

MPRPPCPRG-01 MPCPRG/D
10/95

PowerPC

Microprocessor Family:

The Programmer’s Reference Guide

 Motorola Inc. 1995
Portions hereof

 International Business Machines Corp. 1991–1995. All rights reserved.

This document contains information on a new product under development by Motorola and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses granted hereunder by Motorola or IBM to design, modify the design of, or
fabricate circuits based on the information in this document.

The PowerPC 60x microprocessors embody the intellectual property of Motorola and of IBM. However, neither Motorola nor IBM assumes any
responsibility or liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by
any third party. Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby
any right or authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as data
sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling the product.
Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this manual and/or any of the products as described herein without further notice.

NOTHING IN THIS
MANUAL, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS
THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR
GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE

. Neither Motorola nor
IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations
as to the products described herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the
marketing party and the customer. In the absence of such an agreement, no liability is assumed by Motorola, IBM, or the marketing party for any damages,
actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this manual are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp.
The PowerPC name, PowerPC logotype, and PowerPC 601 are trademarks of International Business Machines Corp. used by Motorola under license
from International Business Machines Corp. International Business Machines Corp. is an Equal Opportunity/Affirmative Action Employer.

This document was created with FrameMaker 4.0.4

PowerPC Microprocessor Family: The Programmer’s Reference Guide

1

Introduction

The primary objective of this document is to provide a concise method by which system
software and hardware developers and application programmers may more readily provide
software that is compatible across the family of PowerPC processors and other devices. A
more detailed account of the following topics or the PowerPC architecture in general, may
be obtained from the

PowerPC Microprocessor Family: The Programming Environments

,
referred to as

The Programming Environments Manual

. (

The PowerPC Architecture: A
Specification for a New Family of RISC Processors

 defines the architecture from the
perspective of the three programming environments and remains the defining document for
the PowerPC architecture.)

This document is divided into four parts:

• Part 1, “Register Summary,” on page 4 provides a brief overview of the PowerPC
register set, including a programming model and quick reference guides for both 32-
and 64-bit registers.

• Part 2, “Memory Control Model,” on page 28 provides a brief outline of the page
table entry and segment table entry for both 32- and 64-bit implementations.

• Part 3, “Exception Vectors,” on page 40 provides a quick reference for exception
types and the conditions that cause them.

• Part 4, “PowerPC Instruction Set,” on page 41 provides detailed information on the
instruction field summary—including syntax and notation conventions. Also
included, is the entire PowerPC instruction set, sorted by mnemonic and opcode.

In this document, the term “60x” is used to denote a 32-bit microprocessor from the
PowerPC architecture family. 60x processors implement the PowerPC architecture as it is
specified for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer
data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-
precision and double-precision).

Table 1 contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

This document was created with FrameMaker 4.0.4

2

PowerPC Microprocessor Family: The Programmer’s Reference Guide

Table 1. Acronyms and Abbreviated Terms

Term Meaning

ASR Address space register

BAT Block address translation

BUID Bus unit ID

CR Condition register

CTR Count register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

FPR Floating-point register

FPSCR Floating-point status and control register

GPR General-purpose register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

IU Integer unit

LR Link register

MMU Memory management unit

msb Most significant bit

MSR Machine state register

NaN Not a number

No-Op No operation

OEA Operating environment architecture

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIMM Signed immediate value

SLB Segment lookaside buffer

PowerPC Microprocessor Family: The Programmer’s Reference Guide

3

Table 2 describes instruction field notation conventions used in this document.

SPR Special-purpose register

SPRG

n

Registers available for general purposes

SR Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VEA Virtual environment architecture

XER Register used for indicating conditions such as carries and overflows for integer operations

Table 2. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT

crb

A,

crb

B,

crb

D (respectively)

BF, BFA

crf

D,

crf

S (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS

fr

A,

fr

B,

fr

C,

fr

D,

fr

S (respectively)

FXM CRM

RA, RB, RT, RS

r

A,

r

B,

r

D,

r

S (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 1. Acronyms and Abbreviated Terms (Continued)

Term Meaning

4

PowerPC Microprocessor Family: The Programmer’s Reference Guide

Part 1 Register Summary

This section describes the register organization defined by the three levels of the PowerPC
architecture—user instruction set architecture (UISA), virtual environment architecture
(VEA), and operating environment architecture (OEA). The PowerPC architecture defines
register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for
use by other instructions and reducing the number of instructions required for certain
operations. Data is transferred between memory and registers with explicit load and store
instructions only.

Figure 1 shows a graphic representation of the entire PowerPC register set. The number to
the right of the register name indicates the number that is used in the syntax of the
instruction operands to access the register (for example, the number used to access the XER
is SPR1).

Many of the SPRs can be accessed only by supervisor-level instructions; any attempt to
access these SPRs with user-level instructions results in a supervisor-level exception. Some
SPRs are implementation-specific. In some cases, not all of a register’s bits are
implemented in hardware. When a PowerPC microprocessor detects SPR encodings other
than those defined in this document, it either takes a program exception (if bit 0 of the SPR
encoding is set) or it treats the instruction as a no-op (if bit 0 of the SPR encoding is clear).

Note that the general purpose registers (GPRs), link register (LR), count register (CTR),
machine state register (MSR), data address register (DAR), SDR1, save and restore
registers 0 and 1 (SRR0 and SRR1), SPRG0–SPRG3, and data address breakpoint register
(DABR) are 64 bits in length in 64-bit implementations and 32 bits in length in 32-bit
implementations.

PowerPC Microprocessor Family: The Programmer’s Reference Guide

5

Figure 1. PowerPC Programming Model—Registers

FPR0

FPR1

FPR31

TBR 268

Time Base Facility

(Read-Only)

TBL

TBR 269TBU

SUPERVISOR MODEL

Machine State Register

MSR

Processor Version Register

SPR 287PVR

Segment Registers 1

SR0

SR1

SR15

DSISR Register

SPR 18DSISR

Data Address Register

SPR 19DAR

Save and Restore Registers

SPR 26SRR0

SPR 27SRR1

SPRG Registers
SPR 272SPRG0

SPR 273SPRG1

SPR 274SPRG2

SPR 275SPRG3

SPR 22

Decrementer

DEC

Time Base Facility
(Write-Only)

SPR 284TBL

SPR 285TBU

SPR 282

External Address Register 3

EAR

SDR1 Register

SPR 25SDR1

Address Space Register 2

SPR 280ASR

Instruction BAT Registers

SPR 528IBAT0U

SPR 529IBAT0L

SPR 530IBAT1U

SPR 531IBAT1L

SPR 532IBAT2U

SPR 533IBAT2L

SPR 534IBAT3U

SPR 535IBAT3L

Data BAT Registers

SPR 536DBAT0U

SPR 537DBAT0L

SPR 538DBAT1U

SPR 539DBAT1L

SPR 540DBAT2U

SPR 541DBAT2L

SPR 542DBAT3U

SPR 543DBAT3L

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

SPR 1013DABR

Data Address
Breakpoint Register 3

1 These registers are in 32-bit implementations only.
2 These registers are in 64-bit implementations only.
3 These registers are optional in the PowerPC architecture.

