼ is defined by

R/∼ =def {([s], [s′]) | ∃u ∈ [s], u′ ∈ [s′] : R(u, u′)}

We define

R =def {(sa, s′a) | R/∼[sa(a1)/a1, sa(a2)/a2, . . . , s
′
a(a1)/a′1, s

′
a(a2)/a2, . . .]}

and show that R/∼ equals R.

To show that R/∼ ⊆ R, suppose that ([s], [s′]) ∈ R/∼. By definition of [·], R/∼
and R there exists u, u′ : V 6→ D such that

∀i : (ei(s(x1), s(x2), . . .) = ei(u(x1), u(x2), . . .) ∧

ei(s
′(x1), s′(x2), . . .) = ei(u

′(x1), u′(x2), . . .)) ∧

R[u(x1)/x1, u(x2)/x2, . . . , u
′(x1)/x′1, u

′(x2)/x′2, . . .]

holds. Setting ξi = u(xi), ξ
′
i = u′(xi), i = 1, 2, . . . yields

∀i : (ai = ei(ξ1, ξ2, . . .) ∧ a′i = ei(ξ
′
1, ξ
′
2, . . .)) ∧R[ξ1/x1, ξ2/x2, . . . , ξ

′
1/x
′
1, ξ
′
2/x
′
2, . . .]

and, since ei(s(x1), s(x2), . . .) equals ei(ξ1, ξ2, . . .) and ei(s
′(x1), s′(x2), . . .) equals

ei(ξ
′
1, ξ
′
2, . . .), this implies that

R/∼[[s](a1)/a1, [s](a2)/a2, . . . , [s
′](a1)/a′1, [s

′](a2)/a′2, . . .]

holds. This proves ([s], [s′]) ∈ R.

It remains to show that R ⊆ R/∼. To this end, assume that (sa, s
′
a) ∈ R. By

definition of R and R/∼ this implies the existence of ξi, ξ
′
i, i = 1, 2, . . . such that

∀i : (sa(ai) = ei(ξ1, ξ2, . . .) ∧ s′a(a′i) = ei(ξ
′
1, ξ
′
2, . . .)) ∧

R[ξ1/x1, ξ2/x2, . . . , ξ
′
1/x
′
1, ξ
′
2/x
′
2, . . .]

Now define

s : V 6→ D; s(xi) 7→ ξi, s′ : V 6→ D; s′(xi) 7→ ξ′i, i = 1, 2, . . .

Then [s] = sa and [s′] = s′a and R[s(x1)/x1, s(x2)/x2, . . . , s
′(x1)/x′1, s

′(x2)/x′2, . . .]

by construction and this implies R(s, s′) and finally yields ([s], [s′]) ∈ R/∼. This

shows (sa, s
′
a) ∈ R/∼ and completes the proof. 2

5.3 Data Abstraction on Kripke Structures

Given a Kripke structure K = (S, S0, R, L) and a set AUX of auxiliary variables

ai with associated expressions ei(x
i
1, x

i
2, . . .) we can extend K to a Kripke structure

25

Peleska and Vorobev

Ke =def (Se, Soe, Re, Le) by defining its set of atomic propositions and the labelling

function as

APe =def AP ∪APAUX

APAUX =def {ai = α | ai ∈ AUX ∧ α ∈ Dai}

Le : Se → 2APe

Le(s) = L(s) ∪ {ai = ei(s(x
i
1), s(xi2), . . .) | ai ∈ AUX}

If we now factorise Ke’s transition system (Se, Soe, Re) by the equivalence relation

∼ introduced by AUX then we can extend the abstracted transition system to a

Kripke structure by “forgetting” about the original variables in V and considering

only the propositions on abstraction variables of AUX. This is done in the obvious

way by defining a labelling function

Le/∼ : Se/∼ → 2APAUX ; [s] 7→ {ai = ei(s(x
i
1), s(xi2), . . .) | ai ∈ AUX}

Note that Le/∼ is well-defined since all members of [s] induce the same valuations

for all ai ∈ AUX. As a consequence

Ke/∼ = (Se/∼, S0e/∼, Re/∼, Le/∼)

is a well-defined Kripke structure, and the explicit model checking algorithms in-

troduced in Section 4 can be applied to Ke/∼, as long as we only consider CTL

formulas ϕ over the auxiliary variables from AUX, without any reference to the

variables from V . Such a formula would also be applicable to the unfactorised

Kripke structure Ke. Therefore we would like to know when a formula ϕ proven to

be valid in Ke/∼ is also valid in Ke.

Example 5.2 Consider the Kripke Structure depicted in Fig. 10, which is associ-

ated with a specification model of a traffic light controller. As is well known to

every law-abiding citizen we always stop our cars on red and on yellow. Therefore,

if we are only interested in knowing when cars are in a halt-state in front of the

traffic light, it makes sense to introduce a Boolean auxiliary variable

stops =def (tl = red ∨ tl = yellow)

Factorisation against the equivalence relation introduced by stops leads to the

abstracted Kripke structure shown in Fig. 11.

Now suppose we wish to prove that EF(tl = green) holds for the Kripke

structure of the original model in Fig. 10. The assertion can be readily ex-

pressed on abstract level as EF(¬stops) which obviously holds on abstract level,

since every path in Fig. 11 visits (m1,¬stops). Similarly, the concrete condition

AF(tl = red∨ tl = yellow) can be expressed in an abstract way as AFstops. It

is easy to see that it holds on abstract level.

In these special cases, the assertions also hold on concrete level, but this is not

always the case: On abstracted level we can also prove the formula EG(stops)

26

Peleska and Vorobev

tl = green

l0

tl = red

l1 l2

l3

tl = yellow

tl = yellow

Fig. 10. Kripke structure of traffic light controller from Example 5.2.

m0

stops

m1

not stops

Fig. 11. Abstracted Kripke structure induced by auxiliary variable stops in Example 5.2.

which obviously does not hold in the concrete model with its concrete formula rep-

resentation EG(tl = red ∨ tl = yellow). Conversely, the concrete model satisfies

AF(tl = green), while the corresponding formula AF(¬stop) is not fulfilled on

abstract level. 2

Exercise. 7. Consider the slightly modified specification model from Exercise 2,

now shown in Fig. 12. Assume now that x and y have unbounded range Dx = Dy =

Z, so that explicit model checking becomes infeasible. Chose suitable abstraction

variables and construct the corresponding factorisation of the model’s Kripke struc-

ture such that the following assertion can be proved using the explicit CTL model

checking algorithms on the abstracted Kripke structure:

¬EF(l0 ∧ odd(y))

Give informal justifications for

• the completeness and correctness of your abstracted Kripke structure (since

you do not want to enumerate the concrete (infinite!) Kripke structure of the

model),

• the fact that the proof for the abstracted model implies that the assertion also

holds for the concrete model.

2

27

Peleska and Vorobev

[x <= 0 and not odd(y)]

l0 l1

l2

[x>y]/

y = y + x;

[odd(y)]/
y = −1;

[x <= 0]/
y = 0;

/y = 0;

Fig. 12. Model for Exercise 7.

5.4 Simulations

In order to investigate the situations where assertions on auxiliary variables proven

on abstract level also hold for the concrete level we introduce the concept of simu-

lations:

Definition 5.3 [Simulation] Given two Kripke structures K = (S, S0, R, L),K ′ =

(S′, S′0, R
′, L′) such that K refers to atomic propositions AP and K ′ refers to atomic

propositions AP ′ and AP ′ ⊆ AP . The relation H ⊆ S × S′ is called a simulation,

if the following conditions hold for all (s, s′) ∈ H:

(i) L(s) ∩AP ′ = L′(s′)

(ii) ∀s1 ∈ S : R(s, s1)⇒ ∃s′1 ∈ S′ : R′(s′, s′1) ∧H(s1, s
′
1)

We write K 4 K ′ (K is simulated by K ′) if such a simulation H exists and

∀s0 ∈ S0 : ∃s′0 ∈ S′0 : H(s0, s
′
0)

2

Before exploiting the simulation concept in Theorem 5.7 below it is necessary to

show that the equivalence relation ∼ induced by auxiliary variables as introduced

above establishes a simulation relation between original Kripke structure Ke and

its factorisation Ke/∼:

Theorem 5.4 Given ∼, equivalence classes [s], APe, Le, Ke, Ke/∼ as introduced

in Section 5.3 above, define

H =def {(s, [s]) | s ∈ Se} ⊆ Se × Se/∼

Then H is a simulation between Ke and Ke/∼ and Ke 4 Ke/ ∼ holds.

28

Peleska and Vorobev

Proof. Let H be defined according to the precondition of the theorem and s ∈ Se,
so that (s, [s]) ∈ H. By the construction rules given in Section 5.3, the states of

Ke are labelled with atomic propositions from AP ∪ APAUX, and the states (i. e.,

equivalence classes) of Ke/∼ are labelled with atomic propositions from APAUX. As

a consequence, the construction of the labelling functions Le on Ke and Le/∼ on

Ke/∼ implies

Le(s) ∩APAUX = {ai = ei(s(x
i
1), s(xi2), . . .) | ai ∈ AUX} = Le/∼([s])

Therefore condition (i) of Definition 5.3 holds.

Now let s1 ∈ Se such that R(s, s1). By construction of R/∼ in Section 5.1

this implies R/∼([s], [s1]) and by construction of H this also implies H(s1, [s1]).

Therefore condition (ii) of Definition 5.3 is also fulfilled.

Finally, we note that ∀s0 ∈ S0 : H(s0, [s0]) holds by construction of H, and

[s0] ∈ S0e/∼ by construction of Ke/∼. As a consequence, Ke 4 Ke/ ∼, and this

completes the proof. 2

Definition 5.5 Let K 4 K ′ with simulation relation H ⊂ S × S′ and H(s, s′).

Suppose π is a path in K starting at s and π′ a path starting at s′ in K ′. We say

that π and π′ correspond to each other if

∀i ≥ 0 : H(π(i), π′(i))

2

Lemma 5.6 Let K 4 K ′ with simulation relation H ⊂ S × S′ and H(s, s′). Then

for every path π in K starting at s there is a corresponding path π′ in K ′ starting

at s′.

Proof. Since π is a path starting at s,

π(0) = s ∧ (∀i ≥ 0 : R(π(i), π(i+ 1)))

follows. Since s = π(0) and H(s, s′), this implies H(π(0), s′). Applying condition

(ii) of Definition 5.3 successively on π(0), π(1), π(2), . . . this yields the existence of

states π′(i) ∈ S′, i ≥ 0, such that

π′(0) = s′ ∧ (∀i ≥ 0 : R′(π′(i), π′(i+ 1)) ∧H(π(i+ 1), π′(i+ 1))),

so π′ is a path in K ′, and it corresponds to π by construction. 2

Theorem 5.7 Assume K 4 K ′. Then for every ACTL∗ formula φ with atomic

propositions in AP ′

(K ′ |= φ) implies (K |= φ)

Proof. Let φ an ACTL∗ formula as defined in Section 3.3. Suppose K ′ |= φ, which

is equivalent to ∀s′0 ∈ S′0 : (K ′, s′0) |= φ. We have to show that for any s0 ∈ S0,

(K, s0) |= φ holds. This is achieved by proving the more general fact that

∀(s, s′) ∈ H : ((K ′, s′) |= φ)⇒ ((K, s) |= φ) (∗)

29

Peleska and Vorobev

which implies our original proof goal. The proof of (*) is performed by structural

induction over the formula φ. Assume (s, s′) ∈ H and (K ′, s′) |= φ for the rest of

this proof.

(1) If φ is an atomic proposition, then (K, s) |= φ if and only if φ ∈ L(s). Since

(K ′, s′) |= φ by assumption, φ must be contained in AP ′. Because K ′ simulates K

and L(s) ∩ AP ′ = L′(s′) holds (condition (i) of Definition 5.3). Now K ′ |= φ, and

therefore φ ∈ L′(s′) and L′(s′) = L(s) ∩AP ′, so φ ∈ L(s) follows.

(2) Let φ = ¬φ1 and suppose (K ′, s′) |= φ. Since φ is an ACTL∗ formula φ1

must be an atomic proposition. This implies that φ1 6∈ L′(s′) and, since L′(s′) =

L(s) ∩ AP ′ and φ1 ∈ AP ′ also φ1 6∈ L(s). This means K, s 6|= φ1 and therefore

K, s |= ¬φ1 which is equivalent to K, s |= φ.

(3) Let φ = φ1 ∨ φ2 such that φi are state formulas for i = 1, 2 and (K, s) |= φi
whenever (K ′, s′) |= φi. Since (K ′, s′) |= φ, (K ′, s′) |= φ1 or (K ′, s′) |= φ2 follows.

If (K ′, s′) |= φ1 then we know already that (K, s) |= φ1 follows, and this implies

(K, s) |= φ1 ∨ φ2. The same argument applies if (K ′, s′) |= φ2. As a consequence

(K, s) |= φ1 or (K, s) |= φ2 holds, which proves (K, s) |= φ1 ∨ φ2.

(4) Let φ = φ1 ∧ φ2 such that φi are state formulas for i = 1, 2 and (K, s) |= φi
whenever (K ′, s′) |= φi. This case is handled in analogy to (3).