SPR 1

USER MODEL

Floating-Point Status
and Control Register

CR

FPSCR

Condition Register

GPR0

GPR1

GPR31

General-Purpose Registers

Floating-Point Registers

XER

SPR 8

Link Register

LR

SPR 9

Count Register

CTR

XER Register

6

PowerPC Microprocessor Family: The Programmer’s Reference Guide

Table 3 provides a quick method by which to reference the SPR and TBR numbers and bit
fields for all 32-bit PowerPC registers. Note that reserved bits are shaded.

Table 3. Quick Reference Guide—32-Bit Registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Notes:

1. For all SPR numbers refer to Figure 1
2. Write-Only
3. Read-Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TBR 269
TBR 268
SPR 1013
SPR 529
SPR 528
SPR 287
SPR 285
SPR 284
SPR 282
SPR 272
SPR 27
SPR 26
SPR 25

Number

Number

GPR

n

Name

CR

MSR

LR
CTR

DAR

SDR1
SRR0
SRR1
SPRG

n

1

PVR

x

BAT

n

U

1

x

BAT

n

L

1

DABR

TB(L)

2

TBU

2

Name

0 0 0 0 0 0 0 0 0 0 0 0 0 POW

SPR 22
SPR 19

SPR 18
SPR 9
SPR 8
SPR 1

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TB(L)

2

TBU

2

EAR

DEC

DSISR

XER

SR

n

[T = 1]
SR

n

[T = 0]

FPSCR

GPR

n

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7
(For the FPSCR bits, refer to 1.4, “Floating-Point Status and Control Register (FPSCR),” on page 9.)

0

ILE PREE FP ME

FE0 FE1

BESE

0

IP IR DR

0 0

RI LE
VSID

0 0 0 0

T Ks Kp N
T Ks Kp BUID Controller-Specific Information

SO OV CA

0 0

Byte Count
Branch Address

CTR
DSISR

DAR
DEC

HTABORG

0 0 0 0 0 0 0

HTABMASK
SRR0

0 0

SRR1
SPRG

n

E

0 0

RID
TB(L)
TBU

TB(L)
TBU

Version Revision
BEPI

0 0 0 0

BL Vs Vp
BRPN

0 0 0 0 0 0 0 0 0 0

WIMG

0

PP
DAB BT

DW

DR

PowerPC Microprocessor Family: The Programmer’s Reference Guide

7

Number

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

Table 4 provides a quick method by which to reference the SPR and TBR numbers and bit
fields for all 64-bit PowerPC registers. Note that reserved bits are shaded.

1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2. These registers
are 64-bit registers in 64-bit implementations and 32-bit registers in 32-bit
implementations. The GPRs are accessed as source and destination registers in the
instruction syntax.

Figure 2. General-Purpose Registers (GPRs)

1.2 Floating-Point Registers (FPRs)

The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 3. These
registers are accessed as source and destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation.

Table 4. Quick Reference Guide—64-Bit Registers

GPR0

GPR1

. . .

. . .

GPR31

0 63/31

TBR 269
TBR 268
SPR 1013

SPR 529
SPR 528
SPR 280
SPR 272
SPR 27
SPR 26
SPR 25
SPR 19

SPR 9
SPR 8

Number

GPR

n

Name

FPR

n

MSR
LR
CTR
DAR
SDR1
SRR0

SRR1
SPRG

n

1

ASR

x

BAT

n

U

1

x

BAT

n

L

1

DABR

TB(L)

2

TBU

2

Name

FPR

n

0

Branch Address
CTR

HTABORG
DAR

SRR0
SRR1

SPRG

n

BEPI

DAB
TB(L)

WIMG

TBU

0 0 0 0 0 0 0 0 0 0 0 0 0

HTABSIZE

0 0

Physical Address of Segment Table

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

BL

VsVp

BRPN

0 0 0 0 0 0 0 0 0 0 0 PP
B
TDW D

R

0 0

Notes:

1. For all SPR numbers refer to Figure 1
2. Read-only

For the MSR bits, refer to 1.8, “Machine State Register (MSR),” on page 16.)

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

8

PowerPC Microprocessor Family: The Programmer’s Reference Guide

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of compare instructions, place the result into an FPR. Information about the
status of floating-point operations is placed into the FPSCR and in some cases, into the CR
after the completion of instruction execution.

The floating-point arithmetic instructions produce intermediate results that may be
regarded as infinitely precise. After normalization or denormalization, if the precision of
the intermediate result cannot be represented in the destination format (single or double
precision), it is rounded to the specified precision before being placed in the target FPR.
The final result is then placed into the FPR in the double-precision format.

Figure 3. Floating-Point Registers (FPRs)

1.3 XER Register (XER)

The XER register (XER) is shown in Figure 4.

Figure 4. XER Register

Table 5 provides bit setting information for XER.

Table 5. XER Bit Definitions

Bit(s) Name Description

0 SO Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except

mtspr

)
sets the overflow bit (OV). Once set, the SO bit remains set until it is cleared by an

mtspr

instruction (specifying the XER) or an

mcrxr

 instruction. It is not altered by compare instructions,
nor by other instructions (except

mtspr

 to the XER, and

mcrxr

) that cannot overflow. Executing
an

mtspr

 instruction to the XER, supplying the values zero for SO and one for OV, causes SO to
be cleared and OV to be set.

1 OV Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution
of an instruction. Add, subtract from, and negate instructions having OE = 1 set the OV bit if the
carry out of the msb is not equal to the carry out of the msb + 1, and clear it otherwise. Multiply
low and divide instructions having OE = 1 set the OV bit if the result cannot be represented in 64
bits (

mulld

,

divd

,

 divdu

) or in 32 bits (

mullw

,

divw

,

 divwu

), and clear it otherwise. The OV bit is
not altered by compare instructions that cannot overflow (except

mtspr

 to the XER, and

mcrxr

).

0 63

FPR0

FPR1

. . .

. . .

FPR31

SO OV CA 0 Byte count

0 1 2 3 24 25 31

Reserved

PowerPC Microprocessor Family: The Programmer’s Reference Guide

9

1.4 Floating-Point Status and Control Register
(FPSCR)

Figure 5 shows the format of the floating-point status and control register (FPSCR).

Figure 5. Floating-Point Status and Control Register (FPSCR)

The FPSCR contains bits to do the following:

• Record exceptions generated by floating-point operations
• Record the type of the result produced by a floating-point operation
• Control the rounding mode used by floating-point operations
• Enable or disable the reporting of exceptions (invoking the exception handler)

Bits 0–23 are status bits. Bits 24–31 are control bits. Status bits in the FPSCR are updated
at the completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the exception condition bits in the FPSCR (bits 0–12
and 21–23) are sticky. Once set, sticky bits remain set until they are cleared by an

 mcrfs

,

mtfsfi

,

mtfsf

, or

mtfsb0

 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

2 CA Carry. The carry bit (CA) is set during execution of the following instructions:
• Add carrying, subtract from carrying, add extended, and subtract from extended instructions

set CA if there is a carry out of the msb, and clear it otherwise.
• Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative

operand, and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that cannot carry
(except shift right algebraic,

mtspr

 to the XER, and

mcrxr

).

3–24 — Reserved

25–31 Byte
Count

This field specifies the number of bytes to be transferred by a Load String Word Indexed (

lswx

) or
Store String Word Indexed (

stswx

) instruction.

Table 5. XER Bit Definitions (Continued)

Bit(s) Name Description

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI

VXISI

VXSNAN

VXZDZ

VXIMZ

VXVC

VXSOFT

VXSQRT

VXCVI

Reserved

FX FEXVX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN

10

PowerPC Microprocessor Family: The Programmer’s Reference Guide

FPSCR bit settings are shown in Table 6.

Table 6. FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except

mtfsfi

 and

mtfsf

,
implicitly sets FPSCR[FX] if that instruction causes any of the floating-point exception bits in
the FPSCR to transition from 0 to 1. The

mcrfs

,

mtfsfi

,

mtfsf

,

 mtfsb0

, and

mtfsb1

instructions can alter FPSCR[FX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked by their respective enable bits. The

mcrfs

,

mtfsf

,

mtfsfi

,

mtfsb0

, and

mtfsb1

instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The

mcrfs

,

mtfsf

,

mtfsfi

,

mtfsb0

, and

mtfsb1

 instructions cannot alter FPSCR[VX] explicitly. This
is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit.

4 UX Floating-point underflow exception. This is a sticky bit.

5 ZX Floating-point zero divide exception. This is a sticky bit.

6 XX Floating-point inexact exception. This is a sticky bit.
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX]
is set by a given instruction:
• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically
ORing the old value of FPSCR[XX] with the new value of FPSCR[FI].

• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit.

8 VXISI Floating-point invalid operation exception for

∞

 –

∞

. This is a sticky bit.

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit.

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit.

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that
rounded the intermediate result incremented the fraction. This bit is not sticky.

14 FI Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction
either rounded the intermediate result (producing an inexact fraction) or caused a disabled
overflow exception. This is not a sticky bit. For more information regarding the relationship
between FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.

PowerPC Microprocessor Family: The Programmer’s Reference Guide 11

Table 7 illustrates the floating-point result flags used by PowerPC processors. The result
flags correspond to FPSCR bits 15–19.

15–19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is
based on the result placed into the target register, except that if any portion of the result is
undefined, the value placed here is undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding and conversion

instructions may set this bit with the FPCC bits to indicate the class of the result;
see Table 7.

16–19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic,
rounding and conversion instructions may set the FPCC bits with the C bit to
indicate the class of the result. Note that in this case the high-order three bits of the
FPCC retain their relational significance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)
These are not sticky bits.

20 — Reserved

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can
be altered only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions.

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit.

24 VE Floating-point invalid operation exception enable. This is not a sticky bit.

25 OE IEEE floating-point overflow exception enable. This is not a sticky bit.

26 UE IEEE floating-point underflow exception enable. This is not a sticky bit.

27 ZE IEEE floating-point zero divide exception enable. This is not a sticky bit.

28 XE Floating-point inexact exception enable. This is not a sticky bit.

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards
and the other FPSCR bits may have meanings other than those described here. If the bit is set
and if all implementation-specific requirements are met and if an IEEE-conforming result of a
floating-point operation would be a denormalized number, the result produced is zero
(retaining the sign of the denormalized number). Any other effects associated with setting this
bit are described in the user’s manual for the implementation.
Effects of the setting of this bit is implementation-dependent. This is not a sticky bit.

30–31 RN Floating-point rounding control.
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity
These are not sticky bits.

Table 6. FPSCR Bit Settings (Continued)

Bit(s) Name Description

12 PowerPC Microprocessor Family: The Programmer’s Reference Guide

1.5 Condition Register (CR)
The format of the condition register (CR) is shown in Figure 6.

Figure 6. Condition Register (CR)

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set by a move instruction (mtcrf) to the CR from
a GPR.

• A specified field of the CR can be moved to another CR field with the mcrf
instruction.

• A specified field of the XER can be copied to the CR by the mcrxr instruction.

• A specified field of the FPSCR can be copied to the CR by the mcrfs instruction.

• Condition register logical instructions can be used to perform logical operations on
specified bits in the condition register.

• CR0 can be the implicit result of an integer instruction.

• CR1 can be the implicit result of a floating-point instruction.

• A specified CR field can indicate the result of either an integer or floating-point
compare instruction.

Note that branch instructions are provided to test individual CR bits.

Table 7. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15–19)
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 13

The following tables, Table 8–Table 10, provide bit setting information for CR0, CR1, and
the CRn fields, respectively.

Table 8. Bit Settings for CR0 Field of CR

CR0
Bit

Description

0 Negative (LT)—This bit is set when the result is negative.

1 Positive (GT)—This bit is set when the result is positive (and not zero).

2 Zero (EQ)—This bit is set when the result is zero.

3 Summary overflow (SO)—This is a copy of the final state of XER[SO] at
the completion of the instruction.

Table 9. Bit Settings for CR1 Field of CR

CR1
Bit

Description

4 Floating-point exception (FX)—This is a copy of the final state of
FPSCR[FX] at the completion of the instruction.

5 Floating-point enabled exception (FEX)—This is a copy of the final
state of FPSCR[FEX] at the completion of the instruction.

6 Floating-point invalid exception (VX)—This is a copy of the final state
of FPSCR[VX] at the completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final
state of FPSCR[OX] at the completion of the instruction.

Note: For more information on the FPSCR refer to Section 1.4, “Floating-Point
Status and Control Register (FPSCR).”

14 PowerPC Microprocessor Family: The Programmer’s Reference Guide

1.6 Link Register (LR)
The link register (LR) is a 64-bit register in 64-bit implementations and a 32-bit register in
32-bit implementations. The LR supplies the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can be used to hold the logical address
of the instruction that follows a branch and link instruction. The format of LR is shown in
Figure 7.

Figure 7. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
are ignored when the LR is used as an address. The link register can be accessed by the
mtspr and mfspr instructions using SPR8. Fetching instructions along the target path
(loaded by an mtspr instruction) is possible provided the link register is loaded sufficiently
ahead of the branch instruction. It is possible for a PowerPC microprocessor to fetch along
a target path loaded by a branch and link instruction.

Both conditional and unconditional branch instructions include the option of placing the
effective address of the instruction following the branch instruction in the LR.

Table 10. CRn Field Bit Settings for Compare Instructions

CRn
Bit1

Description2

0 Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or

rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

1 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or

rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

2 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

3 Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO]

at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a

Number (NaN).

Notes:
1. Here, the bit indicates the bit number in any one of the four-bit subfields, CR0–CR7.
2. For a complete description of instruction syntax conventions, refer to Table 31.