(5) Let φ a state formula, such that (K, s) |= φ whenever (K ′, s′) |= φ. Let π a

path with π(0) = s, and π′ its corresponding path in K ′, starting at s′ = π′(0) (this

path exists according to Lemma 5.6). Suppose that K ′, π′ |= φ (remember that

every state formula is also a path formula). This is equivalent to K ′, π′(0) |= φ, so

by our assumption K,π(0) |= φ. This implies that K,π |= φ. Now we have shown

that K,π |= φ whenever K ′, π′ |= φ on a path π′ corresponding to π.

(6) Let φ = Aψ such that ψ is a path formula and K,π |= ψ whenever K ′, π′ |=
ψ, where π, π′ are corresponding paths starting in s and s′, respectively. Now

K, s |= Aψ is equivalent to the condition that every path π emanating from s

satisfies K,π |= ψ. Since K ′, s′ |= Aψ we know that K ′, π′′ |= ψ for every π′′ starting

at s′, so this holds in particular for the path π′ corresponding to π. Therefore also

K,π |= ψ holds, and this implies K, s |= Aψ since π was an arbitrary path starting

at s.

(7) Let φ = ψ1 ∨ ψ2, such that ψi are path formulas where K,π |= ψi whenever

K ′, π′ |= ψi for i = 1, 2 on a path π′ corresponding to π. Suppose K ′, π′ |= ψ1 ∨ ψ2.

This means that K ′, π′ |= ψ1 or K ′, π′ |= ψ2. By (5) we can deduce that K,π |= ψ1

or K,π |= ψ2, and we have shown that K,π |= ψ1 ∨ ψ2 whenever K ′, π′ |= ψ1 ∨ ψ2

on a path π′ corresponding to π.

(8) Let φ = ψ1 ∧ ψ2, such that ψi are path formulas where K,π |= ψi whenever

K ′, π′ |= ψi for i = 1, 2 on a path π′ corresponding to π. With an argument

analogous to (7) it is shown that K,π |= ψ1 ∧ ψ2 whenever K ′, π′ |= ψ1 ∧ ψ2 on a

path π′ corresponding to π.

(9) Let φ = Xψ and ψ a path formula such that K,π |= ψ holds whenever

K ′, π′ |= ψ holds on a path π′ corresponding to π. Now K ′, π′ |= Xψ is equivalent

to K ′, π′1 |= ψ. Since π′1 corresponds to π1 we know already that K ′, π′1 |= ψ

implies K,π1 |= ψ. As a consequence K,π |= Xψ also holds.

(10) The cases φ = Fψ, φ = Gψ, φ = ψ1Uψ2, φ = ψ1Rψ2 are shown in analogy

to (9), and this completes the proof. 2

30

Peleska and Vorobev

Exercise. 8.a Give the following explanations regarding the proof of Theorem 5.7:

(i) Give a detailed formal explanation why the theorem follows from (*).

(ii) Give a formal syntax specification for ACTL∗ similar to EBNF notation intro-

duced for CTL∗ formulas in Section 3.1.

(iii) Explain how ACTL∗ is inductively defined according to Definition A.1:

(a) What might be a suitable universe U?

(b) What is the base set B?

(c) Which are the constructors r ∈ K?

(iv) Explain how the proof of Theorem 5.7 applies the principle of structural in-

duction.

2

Theorem 5.8 Let K = (S, S0, R, L) and K ′ = (S, S′0, R
′, L) Kripke structures with

variable symbols from V and atomic propositions AP , using the same set of states S

and the same labelling function L : S → 2AP . Let I, I ′ be the first order predicates

characterising the initial states S0 and S′0, respectively, and R, R′ the first order

predicates characterising the transition relations R and R′, respectively. Suppose

that

• I ⇒ I ′

• R ⇒ R′

Then K 4 K ′.

Proof. See Exercise 8. 2

Exercise. 8. Prove Theorem 5.8, using the facts on first order representations

given in Section 2. 2

5.5 Bisimulations

Having studied simulations it is natural to ask how much we have to strengthen the

simulation definition in order to be sure that all CTL∗ formulas valid in one Kripke

structure are also valid in the other one and vice versa. This leads us to the concept

of bisimulation.

Definition 5.9 [Bisimulation] Given two Kripke structures K = (S, S0, R, L),K ′ =

(S′, S′0, R
′, L′) such that K,K ′ refer to the same set of atomic propositions AP . A

relation B ⊆ S×S′ is called bisimulation (relation) between K and K ′, if and only

if the following conditions hold for all s ∈ S, s′ ∈ S′ with B(s, s′):

(i) L(s) = L′(s′)

(ii) ∀s1 ∈ S : R(s, s1)⇒ ∃s′1 ∈ S′ : R′(s′, s′1) ∧B(s1, s
′
1)

(iii) ∀s′1 ∈ S′ : R′(s′, s′1)⇒ ∃s1 ∈ S : R(s, s1) ∧B(s1, s
′
1)

We write K ≡ K ′ if there exists a bisimulation B between K and K ′ such that

(∀s0 ∈ S0 : ∃s′0 ∈ S′0 : B(s0, s
′
0)) ∧ (∀s′0 ∈ S′0 : ∃s0 ∈ S0 : B(s0, s

′
0))

2

31

Peleska and Vorobev

Bisimilar Kripke structures satisfy the same CTL∗ formulas 4 :

Theorem 5.10 If K ≡ K ′ and φ ∈ CTL∗, then

(K |= φ) if and only if (K ′ |= φ)

2

5.6 Predicate Abstraction

With the knowledge of Section 5.3 alone we could construct abstractions only from

the original Kripke structure K = (S, S0, R, L). This is unsatisfactory, since the

very objective of abstraction is to help in situations where the original Kripke

structure is too large to be represented in an explicit way. Fortunately there is

an alternative for constructing abstractions: Having defined auxiliary variables ai
and associated expressions ai = ei(x

i
1, x

i
2, . . .) we can lift the original predicates I,R

over xj ∈ V specifying initial state and transition relation of K to predicates over

ai specifying initial state and transition relation of the abstracted Kripke structure

K ′ = (S′, S′0, R
′, L′). In the next section we will see that this relation can be further

approximated by simpler predicates that still preserve the simulation relation but

are coarser and therefore even simpler to compute.

Definition 5.11 Let K = (S, S0, R, L) a Kripke structure with variables from V =

{x1, . . . , xn} and φ a predicate with free variables over V . Let AUX = {a1, . . . , ak}
a set of auxiliary variables defining an abstraction relation via expressions ai =

ei(x
i
1, x

i
2, . . .), i = 1, . . . , k. Then the lifting of φ with respect to this abstraction is

denoted by [φ] and defined as

[φ] ≡def ∃ξ1, . . . , ξn : (∀i = 1, . . . , k : ai = ei(ξ
i
1, . . . , ξ

i
n)) ∧ φ[ξ1/x1, . . . , ξn/xn]

2

Theorem 5.12 Let K = (S, S0, R, L) a Kripke structure with variables from V =

{x1, . . . , xn} and φ a predicate with free variables over V . Let AUX = {a1, . . . , ak}
a set of auxiliary variables defining an abstraction relation via expressions ai =

ei(x
i
1, x

i
2, . . .), i = 1, . . . , k. Let K ′ = (S′, S′0, R

′, L′) denote the abstracted Kripke

structure obtained by factorisation with ∼ as described in Section 5.3. Let I,R
denote initial condition and transition relation of K.

Then initial condition and transition relation of K ′ are given by the lifted pred-

icates

[I] and [R]

4 For a proof, see [2, pp. 171].

32

Peleska and Vorobev

4

not a1
not a2
not a3

a0
a1
not a2
not a3

not a0

a1
not a2
a3

not a0

1 2

3

not a1
a2
a3

not a0

Fig. 13. Kripke structure for abstracted model from Example 5.13.

Proof. Applying Definition 5.11 on I and R yields

[I] ≡ ∃ξ1, . . . , ξn : (∀i = 1, . . . , k : ai = ei(ξ1, . . . , ξn)) ∧ I[ξ1/x1, . . . , ξn/xn]

[R] ≡ ∃ξ1, . . . , ξn : ∃ξ′1, . . . , ξ′n : (∀i = 1, . . . , k : ai = ei(ξ1, . . . , ξn)) ∧

(∀i = 1, . . . , k : a′i = ei(ξ
′
1, . . . , ξ

′
n)) ∧

R[ξ1/x1, . . . , ξn/xn, ξ
′
1/x
′
1, . . . , ξ

′
n/x

′
n]

According to Lemma 5.1 these formulas represent initial condition I/∼ and transi-

tion relation R/∼ of K ′. 2

Example 5.13 Consider again the model displayed in Fig. 12 with integer variables

x, y having unbounded range. With the knowledge about simulations and predicate

abstraction it is now possible to give a rigorous proof for the formula ¬EF(l0 ∧
odd(y)). First we observe that

¬EF(l0 ∧ odd(y)) ≡ AG(¬l0 ∨ ¬odd(y))

so our proof objective is an ACTL formula. As a possible abstraction for this

33

Peleska and Vorobev

objective consider

a0 = l0

a1 = l1

a2 = l2

a3 = odd(y)

(4)

Note, that a0, . . . , a3 form not the simplest abstraction possible to show the required

property - indeed, abstraction by a0 and a3 would suffice. The effect of the coarser

abstraction would be, that proving several other formulas like AG(¬l2 ∨ odd(y))

becomes impossible in the resulting abstracted Kripke structure.

We proceed now to construct the resulting abstracted Kripke structure without

first unfolding the one of the concrete system, but exploiting instead its predicates

for initial state and transition relation.

Step. 1. Specify initial condition of the concrete system: From Fig. 12 we derive

I(l0, l1, l2, x, y) ≡ l0 ∧ ¬l1 ∧ ¬l2 ∧ y = 0

Step. 2. Specify formula for the transition relation of the concrete system: Evalu-

ating Fig. 12 again, we derive

R(l0, l1, l2, x, y, l0′, l1′, l2′, x′, y′) ≡

((l0 ∧ x ≤ y ∧ y′ = y ∧ l0′) ∨

(l0 ∧ x > y ∧ y′ = y + x ∧ l1′) ∨

(l1 ∧ x ≤ 0 ∧ ¬odd(y) ∧ y′ = y ∧ l0′) ∨

(l1 ∧ odd(y) ∧ y′ = −1 ∧ l2′) ∨

(l1 ∧ x > 0 ∧ ¬odd(y) ∧ y′ = y ∧ l1′) ∨

(l2 ∧ x ≤ 0 ∧ y′ = 0 ∧ l0′) ∨

(l2 ∧ x > 0 ∧ y′ = y ∧ l2′)) ∧

((l0 ∧ ¬l1 ∧ ¬l2) ∨ (¬l0 ∧ l1 ∧ ¬l2) ∨ (¬l0 ∧ ¬l1 ∧ l2)) ∧

((l0′ ∧ ¬l1′ ∧ ¬l2′) ∨ (¬l0′ ∧ l1′ ∧ ¬l2′) ∨ (¬l0′ ∧ ¬l1′ ∧ l2′))

Step. 3. Compute the abstracted initial condition I/∼ = [I]: Applying Defini-

tion 5.11 on [I] for the given abstraction (4) results in

[I](a0, a1, a2, a3)≡∃ξ0, ξ1, ξ2, ξ3, ξ4 :

a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4) ∧
ξ0 ∧ ¬ξ1 ∧ ¬ξ2 ∧ ξ4 = 0

≡ a0 ∧ ¬a1 ∧ ¬a2 ∧ ¬a3

Step. 4. Compute the abstracted transition relation R/∼ = [R]: Applying Defini-

34

Peleska and Vorobev

tion 5.11 on [R] for the given abstraction (4) results in

[R](a0, a1, a2, a3, a
′
0, a
′
1, a
′
2, a
′
3) ≡

∃ξ0, ξ1, ξ2, ξ3, ξ4, ξ
′
0, ξ
′
1, ξ
′
2, ξ
′
3, ξ
′
4 :

a0 = ξ0 ∧ a1 = ξ1 ∧ a2 = ξ2 ∧ a3 = odd(ξ4) ∧

a′0 = ξ′0 ∧ a′1 = ξ′1 ∧ a′2 = ξ′2 ∧ a′3 = odd(ξ′4) ∧

((ξ0 ∧ ξ3 ≤ ξ4 ∧ ξ′4 = ξ4 ∧ ξ′0) ∨

(ξ0 ∧ ξ3 > ξ4 ∧ ξ′4 = ξ4 + ξ3 ∧ ξ′1) ∨

(ξ1 ∧ ξ3 ≤ 0 ∧ ¬odd(ξ4) ∧ ξ′4 = ξ4 ∧ ξ′0) ∨

(ξ1 ∧ odd(ξ4) ∧ ξ′4 = −1 ∧ ξ′2) ∨

(ξ1 ∧ ξ3 > 0 ∧ ¬odd(ξ4) ∧ ξ′4 = ξ4 ∧ ξ′1) ∨

(ξ2 ∧ ξ3 ≤ 0 ∧ ξ′4 = 0 ∧ ξ′0) ∨

(ξ2 ∧ ξ3 > 0 ∧ ξ′4 = ξ4 ∧ ξ′2)) ∧

((ξ0 ∧ ¬ξ1 ∧ ¬ξ2) ∨ (¬ξ0 ∧ ξ1 ∧ ¬ξ2) ∨ (¬ξ0 ∧ ¬ξ1 ∧ ξ2)) ∧

((ξ′0 ∧ ¬ξ′1 ∧ ¬ξ′2) ∨ (¬ξ′0 ∧ ξ′1 ∧ ¬ξ′2) ∨ (¬ξ′0 ∧ ¬ξ′1 ∧ ξ′2)) ≡

((a0 ∧ a′3 = a3 ∧ a′0) ∨ (a0 ∧ a′3 ∧ a′1) ∨ (a0 ∧ ¬a′3 ∧ a′1) ∨

(a1 ∧ ¬a3 ∧ a′3 = a3 ∧ a′0) ∨ (a1 ∧ ¬a3 ∧ a′3 = a3 ∧ a′1) ∨ (a1 ∧ a3 ∧ a′3 ∧ a′2) ∨