Branch Address

0 63/31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 15

1.7 Count Register (CTR)
The count register (CTR) is a 64-bit register in 64-bit implementations and a 32-bit register
in 32-bit implementations. The CTR can hold a loop count that can be decremented during
execution of branch instructions that contain an appropriately coded BO field. If the value
in CTR is 0 before being decremented, it is –1 afterward. The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcctrx) instruction.
The CTR is shown in Figure 8.

Figure 8. Count Register (CTR)

Fetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction.

The count register can be accessed by the mtspr and mfspr instructions by specifying
SPR9. In branch conditional instructions, the BO field specifies the conditions under which
the branch is taken. The first four bits of the BO field specify how the branch is affected by
or affects the CR and the CTR. The encoding for the BO field is shown in Table 11.

Table 11. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

The z indicates a bit that is ignored. The z bits should be cleared to zero, as they may be assigned a
meaning in some future version of the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken and is used by some
PowerPC implementations to improve performance. Other implementations may ignore the y bit.

CTR

0 63/31

16 PowerPC Microprocessor Family: The Programmer’s Reference Guide

1.8 Machine State Register (MSR)
The machine state register (MSR), is a 64-bit register on 64-bit implementations (see
Figure 9) and a 32-bit register in 32-bit implementations (see Figure 10).

Figure 9. Machine State Register (MSR)—64-bit Implementations

Figure 10. Machine State Register (MSR)—32-bit Implementations

Table 12 shows the bit definitions for the MSR. Full function reserved bits are saved in
SRR1 when an exception occurs; partial function reserved bits are not saved.

Table 12. MSR Bit Settings

Bit(s)
Name Description

64 Bit 32 Bit

0 — SF Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.

1–32 0 — Reserved. Full function.

33–36 1–4 — Reserved. Partial function.

37–41 5–9 — Reserved. Full function.

42–44 10–12 — Reserved. Partial function.

45 13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note: Power management functions are implementation-dependent. If the function
is not implemented, this bit is treated as reserved.

46 14 — Reserved—Implementation-specific

47 15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into
MSR[LE] to select the endian mode for the context established by the exception.

48 16 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts

and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer

exception.

0 1 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6162 63

SF 0 POW 0 ILE EE PR FPMEFE0 SE BE FE1 0 IP IR DR 0 0 RI LE

Reserved

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 POW 0 ILE EE PR FP MEFE0 SE BE FE1 0 IP IR DR 0 0 RI LE

Reserved

PowerPC Microprocessor Family: The Programmer’s Reference Guide 17

49 17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

50 18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including

floating-point loads, stores, and moves.
1 The processor can execute floating-point instructions.

51 19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

52 20 FE0 Floating-point exception mode 0 (see Table 13).

53 21 SE Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful

execution of the next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

54 22 BE Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the

execution of a branch instruction, regardless of whether or not the branch was
taken.

Note: If the function is not implemented, this bit is treated as reserved.

55 23 FE1 Floating-point exception mode 1 (see Table 13).

56 24 — Reserved. Full function.

57 25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset
is prepended with Fs or 0s. In the following description, nnnnn is the offset of the
exception. See Table 30.
0 Exceptions are vectored to the physical address 0x000n_nnnn in 32-bit

implementations and 0x0000_0000_000n_nnnn in 64-bit implementations.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn in 32-bit

implementations and 0xFFFF_FFFF_FFFn_nnnn in 64-bit implementations.

58 26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

59 27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.

60–61 28–29 — Reserved. Full function.

62 30 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.

63 31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 12. MSR Bit Settings (Continued)

Bit(s)
Name Description

64 Bit 32 Bit

18 PowerPC Microprocessor Family: The Programmer’s Reference Guide

The floating-point exception mode bits (FE0–FE1) are interpreted as shown in Table 13.
Note that these bits can be logically ORed, so that if either is set the processor operates in
precise mode.

Table 14 indicates the initial state of the MSR.

Table 13. Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Table 14. State of MSR at Power Up

Bit(s)
Name

64-Bit
Description

32-Bit
Description

64 Bit 32 Bit

0 — SF 1 —

1–44 0–12 — Unspecified1 Unspecified1

45 13 POW 0 0

46 14 — Unspecified1 Unspecified1

47 15 ILE 0 0

48 16 EE 0 0

49 17 PR 0 0

50 18 FP 0 0

51 19 ME 0 0

52 20 FE0 0 0

53 21 SE 0 0

54 22 BE 0 0

55 23 FE1 0 0

56 24 — Unspecified1 Unspecified1

57 25 IP 12 12

58 26 IR 0 0

59 27 DR 0 0

PowerPC Microprocessor Family: The Programmer’s Reference Guide 19

1.9 Processor Version Register (PVR)
The processor version register (PVR) is a 32-bit, read-only register that contains a value
identifying the specific version (model) and revision level of the PowerPC processor (see
Figure 11). The contents of the PVR can be copied to a GPR by the mfspr instruction. Read
access to the PVR is supervisor-level only; write access is not provided.

Figure 11. Processor Version Register (PVR)

The PVR consists of two 16-bit fields:

• Version (bits 0–15)—A 16-bit number that uniquely determines a particular
processor version and version of the PowerPC architecture. This number can be used
to determine the version of a processor; it may not distinguish between different
product models if more than one model uses the same processor.

• Revision (bits 16–31)—A 16-bit number that distinguishes between various releases
of a particular version (that is, an engineering change level). The value of the
revision portion of the PVR is implementation-specific. The processor revision level
is changed for each revision of the device.

60–61 28–29 — Unspecified1 Unspecified1

62 30 RI 0 0

63 31 LE 0 0

Notes:
1. Unspecified can be either 0 or 1
2. 1 is typical, but might be 0

Table 14. State of MSR at Power Up (Continued)

Bit(s)
Name

64-Bit
Description

32-Bit
Description

64 Bit 32 Bit

0 15 16 31

Version Revision

20 PowerPC Microprocessor Family: The Programmer’s Reference Guide

1.10 BAT Registers
Figure 12 and Figure 13 show the format of the upper and lower BAT registers for 64-bit
PowerPC processors.

Figure 12. Upper BAT Register—64-Bit Implementations

Figure 13. Lower BAT Register—64-Bit Implementations

Figure 14 and Figure 15 show the format of the upper and lower BAT registers for 32-bit
PowerPC processors.

Figure 14. Format of Upper BAT Registers—32-Bit Implementations

Figure 15. Format of Lower BAT Registers—32-Bit Implementations

0 46 47 50 51 61 62 63

BEPI 0 0 0 0 BL Vs Vp

Reserved

BRPN 0 0 0 0 0 0 0 0 0 0 WIMG 0 PP

0 46 47 56 57 60 61 62 63

Reserved

BEPI 0 0 0 0 BL Vs Vp

0 14 15 18 19 29 30 31

Reserved

0 14 15 24 25 28 29 30 31

BRPN 0 0 0 0 0 0 0 0 0 0 WIMG 0 PP

Reserved

PowerPC Microprocessor Family: The Programmer’s Reference Guide 21

Table 15 describes the bits in the BAT registers.

Table 16 lists the BAT area lengths encoded in the BL field of the upper BAT registers.

Table 15. BAT Registers—Field and Bit Descriptions

Upper/
Lower
BAT

 Bits
Name Description

64 Bit 32 Bit

Upper
BAT
Register

0–46 0–14 BEPI Block effective page index. This field is compared with high-order bits
of the logical address to determine if there is a hit in that BAT array
entry. (The architecture specification refers to logical address as
effective address.)

46–50 15–18 — Reserved

51–61 19–29 BL Block length. BL is a mask that encodes the size of the block. Values
for this field are listed in Table 16.

62 30 Vs Supervisor mode valid bit. This bit interacts with MSR[PR] to
determine if there is a match with the logical address.

63 31 Vp User mode valid bit. This bit also interacts with MSR[PR] to
determine if there is a match with the logical address.

Lower
BAT
Register

0–46 0–14 BRPN This field is used in conjunction with the BL field to generate high-
order bits of the physical address of the block.

47–56 15–24 — Reserved

57–60 25–28 WIMG Memory/cache access mode bits
W Write-through
I Caching-inhibited
M Memory coherence
G Guarded

61 29 — Reserved

62–63 30–31 PP Protection bits for block

Table 16. BAT Area Lengths

BAT Area
Length

BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

8 Mbytes 000 0011 1111

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

22 PowerPC Microprocessor Family: The Programmer’s Reference Guide

1.11 SDR1
The SDR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. Refer to Section 2.3.3, “SDR1 Register Definitions,” for a complete
description of SDR1.

1.12 Address Space Register (ASR)
The address space register (ASR) is a 64-bit SPR that holds 0–51 of the segment table’s
physical address. The segment table is the segment descriptor mechanism for 64-bit
implementations. For more detailed information about the ASR, refer to Section 2.2.1.1,
“Address Space Register (ASR).”

1.13 Segment Registers (SRs)
Segment registers are used in page and direct-store segment address translations. Refer to
Section 2.2, “Segment Descriptor Definitions,” for information on segment registers.

1.14 Data Address Register (DAR)
The DAR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. The DAR is shown in Figure 16.

Figure 16. Data Address Register (DAR)

The effective address generated by a memory access instruction is placed in the DAR if the
access causes an exception (for example, an alignment exception). If the exception occurs
in a 64-bit implementation operating in 32-bit mode, the high-order 32 bits of the DAR are
cleared.

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

Table 16. BAT Area Lengths (Continued)

BAT Area
Length

BL Encoding

DAR

0 63

PowerPC Microprocessor Family: The Programmer’s Reference Guide 23

1.15 SPRG0–SPRG3
SPRG0–SPRG3 are 64-bit or 32-bit registers, depending on the type of PowerPC
microprocessor. They are provided for general operating system use, such as performing a
fast state save or for supporting multiprocessor implementations. The formats of SPRG0
through SPRG3 are shown in Figure 17.

Figure 17. SPRG0–SPRG3

Table 17 provides a description of conventional uses of SPRG0–SPRG3.

1.16 DSISR
The 32-bit DSISR, shown in Figure 18, identifies the cause of DSI and alignment
exceptions.

Figure 18. DSISR

1.17 Machine Status Save/Restore Register 0 (SRR0)
The SRR0 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRR0 is used to save machine status on exceptions and restore machine

Table 17. Conventional Uses of SPRG0–SPRG3

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory
reserved for use by the first-level exception handler. This area must be unique for each processor
in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the
content of a GPR. That GPR then can be loaded from SPRG0 and used as a base register to
save other GPR’s to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

0 63

SPRG0

SPRG1

SPRG2

SPRG3
0 63

DSISR

0 31

24 PowerPC Microprocessor Family: The Programmer’s Reference Guide

status when an rfi instruction is executed. It also holds the EA for the instruction that
follows the System Call (sc) instruction. The format of SRR0 is shown in Figure 19. For
32-bit implementations, the format of SRR0 follows the low-order bits (32–63) of
Figure 19.

Figure 19. Machine Status Save/Restore Register 0 (SRR0)

When an exception occurs, SRR0 is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun execution.
When rfi is executed, the contents of SRR0 are copied to the next instruction address
(NIA)—the 64- or 32-bit address of the next instruction to be executed. The instruction
addressed by SRR0 may not have completed execution, depending on the exception type.
SRR0 addresses either the instruction causing the exception or the instruction that
immediately follows. The instruction addressed can be determined from the exception type
and status bits.

If the exception occurs in 32-bit mode of the 64-bit implementation, the high-order 32 bits
of SRR0 are cleared and the high-order 32 bits of the NIA are cleared when returning to
32-bit mode.

Note that in some implementations, every instruction fetch, when MSR[IR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may modify
SRR0.

1.18 Machine Status Save/Restore Register 1 (SRR1)
The SRR0 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit
implementations. SRR1 is used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. The format of SRR1 is shown in
Figure 20.

Figure 20. Machine Status Save/Restore Register 1 (SRR1)

On 64-bit implementations, when an exception occurs, bits 33–36 and 42–47 of SRR1 are
loaded with exception-specific information and bits 0–32, 37–41, and 48–63 of MSR are
placed into the corresponding bit positions of SRR1.

SRR0

0 61 62 63

0 0

Reserved

SRR1

0 63

PowerPC Microprocessor Family: The Programmer’s Reference Guide 25

For 32-bit implementations, when an exception occurs, bits 1–4 and 10–15 of SRR1 are
loaded with exception-specific information and bits 0, 5–9, and 16–31 of MSR are placed
into the corresponding bit positions of SRR1.

Note that, in some implementations, every instruction fetch when MSR[IR] = 1, and every
instruction execution requiring address translation when MSR[DR] = 1, may modify
SRR1.

1.19 Time Base Facility (TB)
The time base (TB), shown in Figure 21, is a 64-bit structure that contains a 64-bit unsigned
integer that is incremented periodically. Each increment adds 1 to the low-order bit (bit 63).
The frequency at which the counter is incremented is implementation-dependent.

Figure 21. Time Base (TB)

The TB increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 – 1). At the
next increment its value becomes 0x0000_0000_0000_0000. Note that there is no explicit
indication that this has occurred (that is, no exception is generated).

The period of the time base depends on the driving frequency. The TB is implemented such
that the following requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time
base.

2. Storing a GPR to the time base replaces the value in the time base with the value in
the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time
base is updated and other frequencies, such as the processor clock. The TB update
frequency is not required to be constant; however, for the system software to maintain time
of day and operate interval timers, one of two things is required:

• The system provides an implementation-dependent exception to software whenever
the update frequency of the time base changes and a means to determine the current
update frequency; or

• The system software controls the update frequency of the time base.

Note that if the operating system initializes the TB to some ‘reasonable’ value and the
update frequency of the TB is constant, the TB can be used as a source of values that
increase at a constant rate, such as for time stamps in trace entries.

0 31 0 31

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

26 PowerPC Microprocessor Family: The Programmer’s Reference Guide

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be post-processed to
become actual time values.

For information on reading, writing, and computing time of day on the time base, refer to
Chapter 2, “PowerPC Register Set,” The Programming Environments Manual.