(a2 ∧ ¬a′3 ∧ a′0) ∨ (a2 ∧ a′3 = a3 ∧ a′2)) ∧

((a0 ∧ ¬a1 ∧ ¬a2) ∨ (¬a0 ∧ a1 ∧ ¬a2) ∨ (¬a0 ∧ ¬a1 ∧ a2)) ∧

((a′0 ∧ ¬a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ ¬a′1 ∧ a′2)) ≡

((a0 ∧ a′3 = a3 ∧ a′0) ∨ (a0 ∧ a′1) ∨

(a1 ∧ ¬a3 ∧ a′3 = a3 ∧ (a′0 ∨ a′1)) ∨ (a1 ∧ a3 ∧ a′3 ∧ a′2) ∨

(a2 ∧ ¬a′3 ∧ a′0) ∨ (a2 ∧ a′3 = a3 ∧ a′2)) ∧

((a0 ∧ ¬a1 ∧ ¬a2) ∨ (¬a0 ∧ a1 ∧ ¬a2) ∨ (¬a0 ∧ ¬a1 ∧ a2)) ∧

((a′0 ∧ ¬a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ a′1 ∧ ¬a′2) ∨ (¬a′0 ∧ ¬a′1 ∧ a′2)) ≡

The resulting abstracted Kripke structure is displayed in Fig. 13, and it is trivial

to see from the graphic representation that AG(¬l0 ∨ ¬odd(y)) holds, because

this formula is equivalent to AG(¬a0 ∨ ¬a3) and the Kripke structure in Fig. 13

simulates the concrete system from Fig. 12 by construction. 2

35

Peleska and Vorobev

Exercise. 9. Check whether the following C program fragment terminates:

1 uint32_t x,y;

2 y = 1;

3 while (y < 256) {

4 x = input(); // Assume 0 <= x <= 15

5 if (x > y) {

6 y = y * x;

7 }

8 }

9 exit();

Perform this check by means of an abstraction function α that calculates the minimal

number of bits needed to represent an integral number:

α : N0 → N0; x 7→ blog2 xc+ 1

Observe that, since logb x · y = logbx+ logby, the following estimates hold:

α(x · y) ≤ α(x) + α(y)

N ≤ α(x) + α(y)⇒ N − 1 ≤ α(x · y)

α(x) + α(y) ≤ N ⇒ α(x · y) ≤ N

Prove termination or non-termination along the following lines:

(i) Specify initial condition I and transition formula R of the concrete program

fragment above.

(ii) Now use the abstraction a1 = α(x), a2 = α(y). and calculate the abstracted

formulas [I] and [R].

(iii) Unfold the Kripke structure of the abstracted system given by [I] and [R] and

sketch how the model checking algorithms introduced in Section 4 come to a

conclusion about termination or non-termination.

2

Example 5.14 We present an alternative solution for Exercise 9 which uses an-

other abstraction and motivates the concept of abstract interpretation.

The initial condition of the program from Exercise 9 is

I(p, x, y) ≡ p = 1

36

Peleska and Vorobev

The transition relation is specified by the predicate

R(p, x, y, p′, x′, y′) ≡

(p = 1 ∧ p′ = 2 ∧ x′ = x ∧ y′ = y) ∨

(p = 2 ∧ p′ = 3 ∧ x′ = x ∧ y′ = 1) ∨

(p = 3 ∧ p′ = 9 ∧ y ≥ 256 ∧ x′ = x ∧ y′ = y) ∨

(p = 3 ∧ p′ = 4 ∧ y < 256 ∧ x′ = x ∧ y′ = y) ∨

(p = 4 ∧ p′ = 5 ∧ 0 ≤ x′ ≤ 15 ∧ y′ = y) ∨

(p = 5 ∧ p′ = 3 ∧ x ≤ y ∧ x′ = x ∧ y′ = y) ∨

(p = 5 ∧ p′ = 6 ∧ x > y ∧ x′ = x ∧ y′ = y) ∨

(p = 6 ∧ p′ = 3 ∧ x′ = x ∧ y′ = y · x)

We choose the following abstraction functions – they are induced by a scan of

“relevant” decisions in the program:

a0(p, x, y) = p

a1(p, x, y) = (x ∈ [0, 15])

a2(p, x, y) = (y < 256)

a3(p, x, y) = (x > y)

In order to prove that the program never terminates we try to prove ACTL formula

AG(a0 6= 9)

which exactly expresses non-termination.

Applying the predicate abstraction principle on abstraction functions a0, . . . , a3

results in

[I] ≡ a0 = 1

37

Peleska and Vorobev

for the initial condition; for the abstracted transition relation we get 5

[R] ≡ ∃p, x, y, p′, x′, y′ :

a0 = p ∧ a1 = (x ∈ [0, 15]) ∧ a2 = (y < 256) ∧ a3 = (x > y) ∧

a′0 = p′ ∧ a′1 = (x′ ∈ [0, 15]) ∧ a′2 = (y′ < 256) ∧ a′3 = (x′ > y′) ∧

((p = 1 ∧ p′ = 2 ∧ x′ = x ∧ y′ = y) ∨

(p = 2 ∧ p′ = 3 ∧ x′ = x ∧ y′ = 1) ∨

(p = 3 ∧ p′ = 9 ∧ y ≥ 256 ∧ x′ = x ∧ y′ = y) ∨

(p = 3 ∧ p′ = 4 ∧ y < 256 ∧ x′ = x ∧ y′ = y) ∨

(p = 4 ∧ p′ = 5 ∧ 0 ≤ x′ ≤ 15 ∧ y′ = y) ∨

(p = 5 ∧ p′ = 3 ∧ x ≤ y ∧ x′ = x ∧ y′ = y) ∨

(p = 5 ∧ p′ = 6 ∧ x > y ∧ x′ = x ∧ y′ = y) ∨

(p = 6 ∧ p′ = 3 ∧ x′ = x ∧ y′ = y · x))

Replacing terms which may be directly expressed by ai or ¬ai due to equality

or direct implication results in the fact that [R] implies

R1 ≡ ∃x, y, x′, y′ :

a1 = (x ∈ [0, 15]) ∧ a2 = (y < 256) ∧ a3 = (x > y) ∧

a′1 = (x′ ∈ [0, 15]) ∧ a′2 = (y′ < 256) ∧ a′3 = (x′ > y′) ∧

((a0 = 1 ∧ a′0 = 2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 2 ∧ a′0 = 3 ∧ a′1 = a1 ∧ a′2) ∨

(a0 = 3 ∧ a′0 = 9 ∧ ¬a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 3 ∧ a′0 = 4 ∧ a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 4 ∧ a′0 = 5 ∧ a′1 ∧ a′2 = a2) ∨

(a0 = 5 ∧ a′0 = 3 ∧ ¬a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 5 ∧ a′0 = 6 ∧ a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 6 ∧ a′0 = 3 ∧ a′1 = a1 ∧ y′ = y · x))

5 Observe that we still use p, x, y as in the original transition relation above, but now these symbols are
bound to the existential quantifier.

38

Peleska and Vorobev

We use the following observation.

a1 ∧ a2 ∧ a3 ∧ y′ = y · x⇒

(x ∈ [0, 15]) ∧ (y < 256) ∧ (x > y) ∧ y′ = y · x⇒

(x ∈ [0, 15]) ∧ (y < 15) ∧ (x > y) ∧ y′ = y · x⇒

(y′ ≤ 210)⇒

a′2

Therefore R1 ⇒ R2 with

R2 ≡ ∃x, y, x′, y′ :

a1 = (x ∈ [0, 15]) ∧ a2 = (y < 256) ∧ a3 = (x > y) ∧

a′1 = (x′ ∈ [0, 15]) ∧ a′2 = (y′ < 256) ∧ a′3 = (x′ > y′) ∧

((a0 = 1 ∧ a′0 = 2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 2 ∧ a′0 = 3 ∧ a′1 = a1 ∧ a′2) ∨

(a0 = 3 ∧ a′0 = 9 ∧ ¬a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 3 ∧ a′0 = 4 ∧ a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 4 ∧ a′0 = 5 ∧ a′1 ∧ a′2 = a2) ∨

(a0 = 5 ∧ a′0 = 3 ∧ ¬a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 5 ∧ a′0 = 6 ∧ a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 6 ∧ a′0 = 3 ∧ a1 ∧ a2 ∧ a3 ∧ a′2 ∧ a′1 = a1) ∨

(a0 = 6 ∧ a′0 = 3 ∧ ¬(a1 ∧ a2 ∧ a3) ∧ a′1 = a1))

Finally R2 ⇒ R3 with

R3 ≡ (a0 = 1 ∧ a′0 = 2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 2 ∧ a′0 = 3 ∧ a′1 = a1 ∧ a′2) ∨

(a0 = 3 ∧ a′0 = 9 ∧ ¬a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 3 ∧ a′0 = 4 ∧ a2 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 4 ∧ a′0 = 5 ∧ a′1 ∧ a′2 = a2) ∨

(a0 = 5 ∧ a′0 = 3 ∧ ¬a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 5 ∧ a′0 = 6 ∧ a3 ∧ a′1 = a1 ∧ a′2 = a2 ∧ a′3 = a3) ∨

(a0 = 6 ∧ a′0 = 3 ∧ a1 ∧ a2 ∧ a3 ∧ a′2 ∧ a′1 = a1) ∨

(a0 = 6 ∧ a′0 = 3 ∧ ¬(a1 ∧ a2 ∧ a3) ∧ a′1 = a1)

39

Peleska and Vorobev

a0=1
 a1 a2 a3

a0=1
 a1 a2 ¬a3

a0=1
 a1 ¬a2 a3

a0=1
 a1 ¬a2 ¬a3

a0=1
 ¬a1 a2 a3

a0=1
 ¬a1 a2 ¬a3

a0=1
 ¬a1 ¬a2 a3

a0=1
 ¬a1 ¬a2 ¬a3

a0=2
 a1 a2 a3

a0=2
 a1 a2 ¬a3

a0=2
 a1 ¬a2 a3

a0=2
 a1 ¬a2 ¬a3

a0=2
 ¬a1 a2 a3

a0=2
 ¬a1 a2 ¬a3

a0=2
 ¬a1 ¬a2 a3

a0=2
 ¬a1 ¬a2 ¬a3

a0=3
 a1 a2 a3

a0=3
 a1 a2 ¬a3

a0=3
 ¬a1 a2 a3

a0=3
 ¬a1 a2 ¬a3

a0=4
 a1 a2 a3

a0=4
 a1 a2 ¬a3

a0=4
 ¬a1 a2 a3

a0=4
 ¬a1 a2 ¬a3

a0=5
 a1 a2 a3

a0=5
 a1 a2 ¬a3

a0=6
 a1 a2 a3

Fig. 14. Kripke structure associated with ([I], R3) from Example 5.14.

Applying Theorem 5.8 we conclude that if the Kripke structure associated with

R3 fulfills AG(a0 6= 9), the same holds for the structure associated with [R],

and therefore the same holds for the concrete structure associated with R (The-

orem 5.12). For ([I], R3), the Kripke structure looks as shown in Fig. 14, and

obviously every reachable Kripke state fulfills a0 6= 9. This proves non-termination

of our sample program. 2

5.7 Predicate Approximation

Depending on the complexity of initial conditions I and transition relations R it

may be quite hard to compute [I] and [R]. It is therefore useful to have a technique

at hand for further simplifying this computation, at the cost of not arriving exactly

at [I] and [R], but at approximations of these predicates, denoted by A(I) and

A(R), respectively. We say that predicate φ′ approximates φ if φ⇒ φ′.

Definition 5.15 Let φ a predicate in negation normal form with free variables

in V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i = 1, 2, . . ., the

approximation of φ is denoted by A(φ). A(φ) has free variables in {a1, a2, . . .} and

is defined inductively by the following rules:

40

Peleska and Vorobev

(i) If φ is an atomic proposition 6 , then A(φ) =def [φ].

(ii) If ¬φ is a negated atomic proposition, then A(¬φ) =def [¬φ].

(iii) A(φ1 ∧ φ2) =def A(φ1) ∧ A(φ2)

(iv) A(φ1 ∨ φ2) =def A(φ1) ∨ A(φ2)

(v) A(∃x : φ) =def ∃a : A(φ)

(vi) A(∀x : φ) =def ∀a : A(φ)

2

Theorem 5.16 Let φ a predicate in negation normal form with free variables in

V = {x1, x2, . . .}. Given an abstraction ai = ei(x1, x2, . . .), i = 1, 2, . . ., the lifted

version of φ implies its approximated version, i. e.,

[φ](a1, a2, . . .)⇒ A(a1, a2, . . .)