1.20 Decrementer Register (DEC)
The DEC, shown in Figure 22, is a 32-bit decrementing counter that provides a mechanism
for causing a decrementer exception after a programmable delay. The DEC frequency is
based on the same implementation-dependent frequency that drives the time base.

Figure 22. Decrementer Register (DEC)

For information on writing and reading the DEC, refer to Chapter 2, “PowerPC Register
Set,” The Programming Environments Manual.

1.21 Data Address Breakpoint Register (DABR)
The data address breakpoint facility is controlled by the DABR, a 64-bit register in 64-bit
implementations and a 32-bit register in 32-bit implementations. The data address
breakpoint facility is optional to the PowerPC architecture, as is the DABR. However, if
the data address breakpoint facility is implemented, it is recommended, but not required,
that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated
double word. The address comparison is done on an effective address, and it applies to data
accesses only. It does not apply to instruction fetches.

The DABR is shown in Figure 23.

Figure 23. Data Address Breakpoint Register—64-Bit Implementations

DEC

0 31

0 60 61 62 63

DAB BT DW DR

PowerPC Microprocessor Family: The Programmer’s Reference Guide 27

Table 18 describes the fields in the DABR.

A data address breakpoint match is detected for a load or store instruction if the three
following conditions are met for any byte accessed:

• EA[0–60] = DABR[DAB]
• MSR[DR] = DABR[BT]
• The instruction is a store and DABR[DW] = 1, or the instruction is a load and

DABR[DR] = 1.

In 32-bit mode of a 64-bit implementation, the high-order 32 bits of the EA are treated as
zero for the purpose of detecting a match.

1.22 External Access Register (EAR)
The EAR is an optional 32-bit SPR that controls access to the external control facility and
identifies the target device for external control operations. The external control facility
provides a means for user-level instructions to communicate with special external devices.
The EAR is shown in Figure 24. Note that the EAR is an optional register.

Figure 24. External Access Register (EAR)

The high-order bits of the resource ID (RID) field that correspond to bits of the RID beyond
the width of the RID supported by a particular implementation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions. Access to the EAR is supervisor-
level, thus the operating system can determine which tasks are allowed to issue external
access instructions and when they are allowed to do so. The bit settings for the EAR are
described in Table 19.

Table 18. DABR—Field Descriptions

 Bits
Name Description

64 Bit 32 Bit

0–60 0–28 DAB Data address breakpoint

61 29 BT Breakpoint translation enable

62 30 DW Data write enable

63 31 DR Data read enable

0 1 25 26 31

E 0 RID

Reserved

28 PowerPC Microprocessor Family: The Programmer’s Reference Guide

The data access of eciwx and ecowx is performed as though the memory access mode bits
(WIMG) were 0101. For example, if the external control facility is used to support a
graphics adapter, the ecowx instruction could be used to send the translated physical
address of a buffer containing graphics data to the graphics device. The eciwx instruction
could be used to load status information from the graphics adapter.

This register can also be accessed by using the mtspr and mfspr instructions.

Part 2 Memory Control Model
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (80 or 52 bits).

The page address translation uses segment descriptors, which provide virtual address and
protection information, and page table entries (PTEs), which provide the physical address
and page protection information. The segment descriptors are programmed by the
operating system to provide the virtual ID for a segment. In addition, the operating system
also creates the page tables in memory that provide the virtual to physical address mappings
(in the form of PTEs) for the pages in memory.

Segments in the OEA are defined as one of the following two types:

• Memory segment—An effective address in these segments represents a virtual
address that is used to define the physical address of the page.

• Direct-store segment—References made to direct-store segments do not use the
virtual paging mechanism of the processor.

The T bit in the segment descriptor selects between memory segments and direct-store
segments, as shown in Table 20.

Table 19. External Access Register (EAR) Bit Settings

Bit Name Description

0 E Enable bit
1 Enabled
0 Disabled
If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a DSI exception.

1–25 — Reserved

26–31 RID Resource ID

PowerPC Microprocessor Family: The Programmer’s Reference Guide 29

All accesses generated by the processor map to a segment descriptor. If MSR[IR] = 0 or
MSR[DR] = 0 for an instruction or data access, respectively, then real addressing mode
translation is performed. Otherwise, if T = 0 in the corresponding segment descriptor (and
the address is not translated by the BAT mechanism), the access maps to memory space and
page address translation is performed.

After a memory segment is selected, the processor creates the virtual address for the
segment and searches for the PTE that dictates the physical page number to be used for the
access. Note that I/O devices can be easily mapped into memory space and used as
memory-mapped I/O.

2.1 Address Translation Overview
The following sections provide a brief overview of the page and direct-store segment
address translation. For more information, refer to Chapter 7, “Memory Management,” in
The Programming Environments Manual.

2.1.1 Page Address Translation
The first step in page address translation for 64-bit implementations is the conversion of the
64-bit effective address of an access into the 80-bit virtual address. The virtual address is
then used to locate the PTE in the page tables in memory. The physical page number is then
extracted from the PTE and used in the formation of the physical address of the access.

The translation of an effective address to a physical address for 64-bit implementations is
described briefly:

• Bits 0–35 of the effective address comprise the effective segment ID used to select
a segment descriptor, from which the virtual segment ID (VSID) is extracted.

• Bits 36–51 of the effective address correspond to the page number within the
segment; these are concatenated with the VSID from the segment descriptor to form
the virtual page number (VPN). The VPN is used to search for the PTE in either an
on-chip TLB or the page table. The PTE then provides the physical page number
(RPN).

• Bits 52–63 of the effective address are the byte offset within the page; these are
concatenated with the RPN field of a PTE to form the physical address used to
access memory.

Table 20. Segment Descriptor Types

Segment Descriptor
 T Bit

Segment Type

0 Memory segment

1 Direct-store segment

30 PowerPC Microprocessor Family: The Programmer’s Reference Guide

The translation of effective addresses to physical addresses for 32-bit implementations is
similar to that for 64-bit implementations, except that 32-bit implementations index into an
array of 16 segment registers instead of segment tables in memory to locate the segment
descriptor, and the address ranges are obviously different. Thus, the address translation is
as follows:

• Bits 0–3 of the effective address comprise the segment register number used to
select a segment descriptor, from which the virtual segment ID (VSID) is extracted.

• Bits 4–19 of the effective address correspond to the page number within the
segment; these are concatenated with the VSID from the segment descriptor to form
the virtual page number (VPN). The VPN is used to search for the PTE in either an
on-chip TLB or the page table. The PTE then provides the physical page number
(RPN).

• Bits 20–31 of the effective address are the byte offset within the page; these are
concatenated with the RPN field of a PTE to form the physical address used to
access memory.

2.1.2 Direct-Store Segment Address Translation
As described for memory segments, all accesses generated by the processor (with
translation enabled) that do not map to a BAT area, map to a segment descriptor. If T = 1
for the selected segment descriptor, the access maps to the direct-store interface, invoking
a specific bus protocol for accessing some special-purpose I/O devices. Direct-store
segments are provided for POWER compatibility. As the direct-store interface is present
only for compatibility with existing I/O devices that used this interface and the direct-store
interface protocol is not optimized for performance, its use is discouraged. Applications
that require low-latency load/store access to external address space should use memory-
mapped I/O, rather than the direct-store interface.