Proof. The proof is performed by structural induction over the formula φ.

Step 1. If φ is atomic or the negation of an atom, A(φ) = [φ], so there is nothing

to prove.

Step 2. Suppose φ ≡ φ1 ∧φ2 and [φj]⇒ A(φj), j = 1, 2. From the definition of [·]
we calculate

[φ1 ∧ φ2] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧

φ1(ξ1/x1, ξ2/x2, . . .) ∧ φ2(ξ1/x1, ξ2/x2, . . .)

⇒ (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ1/x1, ξ2/x2, . . .)) ∧

(∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ2(ξ1/x1, ξ2/x2, . . .))

⇒ A(φ1) ∧ A(φ2)

Step 3. Suppose φ ≡ φ1 ∨ φ2 and [φj] ⇒ A(φj), j = 1, 2. This case is handled in

analogy to Step. 2.

Step 4. Suppose φ ≡ ∃x : φ1 and [φ1]⇒ A(φ1). Assume without loss of generality

that x 6= xi for all i = 1, 2, . . . and that φ = φ(x, x1, x2, . . .). Then

[∃x : φ1] ≡ ∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ (∃ξ : φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))

⇒ ∃ξ, ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .)

⇒ ∃ξ : (∃ξ1, ξ2, . . . : (∀i : ai = ei(ξ1, ξ2, . . .)) ∧ φ1(ξ/x, ξ1/x1, ξ2/x2, . . .))

⇒ ∃a : A(φ1)

Step 5. Suppose φ ≡ ∀x : φ1 and [φ1] ⇒ A(φ1). This step is handled in analogy

to Step 4. 2

6 Observe that this includes all primitive relations such as x < y, x = f(y, z).

41

Peleska and Vorobev

Theorem 5.17 Given a Kripke structure K = (S, S0, R, L) with variables in

V = {x1, x2, . . .}, initial condition I and transition formula R. Given an abstrac-

tion ai = ei(x1, x2, . . .), i = 1, 2, Let K ′ = (S′, S′0, R
′, L′) denote the Kripke

structure with variables {a1, a2, . . .}, initial condition A(I) and transition relation

A(R). Then

K 4 K ′

Proof. Let K ′′ denote the abstracted Kripke structure with variables {a1, a2, . . .},
initial condition [I] and transition formula [R]. From Theorem 5.12 and The-

orem 5.4 we know that K ′′ simulates K. From Theorem 5.16 we know that

[I] ⇒ A(I) and [R] ⇒ A(R). Now Theorem 5.8 implies that K ′ simulates K ′′.

Since 4 is transitive, the theorem follows. 2

Exercise. 10. Given a Kripke structure K = (S, S0, R, L) we use the following

notation:

• Ks =def (S, {s}, R, L) for s ∈ S
• s0 4 s1 ≡def there exists a simulation relation H ⊆ S × S such that H(s0, s1)

Consider the following algorithm:

H := {(s0, s1) | L(s0) = L(s1)};

while H is not a simulation relation do

Choose (s0, s1) such that

∃s′0 ∈ S : R(s0, s
′
0) ∧ (∀s′1 ∈ S : R(s1, s

′
1)⇒ (s′0, s

′
1) 6∈ H);

H := H − {(s0, s1)};

enddo

(i) Justify informally why H, as computed by this algorithm, is a simulation re-

lation.

(ii) Explain the relation between H as computed by this algorithm, s0 4 s1, Ks0

and Ks1 .

2

42

Peleska and Vorobev

6 Abstract Interpretation

6.1 Lattices

For the introduction of abstract interpretation it is useful to introduce partial orders

and lattices; a more detailed introduction into these topics is given in [3].

Recall that a binary relation v on a set L is called a (partial) order if v is

reflexive, transitive and anti-symmetric. An element y ∈ L is called an upper bound

of X ⊆ L if x v y holds for all x ∈ X. The lower bound of a set is defined dually.

An upper bound y′ of X is called a least upper bound of X and denoted by tX if

y′ v y holds for all upper bounds y of X. Dually, the greatest lower bound uX of a

set X is defined.

An ordered set (L,v) is called a complete lattice, if uX and tX exist for all

subsets X ⊆ L. Lattice L has a largest element (or top) denoted by > = tL
and a smallest element (or bottom) denoted by ⊥ = uL. Least upper bounds

and greatest lower bounds induce binary operations t,u : L × L → L by defining

xt y =def t{x, y} (the join of x and y) and xu y =def u{x, y} (the meet of x and

y), respectively. If the join and meet are well-defined for an ordered set (L,v) but

tX,uX do not exist for all X ⊆ L then (L,v) is called an (incomplete) lattice.

Example 6.1 (i) For every set M the power set lattice is defined by (P(M),⊆).

The join is defined by m tm′ =def m ∪m′, the meet by m um′ =def m ∩m′.
Top and bottom elements are > = M , ⊥ = ∅, respectively.

(ii) For every set M wie can introduce a nearly trivial ordering v by adding two

new elements >,⊥ 6∈ M and defining a lattice (M ∪ {>,⊥},v) such that all

m 6= m′ ∈M are incomparable and ∀m ∈M : ⊥ v m v >.

(iii) Applying the construction (ii) to Booleans B = {false, true} results in the

lattice (L(B),v) with L(B) =def {⊥, false, true,>}, ⊥ v false v >,⊥ v
true v > and true, false incomparable. The top element > has the intuitive

interpretation “undecided – maybe true or false”.

(iv) (Q,≤) is an incomplete lattice: Take any infinite set S ⊆ Q whose elements

are converging towards a transcendent number, say
√

2, from below. Then

tS 6∈ Q.

(v) The lattice of intervals over reals including ±∞ is defined as (IR,⊆) with

[a, a] u [b, b] =def [a, a] ∩ [b, b] and [a, a] t [b, b] =def [min{a, b},max{a, b}]. The

join of [a, a] and [b, b] is also called the interval hull of [a, a] and [b, b]. The

maximal element is > = [−∞,+∞], ⊥ = [] = ∅.

(vi) Interval lattices may be introduced over integral numbers from Z or N and

over rational numbers Q in analogy to (v). Interval lattices over Z and N are

complete. The interval lattice over Q is not not complete, because an infinite

sequence of intervals may have a supremum which is an interval of (IR,⊆), but

is not an interval of Q, since its boundaries are irrational numbers.

2

For the simplest form of abstract interpretation which is introduced in this

section, concrete data types int, float, bool will be abstracted to their interval

lattice counterparts as described in the example above. It is also possible to lift

43

Peleska and Vorobev

concrete n-ary functions

f : t1 × . . .× tn → t0

with ti ∈ {int, float, bool} to n-ary functions over their concrete data types’

lattice counterparts,

[f] : L(t1)× . . .× L(tn)→ L(t0)

This lifting operation is performed according to the following construction (argu-

ments ai in the following definition are intervals over the concrete data types ti).

[f](a1, . . . , an) =def

⊔
{[f(x1, . . . , xn), f(x1, . . . , xn)] | xi ∈ ai, i = 1, . . . , n} (5)

= [inf{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}, (6)

sup{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}] (7)

Intuitively speaking, function value [f](a1, . . . , an) is constructed as follows:

(i) Calculate each concrete function value f(x1, . . . , xn) over arguments xi from

intervals ai supplied as lattice element arguments to [f].

(ii) Represent every concrete function value f(x1, . . . , xn) as a single-point interval

[f(x1, . . . , xn), f(x1, . . . , xn)] of the interval latice over t0.

(iii) The function value [f](a1, . . . , an) is now determined by calculating the supre-

mum over all of the single-point intervals constructed in step (ii); this

may be expressed in the simpler form [inf{f(x1, . . . , xn) | xi ∈ ai, i =

1, . . . , n}, sup{f(x1, . . . , xn) | xi ∈ ai, i = 1, . . . , n}].

Observe that for datatype float which is a finite subset of Q it is possible that

the infimum and/or supremum used in the construction of [f](a1, . . . , an) does not

exist, because it cannot be represented as a floating point number. This prob-

lem can be addressed by widening the theoretically precise interval function value

[u, u] to the closest lower and upper bounds v, v representable in datatype float.

The widening operation ensures [u, u] ⊆ [v, v], so we know that the exact result is

conservatively approximated by the representable interval [v, v].

Applying the general lifting construction (5) to the arithmatic operations

+,−, ·, / results in the following interval counterparts:

[x, x][+][y, y] = [x+ y, x+ y]

[x, x][−][y, y] = [x− y, x− y]

[x, x][·][y, y] = [minS,maxS], S = {xy, xy, xy, xy}

[x, x][/][y, y] = [x, x][·]1/[y, y]

1/[0, 0] = ⊥

1/[y, y] = [1/y, 1/y] if 0 6∈ [y, y]

1/[y, y] = [1/y,∞[if y = 0 ∧ 0 < y

1/[y, y] =]−∞, 1/y] if y < 0 ∧ y = 0

1/[y, y] =]−∞,∞[if y < 0 ∧ y > 0

44

Peleska and Vorobev

Boolean operations b(x1, . . . , xn) are lifted to L(B)-valued operations

[b](a1, . . . , an) =


[0, 0] if ∀xi ∈ ai, i = 1, . . . , n : b(x1, . . . , xn) = 0

[1, 1] if ∀xi ∈ ai, i = 1, . . . , n : b(x1, . . . , xn) = 1

[0, 1] otherwise

Applying this to the Boolean comparisons <,≤, >,≥,=, 6= yields the following lat-

tice counterparts.

[x, x][<][y, y] =


[0, 0] if y ≤ x

[1, 1] if x < y

[0, 1] otherwise

[x, x][≤][y, y] =


[0, 0] if y < x

[1, 1] if x ≤ y

[0, 1] otherwise

[x, x][>][y, y] =


[0, 0] if x ≤ y

[1, 1] if y < x

[0, 1] otherwise

[x, x][≥][y, y] =


[0, 0] if x < y

[1, 1] if y ≤ x

[0, 1] otherwise

[x, x][=][y, y] =


[0, 0] if x < y ∨ y < x

[1, 1] if x = x = y = y

[0, 1] otherwise

[x, x][6=][y, y] =


[0, 0] if x = x = y = y

[1, 1] if x < y ∨ y < x

[0, 1] otherwise

Boolean operators ∧,∨,¬ are lifted to interval counterparts well-known from

3-valued logic:

[x, x][∧][y, y] =


[0, 0] if x = x = 0 ∨ y = y = 0

[1, 1] if x = x = 1 ∧ y = y = 1

[0, 1] otherwise

45

Peleska and Vorobev

[x, x][∨][y, y] =


[0, 0] if x = x = 0 ∧ y = y = 0

[1, 1] if x = x = 1 ∨ y = y = 1

[0, 1] otherwise

[¬][x, x] =


[0, 0] if x = x = 1

[1, 1] if x = x = 0

[0, 1] otherwise

6.2 Abstract Interpretation Concepts

The objective of abstract interpretation is to associate a single abstract computation

sequence

a = 〈α0, α1, α2, . . .〉
with a program, function or method. Each element of a is an abstract valuation

function α mapping each variable symbol to its current lattice valuation (which is

an interval valuation in the simplest case considered here). The basic principles for

obtaining such an abstract interpretation computation are as follows:

Assignments.

An assignment x0 = f(x1, . . . , xn); performed in program state αi maps to a

new state αi+1 which differs from αi in two arguments only:

• The program counter p (evaluated as a concrete natural number and not as

an interval for the simplest form of abstract interpretation) is incremented by

one,

αi+1(p) = αi(p) + 1

• The new interval valuation of x0 is equals the interval valuation of f with

argument valuations taken from state αi:

αi+1(x0) = [f](αi(x1), . . . , αi(xn))

Conditional statements.

A conditional statement

if (BooleanCondition) {

ifBlock

}

else {

elseBlock

}

evaluates to

• the valuation of the if-block if the interval valuation of [BooleanCondition]

results in [1, 1],

46

Peleska and Vorobev

• the valuation of the else-block if the interval valuation of [BooleanCondition]

results in [0, 0],

• the join of the if-block and else-block valuations otherwise.

Loops.

While loops of the form

while (BooleanCondition) {

whileBlock

}

are interpreted as (potentially infinite) if-else sequences

if (BooleanCondition) {

whileBlock;

if (BooleanCondition) {

whileBlock;

if (BooleanCondition) {

whileBlock;

if (....

....

}

}

}

The properties of complete lattices (for incomplete ones widening has to be ap-

plied) guarantee that repetitive application of the if-else rules to this expanded loop

representation results in a fixpoint, where no interval valuations change any further.

6.3 Abstract Interpretation Example

Example 6.2 Consider the following C-function which inputs x, y, z and returns a

computed value.

1 /**

2 * @pre x in [0,100] and y in [0,100] and z in [-2000,-1001]

3 */

4 int f(int x, int y, int z) {

5 int w = 10;

6 if (x > w && w > x + y)

7 {

8 w = w*x + y - 1000;

9 }

10 else

11 {

12 w = x*y;

13 }

14 return 1000 / (z - w);

15 }

47

Peleska and Vorobev

We wish to explore whether a divide-by-zero runtime error may occur, provided that

the pre-condition of the function is met. Since the only devision in this function

occurs in line 13, the verification goal can be expressed as usual as a CTL∗ formula

which is indeed an ACTL formula (we use p to denote the “program counter”

indicating the current line number of the execution):

AG(p = 13⇒ (z − w) 6= 0)

Performing the simplest form of abstract interpretation over integer intervals with-

out using contractors gives us the following interpretation results which are marked

as comments in the listing:

/**

* @pre x in [0,100] and y in [0,100] and z in [-2000,-1001]

*/

int f(int x, int y, int z) {

int w = 10; // w in [10,10]

if (x > w && w > x + y)

// ([0,100] > [10,10] && [10,10] > [0,100] + [0,100])

// = [0,1] (top)

{

w = w*x + y - 1000; // w in [-1000,100]

}

else

{

w = x*y; // w in [0,10000]

}

// join of if-else branches: w in [-1000,10000] ;

// this implies (z-w) in [-12000,-1]

return 1000 / (z - w);

// return in [-1000,0] (rules for integer division)

}

As a consequence, the function will not produce divide-by-zero runtime errors as

long as the pre-condition is observed, because the verification goal AG(p = 13 ⇒
(z − w) 6= 0) is a direct consequence of the stricter assertion

AG(p = 13⇒ (z − w) ∈ [−12000,−1])

obtained from the abstract interpretation. 2

In the remainder of this section we will justify, using the abstraction concepts

introduced in Section 5, why abstract interpretation is a sound abstraction concept.

Indeed, it will become apparent that abstract interpretation induces a Boolean

simulation of the concrete program, and the interval valuations obtained in the

abstract interpretation each lead to one Boolean abstraction variable expressing

“The concrete variable valuation at this program execution point lies within the

range indicated by its interval valuation”. The justification will be performed using

the function from the example above, so it does not represent a comprehensive

48

Peleska and Vorobev

proof. The procedure we use, however, can be easily seen to apply to abstract

interpretations of any program.

Initial condition and transition relation of the concrete system.

As usual, we start by associating the C function with its predicates specifying

intial state and transition relation. In addition to program variables x, y, z, w we

use p to denote the “program counter” indicating the current line of the program

execution (line numbering as indicated in the first listing of Example 6.2).

I(p, x, y, z, w) ≡def

p = 5 ∧ x ∈ [0, 100] ∧ y ∈ [0, 100] ∧ z ∈ [−2000,−1001]

R(p, x, y, z, w, p′, x′, y′, z′, w′, return′) ≡def

(p = 5 ∧ p′ = 6 ∧ w′ = 10 ∧ x′ = x ∧ y′ = y ∧ z′ = z) ∨

(p = 6 ∧ x > w ∧ w > x+ y ∧ p′ = 8 ∧ x′ = x ∧ y′ = y ∧ z′ = z ∧ w′ = w) ∨

(p = 6 ∧ (x ≤ w ∨ w ≤ x+ y) ∧ p′ = 11 ∧ x′ = x ∧ y′ = y ∧ z′ = z ∧ w′ = w) ∨

(p = 8 ∧ p′ = 13 ∧ w′ = w · x+ y − 1000 ∧ x′ = x ∧ y′ = y ∧ z′ = z) ∨

(p = 11 ∧ p′ = 13 ∧ w′ = x · y ∧ x′ = x ∧ y′ = y ∧ z′ = z) ∨

(p = 13 ∧ return′ = 1000/(z − w) ∧ p′ = 14)

Identification of abstraction variables.

The next step of the justification introduces one Boolean abstraction variable for

every interval valuation obtained in the abstract interpretation for any expression

of interest.

a0 = p (8)

a1 =w ∈ [10, 10] (9)

a2 = x ∈ [0, 100] (10)

a3 = y ∈ [0, 100] (11)

a4 = z ∈ [−2000,−1001] (12)

a5 =w ∈ [−1000, 100] (13)

a6 =w ∈ [0, 10000] (14)

a7 =w ∈ [−1000, 10000] (15)

a8 = (z − w) ∈ [−12000,−1] (16)

The intuition for selection a1, . . . , a7 is obvious: one Boolean abstraction vari-

able for each concrete variable and associated interval valuation encountered during

abstract interpretation; ai = true indicates that the variable is in the range speci-

fied by the interval involved. Variable a8 has been introduced because the interval

valuation of (z − w) can be used to prove that a divide-by-zero runtime error does

not occur.

In the current example only a finite number of interval valuations exist. An

abstraction constructed as the ai above only works if this number is always finite.

49

Peleska and Vorobev

For terminating programs only containing bounded loops this is quite obvious, for

non-terminating programs or programs containing unbounded while-loops an addi-

tional argument is required: the result of each loop execution can be recorded in an

interval valuation per variable. For two consecutive loop executions, the join of each

valuation results again in a single valuation per variable. For complete lattices this

continued join operation will result in a fixpoint which is again an element of the

lattice. Since intervals over integral numbers form a complete lattice, we can rest

assured that application of the fixpoint technique will result in one valuation result

per variable for each loop. Since program text is finite, the finiteness of interval

valuations follows.

Predicate abstraction of initial condition and transition relation.

Using the predicate abstraction techniques introduced in Section 5, the intial

condition and transition relation of the abstracted Kripke structure constructed via

the abstraction variables a0 . . . a8 look as follows.

[I](a0, . . . , a8) ≡def

∃ξ0, . . . , ξ4 : (a0 = ξ0 ∧ a1 = ξ4 ∈ [10, 10] ∧ a2 = ξ1 ∈ [0, 100] ∧

a3 = ξ2 ∈ [0, 100] ∧ a4 = ξ3 ∈ [−2000,−1001] ∧ a5 = ξ4 ∈ [−1000, 100] ∧

a6 = ξ4 ∈ [0, 10000] ∧ a7 = ξ4 ∈ [−1000, 10000] ∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1]) ∧

(ξ0 = 5 ∧ ξ1 ∈ [0, 100] ∧ ξ2 ∈ [0, 100] ∧ ξ3 ∈ [−2000,−1001])

Dropping binding information about a1, a5, . . . , a8 not needed in the initial state

leads to the fact that

[I](a0, . . . , a8)⇒ A(I) with A(I) =def (a0 = 5 ∧ a2 ∧ a3 ∧ a4)

For the transition relation, predicate abstraction results in (we have already

50

Peleska and Vorobev

performed term replacement of a0 for p or ξ0, respectively)

[R](a0, . . . , a8, a
′
0, . . . , a

′
8) ≡ ∃ξ1, . . . , ξ4, ξ

′
1, . . . , ξ

′
4 :

a1 = ξ4 ∈ [10, 10] ∧ a2 = ξ1 ∈ [0, 100] ∧

a3 = ξ2 ∈ [0, 100] ∧ a4 = ξ3 ∈ [−2000,−1001] ∧ a5 = ξ4 ∈ [−1000, 100] ∧

a6 = ξ4 ∈ [0, 10000] ∧ a7 = ξ4 ∈ [−1000, 10000] ∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1] ∧

a′1 = ξ′4 ∈ [10, 10] ∧ a′2 = ξ′1 ∈ [0, 100] ∧

a′3 = ξ′2 ∈ [0, 100] ∧ a′4 = ξ′3 ∈ [−2000,−1001] ∧ a′5 = ξ′4 ∈ [−1000, 100] ∧

a′6 = ξ′4 ∈ [0, 10000] ∧ a′7 = ξ′4 ∈ [−1000, 10000] ∧ a′8 = (ξ′3 − ξ′4) ∈ [−12000,−1]) ∧

((a0 = 5 ∧ a′0 = 6 ∧ ξ′4 = 10 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3) ∨

(a0 = 6 ∧ ξ1 > ξ4 ∧ ξ4 > ξ1 + ξ2 ∧ a′0 = 8 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4) ∨

(a0 = 6 ∧ (ξ1 ≤ ξ4 ∨ ξ4 ≤ ξ1 + ξ2) ∧ a′0 = 11 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4) ∨

(a0 = 8 ∧ a′0 = 13 ∧ ξ′4 = ξ4 · ξ1 + ξ2 − 1000 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3) ∨

(a0 = 11 ∧ a′0 = 13 ∧ ξ′4 = ξ1 · ξ2 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3) ∨

(a0 = 13 ∧ return′ = 1000/(ξ3 − ξ4) ∧ a′0 = 14))

For the next step we use the abbreviations

a =def (a1, . . . , a8)

a′ =def (a′1, . . . , a
′
8)

ξ =def (ξ1, . . . , ξ4)

ξ′ =def (ξ′1, . . . , ξ
′
4)

B(a, ξ,a′, ξ′) ≡def

a1 = ξ4 ∈ [10, 10] ∧ a2 = ξ1 ∈ [0, 100] ∧

a3 = ξ2 ∈ [0, 100] ∧ a4 = ξ3 ∈ [−2000,−1001] ∧ a5 = ξ4 ∈ [−1000, 100] ∧

a6 = ξ4 ∈ [0, 10000] ∧ a7 = ξ4 ∈ [−1000, 10000] ∧ a8 = (ξ3 − ξ4) ∈ [−12000,−1] ∧

a′1 = ξ′4 ∈ [10, 10] ∧ a′2 = ξ′1 ∈ [0, 100] ∧

a′3 = ξ′2 ∈ [0, 100] ∧ a′4 = ξ′3 ∈ [−2000,−1001] ∧ a′5 = ξ′4 ∈ [−1000, 100] ∧

a′6 = ξ′4 ∈ [0, 10000] ∧ a′7 = ξ′4 ∈ [−1000, 10000] ∧ a′8 = (ξ′3 − ξ′4) ∈ [−12000,−1]

Applying predicate approximation we get

[R](a0, . . . , a8, a
′
0, . . . , a

′
8)⇒ A(R)(a0, . . . , a8, a

′
0, . . . , a

′
8)

51

Peleska and Vorobev

with

A(R)(a0, . . . , a8, a
′
0, . . . , a

′
8) ≡

((a0 = 5 ∧ a′0 = 6 ∧ a′1 ∧ a′2 = a2 ∧ a′3 = a3 ∧ a′4 = a4 ∧ a′5 ∧ a′6 ∧ a′7) ∨

(a0 = 6 ∧ a′0 = 8 ∧

(∃ξ, ξ′ : B(a, ξ,a′, ξ′) ∧ ξ1 > ξ4 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4) ∧

(∃ξ, ξ′ : B(a, ξ,a′, ξ′) ∧ ξ4 > ξ1 + ξ2 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4)) ∨

(∃ξ, ξ′ : B(a, ξ,a′, ξ′)∧

a0 = 6 ∧ ξ1 ≤ ξ4 ∧ a′0 = 11 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4) ∨

(∃ξ, ξ′ : B(a, ξ,a′, ξ′)∧

a0 = 6 ∧ ξ4 ≤ ξ1 + ξ2 ∧ a′0 = 11 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3 ∧ ξ′4 = ξ4) ∨

(∃ξ, ξ′ : B(a, ξ,a′, ξ′)∧

a0 = 8 ∧ a′0 = 13 ∧ ξ′4 = ξ4 · ξ1 + ξ2 − 1000 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3) ∨

(∃ξ, ξ′ : B(a, ξ,a′, ξ′)∧

a0 = 11 ∧ a′0 = 13 ∧ ξ′4 = ξ1 · ξ2 ∧ ξ′1 = ξ1 ∧ ξ′2 = ξ2 ∧ ξ′3 = ξ3) ∨

(∃ξ, ξ′ : B(a, ξ,a′, ξ′) ∧ a0 = 13 ∧ return′ = 1000/(ξ3 − ξ4) ∧ a′0 = 14))

Construction of abstracted and approximated Kripke structure.

The Kripke structure resulting from the abstraction and approximation

(A(I), A(R)) of the concrete C function’s initial condition and transition rela-

tion is depicted in Fig. 15; it is derived from constructing all possible solutions

of (A(I), A(R)). We have adopted a 3-valued valuation of atomic propositions for

this Kripke structure, where each predicate a may be true (a), false (not a) or unde-

cided (a = >). This allows us to omit branches and additional nodes in the Kripke

graph if we are not interested in the current valuation of predicates.

Construction of the final linear Kripke structure.

Abstract interpretation in its most simple form which is discussed in this section

does not perform any branching: by taking join operations for the resulting valu-

ations of if-, else- and while-blocks we achieve one linear abstracted computation.

This process can be repeated on the level of the Kripke structure by introducing

additional “undecided”-valuations or weaker predicates for some atomic proposi-

tions: observe that nodes n3 and n4 only differ in the program counter value a0.

We my collapse these two nodes into a single one by choosing a weaker predicate

a0 = 8 ∨ a0 = 11, which results in a Kripke structure as shown in Fig. 16.

Finally we observe that – since the truth value of a8 alone decides about absence

of devide-by-zero errors – the actual valuations of a6, a7 are not relevant as long as

a8 holds. This leads us to the final linear Kripke structure shown in Fig. 17.