2.2 Segment Descriptor Definitions
The format of the segment descriptors is different for 64-bit and 32-bit implementations.
Additionally, the fields in the segment descriptors are interpreted differently depending on
the value of the T bit within the descriptor. When T = 1, the segment descriptor defines a
direct-store segment.

2.2.1 STE Format—64-Bit Implementations
In 64-bit implementations, the segment descriptors reside as segment table entries (STEs)
in hashed segment tables in memory. These STEs are generated and placed in segment
tables in memory by the operating system. Each STE is a 128-bit entity (two double words)
that maps one effective segment ID to one virtual segment ID. Information in the STE
controls the segment table search process and provides input to the memory protection

PowerPC Microprocessor Family: The Programmer’s Reference Guide 31

mechanism. Figure 25 shows the format of both double words that comprise a T = 0
segment descriptor (or STE) in a 64-bit implementation.

Figure 25. STE Format—64-Bit Implementations

Table 21 lists the bit definitions for each double word in an STE.

The Ks and Kp bits partially define the access protection for the pages within the segment.
The virtual segment ID field is used as the high-order bits of the virtual page number
(VPN).

The segment descriptors are programmed by the operating system and placed into segment
tables in memory, although some processors may additionally have on-chip segment
lookaside buffers (SLBs). These SLBs store copies of recently-used STEs that can be
accessed quickly, providing increased overall performance.

2.2.1.1 Address Space Register (ASR)
The ASR contains the control information for the segment table structure in that it defines
the highest order bits for the physical base address of the segment table. The format of the

Table 21. STE Bit Definitions for Page Address Translation—64-Bit
Implementations

Double
Word

Bit Name Description

0 0–35 ESID Effective segment ID

36–55 — Reserved

56 V Entry valid (V = 1) or invalid (V = 0)

57 T T = 0 selects this format

58 Ks Supervisor-state protection key

59 Kp User-state protection key

60 N No-execute protection bit

61–63 — Reserved

1 0–51 VSID Virtual segment ID

52–63 — Reserved

Reserved

0 35 36 55 56 57 58 59 60 61 63

0 51 52 63

ESID 0 V T Ks Kp N 0 0 0

VSID 0 0 0 0 0 0 0 0 0 0 0

32 PowerPC Microprocessor Family: The Programmer’s Reference Guide

ASR is shown in Figure 26. The ASR contains bits 0–51 of the 64-bit physical base address
of the segment table. Bits 52–56 of the STEG address are derived from the hashing
function, (and bits 57–63 are zero at the beginning of a segment table search operation to
point to the beginning of an STEG). Therefore, the beginning of the segment table lies on
a 212 byte (4 Kbyte) boundary.

Note that unless all accesses to be performed by the processor can be translated by the BAT
mechanism when address translation is enabled (MSR[DR] or MSR[IR] = 1), the ASR must
point to a valid segment table. If the processor does not support 64 bits of physical address,
software should write zeros to those unsupported bits in the ASR. Otherwise, a machine
check exception can occur.

 Additionally, values x0, 0x1000, and 0x2000 should not be used as segment table addresses
as they correspond to areas of the exception vector table reserved for implementation-
specific purposes.

Figure 26. ASR Register Format—64-Bit Implementations Only

2.2.2 Segment Descriptor Format—32-Bit Implementations
In 32-bit implementations, the segment descriptors are 32-bits long and reside in one of 16
segment registers. Figure 27 shows the format of a segment register used in page address
translation (T = 0) in a 32-bit implementation.

Figure 27. Segment Register Format for Page Address Translation—32-Bit
Implementations

Table 22 provides the corresponding bit definitions of the segment register in 32-bit
implementations.

0 51 52 63

Physical Address of Segment Table 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 1 2 3 4 7 8 31

T Ks Kp N 0 0 0 0 VSID

Reserved

PowerPC Microprocessor Family: The Programmer’s Reference Guide 33

The Ks and Kp bits partially define the access protection for the pages within the segment.
The virtual segment ID field is used as the high-order bits of the virtual page number
(VPN).

The segment register instructions are summarized in Table 23. These instructions are
privileged in that they are executable only while operating in supervisor mode.

2.2.3 Segment Descriptors for Direct-Store Segments
The format of many of the fields in the segment descriptors depends on the value of the
T bit. Figure 28 shows the format of segment descriptors (residing as STEs in segment
tables) that define direct-store segments for 64-bit implementations (T bit is set).

Table 22. Segment Register Bit Definition for Page Address Translation—32-Bit
Implementations

Bit Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3 N No-execute protection bit

4–7 — Reserved

8–31 VSID Virtual segment ID

Table 23. Segment Register Instructions—32-Bit Implementations Only

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR]← rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr rD,SR Move from Segment Register
rD←SR[SR]

mfsrin rD,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

34 PowerPC Microprocessor Family: The Programmer’s Reference Guide

Figure 28. Segment Descriptor Format for Direct-Store Segments—64-Bit
Implementations

Table 24 shows the bit definitions for the segment descriptors when the T bit is set for 64-
bit implementations.

In 32-bit implementations, the segment descriptors reside in one of 16 segment registers.
Figure 29 shows the register format for the segment registers when the T bit is set for 32-
bit implementations.

Figure 29. Segment Register Format for Direct-Store Segments—32-Bit
Implementations

Table 24. Segment Descriptor Bit Definitions for Direct-Store Segments—64-Bit
Implementations

Double Word Bit Name Description

0 0–35 ESID Effective segment ID

36–55 — Reserved

56 V Entry valid (V = 1) or invalid (V = 0)

57 T T = 0 selects this format

58 Ks Supervisor-state protection key

59 Kp User-state protection key

61–63 — Reserved

1 0–63 — Device specific data for I/O controller

Reserved

0 35 36 55 56 57 58 59 60 63

0 63

 Controller-Specific Information

ESID 0 V T Ks Kp 0 0 0 0

Double Word 0

Double Word 1

T Ks Kp BUID Controller-Specific Information

0 1 2 3 11 12 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 35

Table 25 shows the bit definitions for the segment registers when the T bit is set for 32-bit
implementations.

2.3 Page Table Entry (PTE) Definitions
Page table entries (PTEs) are generated and placed in page tables in memory by the
operating system. The PowerPC OEA defines similar PTE formats for both 64- and 32-bit
implementations in that the same fields are defined. However, 64-bit implementations
define PTEs that are 128 bits in length while 32-bit implementations define PTEs that are
64 bits in length. Additionally, care must be taken when programming for both 64 and 32-
bit implementations, as the bit placements of some fields are different. Some of the fields
are defined as follows:

• The virtual segment ID field corresponds to the high-order bits of the virtual page
number (VPN), and, along with the H, V, and API fields, it is used to locate the PTE
(used as match criteria in comparing the PTE with the segment information).

• The R and C bits maintain history information for the page.

• The WIMG bits define the memory/cache control mode for accesses to the page.