52

Peleska and Vorobev

n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8,a1,a2,a3,a4,a5,a6,a7,a8=T n4: a0=11,a1,a2,a3,a4,a5,a6,a7,a8=T

n5: a0=13,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n6: a0=13,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

n7: a0=14,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n8: a0=14,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

Fig. 15. Kripke structure associated with abstracted and approximated initial condition and transition
relation (A(I), A(R)).

n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8 or a0 = 11,a1,a2,a3,a4,a5,a6,a7,a8=T

n5: a0=13,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n6: a0=13,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

n7: a0=14,a1=T,a2,a3,a4,a5,a6=T,a7,a8 n8: a0=14,a1=T,a2,a3,a4,a5=T,a6,a7=T,a8

Fig. 16. Kripke structure of Fig. 15 with collapsed nodes n3 and n4.

n1: a0=5,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8=T

n2: a0=6,a1,a2,a3,a4,a5,a6,a7,a8=T

n3: a0=8 or a0 = 11,a1,a2,a3,a4,a5,a6,a7,a8=T

n56: a0=13,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8

n8: a0=14,a1=T,a2,a3,a4,a5=T,a6=T,a7=T,a8

Fig. 17. Final linear Kripke structure which is in one-one-correspondence with the abstract interpretation.

53

Peleska and Vorobev

7 Real-Time Formalisms Based on State-Transition
Systems and Shared Variables

In this section we introduce a description formalism incorporating the notion of

real time: Time is captured in a new model variable t̂ typed over R+ = [0,∞).

This allows to describe time-continuous evolutions as needed in the description

of physical models. Real-time formalisms supporting a notion of time in R+ are

called dense-time formalisms, in contrast to discrete-time formalisms, where time

is described by a counter recording the number of discrete clock ticks that occurred

since the start of a computation. Variables are taken as usual from a set V which

is now partitioned into five disjoint subsets I,O, VL, T, {t̂} denoting input variables,

outputs, local variables, timer variables and the current time, respectively.

7.1 Abstract Syntax of Timed State Machines

Timed State Machines s consist of locations ` ∈ Loc(s) (also called control states)

and transitions

τ = (`, p, g, α, `′) ∈ Σ(s) ⊆ L(s)× P ×G×A× L(s)

connecting source and target locations ` and `′, respectively. Value p ∈ P = N0

denotes the priority of the transition (0 is the best priority) and is used to enforce

determinism for state machines. Transition component g ∈ Bexpr(V) denotes the

guard condition of τ which is a Boolean expression over symbols from V . For timer

symbols t ∈ T occurring in g we only allow Boolean conditions elapsed(t, c) with

constants c. Intuitively speaking, elapsed(t, c) evaluates to true if at least c time

units have passed since t’s most recent reset.

Transition component α ∈ A = P(V × Expr(V)) denotes a set of value as-

signments to variables in V , according to expressions from Expr(V). For a pair

a = (v, e) ∈ A, var(a) =def v and expr(a) =def e denote the projections on variable

and expression, respectively. For timer symbols t ∈ T only resets (t, reset) are al-

lowed. A transition without accompanying assignments is associated with an empty

set α = ∅. Function

ω : L(s)→ P(Σ(s)); ` 7→ {(`, p, g, α, `′) ∈ Σ(s) | ` = `}

maps locations to their outgoing transitions. Each state machine s has a specific

start location start(s). Exactly one transition must leave start(s), and the guard of

this transition has to be true.

The parallel composition of timed state machines s1, . . . , sn operating over the

same set V of variables is denoted by

‖i=1,...,n si

If more than one machine write to the same variables from VL ∪ O then these are

called shared variables. Timer variables must never be shared, and inputs must

never be written to.

54

Peleska and Vorobev

2

ONOFF
out = 1; reset(t);

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[elapsed(t,100)] /
out = 0;

[sw == 0]

I = { sw } O = { out } T = { t }

/ out = 0;

1

Fig. 18. Timed state machine s for switch with timeout.

Example 7.1 Fig. 18 shows an example of a simple switching mechanism involving

a timer t: The start location is marked by the black bullet. Initially, the device

controlled by this mechanism is switched off by setting the control output out to

0. If the switch sw is set to 1 then the device is switched on by means of output

out = 1. A timer is set, so that the device is automatically switched off after 100

time units. In that case, the input switch sw has to be reset first, before the device

can be switched on again. Otherwise, if the switch sw is reset to 0 before the timer

elapses, the device is switched off at once and switched on again as soon as sw = 1.

2

7.2 Semantics of Timed State Machines

The semantics of timed state machines is based on timed state transition systems

TSTS = (S, S0, R): The state space S consists of valuation functions s : L∪V → D

satisfying s(t̂), s(t) ∈ R+ for valuation of global time t̂ and timer variables t. As a

consequence, S has uncountable cardinality. For locations `, s(`) ∈ B, s(`) = true

signifying that the state machine is currently in this location. Initial states reside in

the start location and have current time t̂ = 0, but may be associated with arbitrary

input values. Also, local variables, outputs and timer have arbitrary values which

are typically reset during the first transition from the start location to its target.

Current time t̂ changes over physical time z like an ideal clock: if the model

execution starts at physical point in time z0, then the current time always fulfils

t̂ = z − z0

or, equivalently,
dt̂

dz
= 1

which will occur in the invariants introduced below, which are part of the transition

relation.

55

Peleska and Vorobev

Example 7.2 For the example from Fig. 18, this results in the following initial

state:

S0 = {s ∈ S | s |= I}

I ≡ start(s) ∧ t̂ = 0 ∧ INV

INV ≡ (start(s) ∨OFF ∨ON ∨ TIMEOUT) ∧

¬(start(s) ∧OFF) ∧ ¬(start(s) ∧ON) ∧ ¬(start(s) ∧ TIMEOUT)) ∧

¬(OFF ∧ON) ∧ ¬(OFF ∧ TIMEOUT) ∧ ¬(ON ∧ TIMEOUT) ∧ dt̂
dz = 1

2

Transitions are classified as

• discrete transitions

• delay transitions

which is the canonical approach for dense-time formalisms: Discrete transitions take

place in zero time; they may change outputs, local variables, timers and locations,

while inputs and current time t̂ remain stable. Delay transitions can only happen

when no discrete transition is enabled. In that case the current time is advanced by

a positive value, but only as far as the point in time where the next timers elapse,

because this might enable another discrete transition. Obviously, TSTS contains

uncountably many transitions, since time may proceed in infinitesimally small units,

each unit inducing a delay transition.

The effect of an action α = {a1, . . . , ak} is defined as

ε(α)≡def (∀a ∈ α ∧ var(a) ∈ V − T : var(a)′ = expr(a)) ∧
(∀a ∈ α ∧ var(a) ∈ T : var(a)′ = t̂)

A state machine transition τ = (`0, p, g, α, `1) may be triggered (or, synony-

mously, it may fire) if

triggers(`0, p, g, α, `1) ≡def `0 ∧ g ∧ (∀(`0, p, g, α, `1) ∈ ωs(`0) : p ≥ p ∨ ¬g)

holds. This means that for τ to fire, s must reside in location `0, τ ’s guard condition

has to evaluate to true and no higher-priority transition emanating from `0 can be

triggered. The effect of a state machine transition τ = (`0, p, g, α, `1) that can be

triggered is specified as

ε(`0, p, g, α, `1) ≡def ε(α) ∧ `′1

The write set of an action α is defined by the set of left-hand side variables and

timers that are changed by this action:

W (α) =def {var(a) | a ∈ α}

The write set of a transition τ = (`0, p, g, α, `1) is defined by the write set of its

action:

W (τ) =def W (α)

56

Peleska and Vorobev

The complete transition relation of a parallel system ‖i=1,...,n si is defined by

Φ ≡def ((triggerD ∧ ΦD) ∨ (¬triggerD ∧ ΦT)) ∧ Inv′

where predicate triggerD is defined as follows:

triggerD ≡def ∃i ∈ {1, . . . , n}, τ ∈ Σ(si) : triggersi(τ)

The invariant Inv states that

• every state machine may be in at most one location at time,

• every variable only takes values in its specified domain,

• the current time behaves like an ideal clock.

Inv ≡def

(∀i ∈ {1, . . . , n}, `0, `1 ∈ Loc(si) : `0 ∧ `1 ⇒ `0 = `1) ∧

(∀v ∈ V : v ∈ Dv) ∧
dt̂
dz = 1

Components ΦD and ΦT denote the discrete and and delay transition aspects

of the complete transition relation Φ, respectively: if triggerD evaluates to true we

get the effect of a discrete transition, and if it evaluates to false, a delay transition

is performed. For discrete transitions we define

ΦD ≡def (t̂′ = t̂) ∧ (∀v ∈ I : v′ = v) ∧
(∀i ∈ {1, . . . , n}, τ ∈ Σ(si) : trigger(τ)⇒ ε(τ)) ∧
(∀v ∈ V − I : written(v) ∨ v′ = v)

the current time and the inputs remain unchanged during a discrete transition; all

transitions of state machines si that may fire are performed simultaneously, and

variables that are not written to by any transition remain unchanged. Formally,

written(v) is defined as

written(v)≡def (∃i ∈ {1, . . . , n}, τ ∈ Σ(si) : trigger(τ) ∧ v ∈W (τ))

The delay component ΦT formalises the following rules:

• The current time has to be advanced.

• All locations, local variables and outputs remain unchanged.

• The current time may be advanced at most up to the point in time where the

next timer will elapse.

• Timers which are already elapsed do not restrict the amount of time t̂ is ad-

vanced.

57

Peleska and Vorobev

ΦT ≡def (t̂′ > t̂) ∧
(∀i ∈ {1, . . . , n}, ` ∈ Loc(si) : `′ ⇔ `) ∧
(∀v ∈ V − I : v′ = v) ∧
(∀i ∈ {1, . . . , n}, (`0, p, g, α, `1) ∈ Σ(si) :

(l0 ∧ ∃g ∈ Bexpr, t ∈ T, c ∈ N : g ≡ g ∧ elapsed(t, c))⇒
(t̂′ ≤ c+ t ∨ t̂ ≥ c+ t))

Example 7.3 For the example from Fig. 18, this results in the following transition

relation:

R ≡ INV ∧ INV′ ∧ ((start(s) ∧ sw′ = sw ∧ t′ = t ∧ t̂′ = t̂ ∧ out′ = 0 ∧OFF′) ∨

(OFF ∧ sw = 0 ∧ t̂′ > t̂ ∧ out′ = out ∧ t′ = t ∧OFF′) ∨

(OFF ∧ sw = 1 ∧ sw′ = sw ∧ t̂′ = t̂ ∧ out′ = 1 ∧ t′ = t̂ ∧ON′) ∨

(ON ∧ sw = 1 ∧ t̂′ > t̂ ∧ (t̂− t) < 100 ∧ (t̂′ − t) ≤ 100 ∧ out′ = out ∧ t′ = t ∧ON′) ∨

(ON ∧ sw = 1 ∧ (t̂− t) ≥ 100 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧ TIMEOUT′) ∨

(ON ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ t′ = t ∧OFF′) ∨

(TIMEOUT ∧ sw = 1 ∧ t̂′ > t̂ ∧ t′ = t ∧ out′ = out ∧ TIMEOUT′) ∨

(TIMEOUT ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = out ∧ t′ = t ∧OFF′))

2

Exercise. 11. Apply the concept of predicate abstraction introduced in Section 5.6

in order to prove that the sample model displayed in Fig. 18 satisfies the properties

(i) AG(¬ON ∨ (t̂− t ≤ 100))

(ii) A(G(sw = 1)⇒ F(ON ∧ (t̂− t) > 50))

To this end, for each property,

1. Define the relevant auxiliary variables ai and the associated abstraction ex-

pressions ei(. . . concrete variables . . .).

2. Lift the initial state predicate I defined above to its abstracted predicate [I],

as defined in Definition 5.11.

3. Lift the transition relation predicate R defined above to its abstracted version

[R].

4. From [I] and [R], formally derive the Kripke structure of the abstracted system.

5. Evaluating the Kripke structure, give an informal argument why the property

is satisfied.

2

7.3 Discussion

Modelling formalisms where all parallel components fire transitions simultaneously

in zero time, as soon as their trigger conditions are fulfilled are called synchronous;

58

Peleska and Vorobev

it is also said that they implement the true parallelism paradigm. They are appro-

priate for modelling multi-core systems or distributed systems where different tasks

can perform computation steps in a truly simultaneous way. Since parallelism is

basically expressed by logical conjunction, the model deadlocks as soon as racing

conditions occur: If one action or several actions executed by simultaneous tran-

sitions try to write different values to the same variable, say α = {(x, 5), (x, 6)},
this leads to a logical contradiction, such as x′ = 5 ∧ x′ = 6. As a consequence,

the transition relation predicate has no solution, and the system is blocked. As a

consequence, models containing racing conditions are not allowed.

In contrast to true parallelism, formalisms using interleaving semantics do not

block in presence of racing conditions: These semantics stipulate that no two events

– say e1 =def x := 5; , e2 =def x := 6; may happen simultaneously, but are always

causally related. So either e1 happens before e2 or vice versa, and you get the

result of the event that has been executed last. This paradigm corresponds to

quasi-parallel execution of events. It is only applicable if it can be assured that

events are atomic. This is not the case, for example, if assignments to wide integers

or floats are made, which need two memory bus transfers for one assignments: as

consequence, two “interleaved” assignments may lead to a result where the upper

word contains the value of the first assignment while the lower word contains the

value of the second assignment or the other way round. If these situations have

to be taken into account, it is better to use synchronous semantics and disallow

racing conditions, because the atomicity assumption of interleaving semantics is

not justified.

The transition relation specified above is non-compositional in the sense that it

is not just defined by the conjunction of local transition relations for isolated state

machines, but additional predicates specify the conditions when variables remain

unchanged. This is the price to pay for being allowed to use shared variables in

VL ∪O, which can be written to by more than one state machine.

7.4 Clock Abstraction

In order to perform finite-state model checking of timed state machine properties

we introduce clock variables, applying the well-known abstraction techniques intro-

duced in Section 5. Given a timed state machine s with timers ti ∈ T and current

time t̂ the auxiliary variables

xi(t̂, ti) =def (t̂− ti), ti ∈ T

are called clock variables; let C denote the set of all these xi. Observe that, since t̂

is an ideal clock, xi satisfies
dxi
dz

= 1

where z denotes physical time.

Now we take AUX to be the set of all these clock variables together with all

original variables used in s with exception of the timers, that is,

AUX =def C ∪ (V − T)

59

Peleska and Vorobev

ONOFF
out = 1; x=0;

[sw == 1]/

[sw == 0] /

out = 0;

TIMEOUT

[x>=100] /

out = 0;
[sw == 0]

I = { sw } O = { out } C = { x }

/ out = 0;

1

2

Fig. 19. Timed state machine s with clock instead of timer variable.

Let ∼ denote the equivalence relation induced by AUX according to the factori-

sation principle described in Section 5.2. Then, if K denotes the Kripke structure

associated with s, it is easy to see that K/∼ is bisimilar to K.

Since the original expressions involving timers ti and model execution time t̂

were assignments ti = t̂ and conditions (t̂− ti) ≥ c, the only operations of interest

on clock variables xi are assignments xi = 0 and conditions of the form xi ≥ c; the

latter are called atomic clock constraints. The set ACC(C) denotes the set of all

atomic clock constraints. Just as timer conditions (t̂− ti) ≥ c may be combined by

conjunction, atomic clock constraints can be connected by ∧. If σ is a state of K/∼
then the valuation of (atomic and non atomic) clock constraints g is defined in the

obvious way by

σ |= x < c iff σ(x) < c

σ |= x ≤ c iff σ(x) ≤ c
σ |= x > c iff σ(x) > c

σ |= x ≥ c iff σ(x) ≥ c
σ |=¬g iff σ 6|= g

σ |= g ∧ g′ iff σ |= g and σ |= g′

σ |= g ∨ g′ iff σ |= g or σ |= g′

With these valuation rules at hand, a labelling function

LC : S → P(ACC)

can be defined which maps every state σ to the set of atomic clock constraints valid

in σ.

Example 7.4 The timed state machine shown in Fig. 18 and described in Exam-

ple 7.3 can be modelled with clocks instead of timer variables as shown in Fig. 19:

60

Peleska and Vorobev

instead of timer variable t ∈ T we introduce a clock x. The reset(t) command is

transformed into a reset of the clock to zero. The elapsed(t,c) guard condition is

changed into a guard x ≥ c. The initial condition and transition relation for the

new model is easily derived from the original predicates shown in Example 7.3:

S0/∼ = {s ∈ S/∼ | s |= I/∼}

I/∼ ≡ start(s) ∧ t̂ = 0 ∧ INV/∼

INV/∼ ≡ (start(s) ∨OFF ∨ON ∨ TIMEOUT) ∧

¬(start(s) ∧OFF) ∧ ¬(start(s) ∧ON) ∧ ¬(start(s) ∧ TIMEOUT)) ∧

¬(OFF ∧ON) ∧ ¬(OFF ∧ TIMEOUT) ∧ ¬(ON ∧ TIMEOUT) ∧
dt̂
dz = 1 ∧ dx

dz = 1

R/∼ ≡ INV/∼ ∧ INV/′∼ ∧ ((start(s) ∧ sw′ = sw ∧ x′ = x ∧ t̂′ = t̂ ∧ out′ = 0 ∧OFF′) ∨

(OFF ∧ sw = 0 ∧ t̂′ > t̂ ∧ out′ = out ∧ x′ = x+ t̂′ − t̂ ∧OFF′) ∨

(OFF ∧ sw = 1 ∧ sw′ = sw ∧ t̂′ = t̂ ∧ out′ = 1 ∧ x′ = 0 ∧ON′) ∨

(ON ∧ sw = 1 ∧ t̂′ > t̂ ∧ x′ = x+ t̂′ − t̂ ∧ x < 100 ∧ x′ ≤ 100 ∧ out′ = out ∧ON′) ∨

(ON ∧ sw = 1 ∧ x ≥ 100 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ x′ = x ∧ TIMEOUT′) ∨

(ON ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = 0 ∧ x′ = x ∧OFF′) ∨

(TIMEOUT ∧ sw = 1 ∧ t̂′ > t̂ ∧ x′ = x+ t̂′ − t̂ ∧ out′ = out ∧ TIMEOUT′) ∨

(TIMEOUT ∧ sw = 0 ∧ t̂′ = t̂ ∧ sw′ = sw ∧ out′ = out ∧ x′ = x ∧OFF′))

Note that in the definition of R/∼ we could drop the conjuncts x′ = x + t̂′ − t̂

because this is already implied by dt̂
dz = 1∧ dx

dz = 1 which is part of the invariant. 2

7.5 Property Specifications for Timed State Machines

As variants of CTL have been introduced to describe properties of reactive systems

without timing aspects, we will now define TCTLX (Timed CTL With Next Oper-

ator) for property specification of timed state machines. Observe that TCTLX

has been derived from TCTL which was introduced for reasoning about timed

automata [1]. Since timed automata are non-deterministic and allow non-urgent

execution of discrete transitions, a Next-operator has no meaning in this context,

because uncountably many delays may occur in most situations before a discrete

transition fires. In contrast to this, TCTLX has a well-defined meaning for the

Next-operator:

Xφ ≡def the next transition is a discrete one and its post-state satisfies φ

Just as in TCTL, TCTLX defines timing properties by means of a timed variant

61

Peleska and Vorobev

of the Until-operator:

φUJψ

asserts that property ψ will be fulfilled within t ∈ J time units, where t is taken

from some interval J ⊆ R+, and until then φ holds. Any time interval J ⊆ R+

with open or closed boundaries is admissible; in particular unbounded restrictions

like J = [u,∞), u ≥ 0 are allowed. Timed variants of the Globally and Finally

operators are defined as syntactic abbreviations of constructs involving the timed

Until-operator:

FJφ≡def trueU
Jφ

EGJφ≡def ¬AFJ¬φ
AGJφ≡def ¬EFJ¬φ

Observe that these definitions are quite intuitive: AGJφ, for example, asserts

that φ holds on every path and for every point in time t ∈ J .

More formally, TCTLX syntax is defined as follows.

TCTLX-formula ::= φ

φ ::= p | g | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X φ | FJ φ | GJ φ | φ UJ φ

In this syntax definition, p ∈ AP denotes an “ordinary” atomic proposition, and

g ∈ ACC(C) an atomic clock constraint.

Given a system of concurrent timed state machines whose initial condition is

defined by predicate I and whose transition relation is given by Φ as introduced

above, the semantics of a TCTLX formula is defined in Fig 20. All paths π referenced

in this definition are assumed to be time-divergent. If

π = 〈σ0, σ1, σ2, . . .〉

then di, i ≥ 0 are defined as the delays between consecutive states, that is,

di =def (σi+1(t̂)− σi(t̂))

For d ∈ R+ a time shift σ + d is defined on states σ by setting

(σ + d)(v) =def


v if v ∈ V − C

σ(t̂) + d if v = t̂

σ(v) + d if v ∈ C

7.6 Property Checking of Concurrent Timed State Machines

The fundamental idea for TCTLX property checking time state machines has been

adopted from TCTL property checking of Timed Automata [2,1]. We follow, how-

ever, the general abstraction approach for Kripke Structures introduced in Section 5

62

Peleska and Vorobev

M, s |= p ≡ p ∈ L(s)

M, s |= g ≡ p ∈ LC(s)

M, s |= ¬φ ≡ M, s 6|= φ

M, s |= φ1 ∨ φ2 ≡ M, s |= φ1 or M, s |= φ2

M, s |= φ1 ∧ φ2 ≡ M, s |= φ1 and M, s |= φ2

M, s |= E ψ ≡ there is a time-divergent path π from s such that M,π |= ψ

M, s |= A ψ ≡ on every time-divergent path π from s holds M,π |= ψ

M,π |= φ ≡ M,π(0) |= φ

M, π |= ¬ψ ≡ M,π 6|= ψ

M,π |= ψ1 ∨ ψ2 ≡ M,π |= ψ1 or M,π |= ψ2

M,π |= ψ1 ∧ ψ2 ≡ M,π |= ψ1 and M,π |= ψ2

M,π |= X ψ ≡ M,π(0) |= triggerD and M,π1 |= ψ

M,π |= ψ1U
Jψ2 ≡ there exists i ≥ 0, d ∈ R+ such that d ∈ [0, di],

d+ Σi−1
k=0dk ∈ J and M, 〈π(i) + d〉_ πi+1 |= ψ2

and for all 0 ≤ j < i there exists d′ ∈ [0, dj] such that

d′ + Σj−1
k=0dk ≤ d + Σi−1

k=0dk and M, 〈π(j) + d′〉 _ πj+1 |=
ψ1 ∨ ψ2

Fig. 20. Semantics of TCTLX formulas.

and show that our usual construction technique is applicable to use classical model

checking on timed state machines:

• A first abstraction is introduced by “forgetting” about all atomic propositions

of the concrete Kripke structure referring to explicit model execution time t̂

and confine ourselves to atomic clock constraints only.

• Since both TCTLX formulas and timed state machine guard conditions refer

to atomic clock constraints only, every property expressed in TCTLX can be

verified on this first abstraction of the original Kripke structure.

• The originally uncountable state space is abstracted to a countable state space

by collapsing all concrete system states whose clock valuations lie in the same

clock region (a concept to be introduced in the next section) into a single

equivalence class.

• By collapsing all clock regions referring to clock values no longer “relevant”

for the verification goal under consideration, the countable collection of clock

regions is reduced to a finite one.

• The finite collection of remaining “relevant” clock regions is specified by a finite

number of abstractions ai = ei(x1, . . . , xn) as introduced in Section 5.

63

Peleska and Vorobev

• On the resulting finite Kripke Structure CTL property checking may be per-

formed with the algorithms introduced in Section 4.

• It is shown that TCTLX formulas over the original system can be expressed

as CTL formulas over the finite abstration.

• It is shown that the abstracted Kripke Structure is bi-similar to the original

one. Therefore every CTL formula (an not only ACTL properties) which holds

for the abstracted system hold for the original one.

We introduce the concepts for TCTLX property checking of timed state machines

by means of Example 7.5.

Example 7.5 The control mechanism from Fig 19 is extended to a concurrent

controller as depicted in Fig. 21. The original control state machine from Fig 19 is

still present as state machine s1, but has been modified in the following way:

• The time scale has been changed so that the timeout occurs at time 1 instead

of 100. This has only been done to reduce the number of clock regions which

are introduced below.

• Whenever the machine is switched off due to the timeout x >= 1 used as trigger

in the transition l1→l2, a counter is incremented in order to record the number

of timeouts which had to be handled since the system has been activated.

• As soon as an internal shutdown command off = 1; is given by state machine

s2, state machine s1 performs a transition into control state shutdown, stops

the machine by setting out = 0; and remains passive.

State machine s1 has been augmented by a new state machine s2 which resets a

clock y as soon as the switch sw has been activated for the first time. After two

time units have elapsed, machine s2 shuts down the controller by setting off = 1;.

Observe that the number of transitions l1→l0 is unbounded because the amount

of time spending in location l1 before switching sw manually back to 0 may be

infinitesimally small. For the transition l1→l2 to occur, however, one time unit

has to pass. We wish to prove via model checking whether our intuition is right that

the counter ctr can never become greater than 2. A closer look shows that even the

value 2 may never be reached: Incrementing ctr to 2 requires 2 transitions from l1

to l2, each transition requiring s1 to linger in l1 for 1 time unit. Transitions l2 →
l0 → l1 require a value change 0 → 1 for input sw, and this requires at least one

delay transition of duration ε > 0. As a consequence s1 needs more than 2 time

units to increment the counter to 2, while s2 sets the shutdown signal exactly after

2 time units have passed. Formally speaking, we wish to check the TCTLX formula

AG(ctr < 2)

2

7.7 Clock Regions

Clock regions are constructed to identify vectors of clock valuations, each vector

component for one clock, for which the system will behave in an equivalent way.

64

Peleska and Vorobev

l0 l1

l2

m0 m1

I={sw} O={out} V_L={ctr,off} C = { x,y }

[sw==1]/out=1;x=0;

[sw==1]/y=0;

/out=0;ctr=0;

[sw==0]/out=0;

[x >=1]/
out=0;ctr=ctr+1;

m2

[y>=2]/off=1;

/off=0;

s1 s2

shutdown

[sw==0]

[off==1]
/out=0;

[off==1]
/out=0;

[off==1]/out=0;

Fig. 21. Two concurrent timed state machines for controlling a machine via interface out with switch-off
clock and a final-shutdown clock.

The construction “recipe” for clock regions is as follows.

Step 1.

For each clock x ∈ C, let cx ∈ N the largest integer c occurring in an atomic

clock constraint x ≥ c, x > c, x ≤ c, x < c, x = c, either in a guard condition or in

the TCTLX property.

Step 2.

For each clock x ∈ C, define elementary regions by the following atomic clock

constraints.

x = 0

x ∈ (0, 1)

x = 1

x ∈ (1, 2)

. . .

x ∈ (cx − 1, cx)

x = cx

x ∈ (cx,∞)

65

Peleska and Vorobev

This defines 2 · (cx + 1) clock constraints, and we use function

α : C × N0 6−→ ACC

as abbreviation for these constraints. For example, if cx = 5, α(x, n) is defined for

n = 0, 1, . . . , 9, and α(x, 7) ≡ x ∈ (3, 4). More general,

α(x, n) =def

 x = n div 2, if n mod 2 = 0

x ∈ (n div 2, (n div 2) + 1), if n mod 2 = 1

Step 4.

For different clocks whose current valuation is inside some open interval of length

1, it is necessary to know the ordering of their fractional parts frac(x), because the

clock whose valuation has the largest fractional part will be the next to meet an

integer threshold x ≥ c, so that a discrete transition might become enabled. Let

β : {0, . . . , |C| − 1} −→ C

a permutation signifying the predicate

frac(β(0)) ≤ frac(β(1)) ≤ frac(β(|C| − 1))

Since the valuations of some clocks may have the same fractional part we need

another function

γ : {1, . . . , |C| − 1} −→ B
signifying whether frac(β(i− 1)) ω frac(β(i)) holds with ω = ” < ” (for this case,

we set γ(i) = 1) or ω = ” ≤ ” (for this case, we set γ(i) = 0).

Let

ord(β, γ)

denote the predicate stating the order of fractional parts of all clocks according to

a given β, γ.

Step 5.

A clock region is a conjunction∧
x∈C

α(x, nx) ∧ ord(β, γ)

such that each (x, nx) is in the domain of α and β, γ are defined as explained in

Step 4.

7.8 Abstraction by Clock Regions

Given the full collection of constraints defining clock regions as described in the

section above we can introduce abstractions using all atomic constraints created

during this process.

66

Peleska and Vorobev

Example 7.6 The clock regions associated with Example 7.5 induce the following

abstraction functions (observe that cx = 1 and cy = 2):

a0 = (x = 0)

a1 = (x ∈ (0, 1))

a2 = (x = 1)

a3 = (x ∈ (1,∞))

b0 = (y = 0)

b1 = (y ∈ (0, 1))

b2 = (y = 1)

b3 = (y ∈ (1, 2))

b4 = (y = 2)

b5 = (y ∈ (2,∞))

f0 = (frac(x) < frac(y))

f1 = (frac(x) = frac(y))

f2 = (frac(x) > frac(y))

Applying the usual construction of initial condition and transition relation (I,R)

for the concrete system and abstracting to ([I], [R]) as explained in Section 5, yields

the abstracted finite Kripke Structure depicted in Fig. 22. Evaluation of all graph

nodes of the abstracted Kripke Structure immediately shows that the desired prop-

erty AG(ctr < 2) holds. 2

67

Peleska and Vorobev

n1: start(s1) start(s2) sw=T
ctr=T off=T out=T

a0=...=a3=b0=...=b5=f0=...=f2=T

n2.1: l0 m0 sw=0
ctr=0 off=0 out=0

a0=...=a3=b0=...=b5=f0=...=f2=T

n2.2: l0 m0 sw=1
ctr=0 off=0 out=0

a0=...=a3=b0=...=b5=f0=...=f2=T

n3: l1 m1 sw=1
ctr=0 off=0 out=1

a0 b0 f1

n4.1: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b1 f1

n4.2: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b1 f1

n5.1: l1 m1 sw=1
ctr=0 off=0 out=1

a2 b2 f1

n5.2: l1 m1 sw=0
ctr=0 off=0 out=1

a2 b2 f1

n5.3: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b1 f1

n6.1: l2 m1 sw=1
ctr=1 off=0 out=0

a2 b2 f1

n6.2: l0 m1 sw=0
ctr=0 off=0 out=0

a2 b2 f1

n6.3: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b1 f1

n6.4: l0 m1 sw=1
ctr=0 off=0 out=0

a2 b2 f1

n7.1: l2 m1 sw=0
ctr=1 off=0 out=0

a3 b3 f1

n7.2: l2 m1 sw=1
ctr=1 off=0 out=0

a3 b3 f1

n7.3: l0 m1 sw=0
ctr=0 off=0 out=0

a3 b3 f1

n7.4: l0 m1 sw=1
ctr=0 off=0 out=0

a3 b3 f1

n7.5: l1 m1 sw=1
ctr=0 off=0 out=1

a0 b1 f0

n7.6: l1 m1 sw=1
ctr=0 off=0 out=1

a0 b2 f1

n8.1: l0 m1 sw=0
ctr=1 off=0 out=0

a3 b3 f1

n8.2: l2 m1 sw=0
ctr=1 off=0 out=0

a3 b4 f1

n8.3: l2 m1 sw=1
ctr=1 off=0 out=0

a3 b4 f1

n8.4: l0 m1 sw=0
ctr=0 off=0 out=0

a3 b4 f1

n8.5: l0 m1 sw=1
ctr=0 off=0 out=0

a3 b4 f1

n8.6: l1 m1 sw=1
ctr=0 off=0 out=1

a0 b3 f0

n8.7: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b1 f0

n8.8: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b1 f0

n8.9: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b2 f2

n8.10: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b2 f2

n8.11: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b3 f1

n8.12: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b3 f1

n9.1: l0 m1 sw=1
ctr=1 off=0 out=0

a3 b3 f1

n9.2: l0 m1 sw=0
ctr=1 off=0 out=0

a3 b4 f1

n9.3: l0 m1 sw=1
ctr=1 off=0 out=0

a3 b4 f1

n9.4: l=T m2 sw=T
ctr=1 off=1 out=T

a0=...=a3=T b4 f0=...=f2=T

n9.5: l=T m2 sw=T
ctr=0 off=1 out=T

a0=...=a3=T b4 f0=...=f2=T

n9.6: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b3 f0

n9.7: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b3 f0

n9.8: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b4 f2

n9.9: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b4 f2

n9.10: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b1 f0

n9.11: l1 m1 sw=0
ctr=0 off=0 out=1

a2 b3 f0

n9.12: l1 m1 sw=1
ctr=0 off=0 out=1

a2 b3 f0

n9.13: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b3 f2

n9.14: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b3 f2

n9.15: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b3 f1

n9.16: l1 m1 sw=0
ctr=0 off=0 out=1

a2 b4 f1

n9.17: l1 m1 sw=1
ctr=0 off=0 out=1

a2 b4 f1

n10.1: l1 m1 sw=1
ctr=1 off=0 out=1

a0 b3 f0

n10.2: sd m2 sw=T
ctr=1 off=1 out=T

a0=...=a3=T b0=...=b5=T f0=...=f2=T

n10.3: sd m2 sw=T
ctr=0 off=1 out=T

a0=...=a3=T b0=...=b5=T f0=...=f2=T

n10.4: l0 m1 sw=0
ctr=0 off=0 out=0

a0 b3 f0

n10.5: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b1 f0

n10.6: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b2 f2

n10.7: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b2 f2

n10.8: l0 m1 sw=0
ctr=0 off=0 out=0

a2 b3 f0

n10.9: l1 m1 sw=0
ctr=0 off=0 out=1

a3 b3 f0

n10.10: l1 m1 sw=1
ctr=0 off=0 out=1

a3 b3 f0

n10.11: l1 m1 sw=0
ctr=0 off=0 out=1

a3 b4 f2

n10.12: l1 m1 sw=1
ctr=0 off=0 out=1

a3 b4 f2

n10.13: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b3 f2

n10.14: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b3 f1

n10.15: l0 m1 sw=0
ctr=0 off=0 out=0

a2 b4 f1

n10.16: l0 m1 sw=1
ctr=0 off=0 out=0

a2 b4 f1

n11.1: l1 m1 sw=0
ctr=1 off=0 out=1

a1 b3 f0

n11.2: l1 m1 sw=1
ctr=1 off=0 out=1

a1 b3 f0

n11.3: l1 m1 sw=0
ctr=1 off=0 out=1

a1 b4 f2

n11.4: l1 m1 sw=1
ctr=1 off=0 out=1

a1 b4 f2

n11.5: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b3 f0

n11.6: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b3 f0

n11.7: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b4 f2

n11.8: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b4 f2

n11.9: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b3 f2

n11.10: l0 m1 sw=1
ctr=0 off=0 out=0

a2 b3 f0

n11.11: l0 m1 sw=0
ctr=0 off=0 out=0

a3 b3 f0

n11.12: l0 m1 sw=1
ctr=0 off=0 out=0

a3 b3 f0

n11.13: l0 m1 sw=0
ctr=0 off=0 out=0

a3 b4 f2

n11.14: l0 m1 sw=1
ctr=0 off=0 out=0

a3 b4 f2

n11.15: l1 m1 sw=0
ctr=0 off=0 out=1

a3 b4 f2

n11.16: l1 m1 sw=1
ctr=0 off=0 out=1

a3 b4 f2

n12.1: l0 m1 sw=0
ctr=1 off=0 out=0

a1 b3 f0

n12.2: l1 m1 sw=0
ctr=1 off=0 out=1

a1 b4 f2

n12.3: l1 m1 sw=1
ctr=1 off=0 out=1

a1 b4 f2

n12.4: l0 m1 sw=0
ctr=0 off=0 out=0

a1 b4 f2

n12.5: l0 m1 sw=1
ctr=0 off=0 out=0

a1 b4 f2

n12.6: l1 m1 sw=1
ctr=0 off=0 out=1

a0 b3 f0

n12.7: l0 m1 sw=0
ctr=0 off=0 out=0

a3 b4 f0

n12.8: l0 m1 sw=1
ctr=0 off=0 out=0

a3 b4 f0

n13.1: l0 m1 sw=1
ctr=1 off=0 out=0

a1 b3 f0

n13.2: l0 m1 sw=0
ctr=1 off=0 out=0

a1 b4 f2

n13.3: l0 m1 sw=1
ctr=1 off=0 out=0

a1 b4 f2

n13.4: l1 m1 sw=0
ctr=0 off=0 out=1

a1 b4 f2

n13.5: l1 m1 sw=1
ctr=0 off=0 out=1

a1 b4 f2

Fig. 22. Abstracted Kripke Structure for system from Example 7.5. (Best viewed with PDF reader,
magnification.)

68

Peleska and Vorobev

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press, 1999.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.

[4] J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley,Teubner, Stuttgart, 2 edition,
1987.

69

Peleska and Vorobev

A Structural Induction

In this section the principle of structural induction is introduced. The material is

taken from [4, pp. 8].

Definition A.1 [Inductive Definition of Sets] Let U be a set called universe and

B ⊆ U , called the base set. Let K a set of relations r ⊆ Un × U , where n ∈ N
depends on r. K is called the constructor set and each r ∈ K a constructor. A set

A ⊆ U is called inductively defined by B and K, if A is the smallest subset of U

satisfying

(i) B ⊆ A
(ii) If a1, . . . , an ∈ A and ((a1, . . . , an), a) ∈ r for some constructor r ∈ K, then

a ∈ A.

Theorem A.2 (Principle of Structural Induction) let A ⊆ U be inductively

defined by base set B and constructor set K, and P (x) a property on elements of

x ∈ A. Suppose that

(i) Induction basis. P (x) holds for all x ∈ B.

(ii) Induction step. If P (ai), i = 1, . . . , n holds for a1, . . . , an ∈ A (induction hy-

pothesis) and ((a1, . . . , an), a) ∈ r for some constructor r ∈ K, then P (a) also

holds.

Then P (a) holds for all a ∈ A. 2

70

	Reactive Systems, Behaviour, Specifications and Models
	Transition Systems and Kripke Structures
	Property Specification With Temporal Logic
	The Computation Tree Logic CTL*
	The Computation Tree Logic CTL
	The Computation Tree Logics ACTL* and ACTL

	CTL Model Checking
	Data Abstraction
	Equivalence Classes and Factorisation of Transition Systems
	Auxiliary Variables and Associated Equivalence Classes
	Data Abstraction on Kripke Structures
	Simulations
	Bisimulations
	Predicate Abstraction
	Predicate Approximation

	Abstract Interpretation
	Lattices
	Abstract Interpretation Concepts
	Abstract Interpretation Example

	Real-Time Formalisms Based on State-Transition Systems and Shared Variables
	Abstract Syntax of Timed State Machines
	Semantics of Timed State Machines
	Discussion
	Clock Abstraction
	Property Specifications for Timed State Machines
	Property Checking of Concurrent Timed State Machines
	Clock Regions
	Abstraction by Clock Regions

	References
	Structural Induction