• The PP bits define the remaining access protection constraints for the page.

Conceptually, the page table in memory must be searched to translate the address of every
reference.

2.3.1 PTE Format for 64-Bit Implementations
In 64-bit implementations, each PTE is a 128-bit entity (two double words) that maps a
virtual page number (VPN) to a physical page number (RPN). Information in the PTE is
used in the page table search process (to determine a page table hit) and provides input to

Table 25. Segment Register Bit Definitions for Direct-Store Segments

Bit Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

3–11 BUID Bus unit ID

12–31 — Device specific data for I/O controller

36 PowerPC Microprocessor Family: The Programmer’s Reference Guide

the memory protection mechanism. Figure 30 shows the format of the two double words
that comprise a PTE for 64-bit implementations.

Figure 30. Page Table Entry Format—64-Bit Implementations

Table 26 lists the corresponding bit definitions for each double word in a PTE as defined
above.

The PTE contains an abbreviated page index rather than the complete page index field
because at least 11 of the low-order bits of the page index are used in the hash function to
select a PTE group (PTEG) address (PTEG addresses define the location of a PTE).
Therefore, these 11 lower-order bits are not repeated in the PTEs of that PTEG.

Table 26. PTE Bit Definitions—64-Bit Implementations

Double
Word

Bit Name Description

0 0–51 VSID Virtual segment ID—corresponds to
the high-order bits of the virtual page
number (VPN)

52–56 API Abbreviated page index

57–61 — Reserved

62 H Hash function identifier

63 V Entry valid (V = 1) or invalid (V = 0)

1 0–51 RPN Physical page number

52–54 — Reserved

55 R Referenced bit

56 C Changed bit

57–60 WIMG Memory/cache access control bits

61 — Reserved

62–63 PP Page protection bits

Reserved

0 51 52 54 55 56 57 60 61 62 63

0 51 52 56 57 61 62 63

RPN 0 0 0 R C WIMG 0 PP

VSID API 0 0 0 0 0 H V

PowerPC Microprocessor Family: The Programmer’s Reference Guide 37

2.3.2 PTE Format for 32-Bit Implementations
Figure 31 shows the format of the two words that comprise a PTE for 32-bit
implementations.

Figure 31. Page Table Entry Format—32-Bit Implementations

Table 27 lists the corresponding bit definitions for each word in a PTE as defined above.

In this case, the PTE contains an abbreviated page index rather than the complete page
index field because at least ten of the low-order bits of the page index are used in the hash
function to select a PTEG address (PTEG addresses define the location of a PTE).
Therefore, these ten lower-order bits are not repeated in the PTEs of that PTEG.

2.3.3 SDR1 Register Definitions
The SDR1 register contains the control information for the page table structure in that it
defines the highest order bits for the physical base address of the page table and it defines
the size of the table. The format of the SDR1 register differs for 64-bit and 32-bit
implementations, as shown below.

Table 27. PTE Bit Definitions—32-Bit Implementations

Word Bit Name Description

0 0 V Entry valid (V = 1) or invalid (V = 0)

1–24 VSID Virtual segment ID

25 H Hash function identifier

26–31 API Abbreviated page index

1 0–19 RPN Physical page number

20–22 — Reserved

23 R Referenced bit

24 C Changed bit

25–28 WIMG Memory/cache control bits

29 — Reserved

30–31 PP Page protection bits

Reserved

0 19 20 22 23 24 25 28 29 30 31

V VSID H API

0 1 24 25 26 31

RPN 0 0 0 R C WIMG 0 PP

38 PowerPC Microprocessor Family: The Programmer’s Reference Guide

2.3.3.1 SDR1 Register Definition for 64-Bit Implementations
The format of the SDR1 register for a 64-bit implementation is shown in Figure 32 and the
bit settings are described in Table 28.

Figure 32. SDR1 Register Format—64-Bit Implementations

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address
of the page table. Therefore, the beginning of the page table lies on a 218 byte (256 Kbyte)
boundary at a minimum. If the processor does not support 64 bits of physical address,
software should write zeroes to those unsupported bits in the HTABORG field (as the
implementation treats them as reserved). Otherwise, a machine check exception can occur.

A page table can be any size 2
n bytes where 18 ≤ n ≤ 46. The HTABSIZE field in SDR1

contains an integer value that specifies how many bits from the output of the hashing
function are used as the page table index. HTABSIZE is used to generate a mask of the form
0b00...011...1 (a string of (HTABSIZE – 28) 0 bits followed by a string of 1 bits). As the
table size increases, more bits are used from the output of the hashing function to index into
the table. The 1 bits in the mask determine how many additional bits (beyond the minimum
of 11) from the hash are used in the index; the HTABORG field must have this same
number of lower-order bits equal to 0.

2.3.3.2 SDR1 Register Definition for 32-Bit Implementations
The format of SDR1 for 32-bit implementations is similar to that of 64-bit implementations
except that the register size is 32 bits and the HTABMASK field is programmed explicitly
into SDR1. Additionally, the address ranges correspond to a 32-bit physical address and the
range of page table sizes is smaller. Figure 33 shows the format of the SDR1 register for
32-bit implementations; the bit settings are described in Table 29.

Table 28. SDR1 Register Bit Settings—64-Bit Implementations

Bits Name Description

0–45 HTABORG Physical base address of page table

46–58 — Reserved

59-63 HTABSIZE Encoded size of page table (used to
generate mask)

0 0 0 0 0 0 0 0 0 0 0 0 0 HTABSIZE

Reserved

0 45 46 58 59 63

HTABORG

PowerPC Microprocessor Family: The Programmer’s Reference Guide 39

Figure 33. SDR1 Register Format—32-Bit Implementations

The HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the beginning of the page table lies on a 216 byte (64 Kbyte)
boundary at a minimum. As with 64-bit implementations, if the processor does not support
32 bits of physical address, software should write zeroes to those unsupported bits in the
HTABORG field (as the implementation treats them as reserved). Otherwise, a machine
check exception can occur.

A page table can be any size 2
n bytes where 16 ≤ n ≤ 25. The HTABMASK field in SDR1

contains a mask value that determines how many bits from the output of the hashing
function are used as the page table index. This mask must be of the form 0b00...011...1 (a
string of 0 bits followed by a string of 1 bits). As the table size increases, more bits are used
from the output of the hashing function to index into the table. The 1 bits in HTABMASK
determine how many additional bits (beyond the minimum of 10) from the hash are used
in the index; the HTABORG field must have the same number of lower-order bits equal to
0 as the HTABMASK field has lower-order bits equal to 1.

Table 29. SDR1 Register Bit Settings—32-Bit Implementations

Bits Name Description

0–15 HTABORG Physical base address of page table

16–22 — Reserved

23–31 HTABMASK Mask for page table address

0 0 0 0 0 0 0 HTABMASK

Reserved

0 15 16 22 23 31

HTABORG

40 PowerPC Microprocessor Family: The Programmer’s Reference Guide

Part 3 Exception Vectors
Exceptions, and conditions that cause them, are listed in Table 30.

Table 30. Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. If the
conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check 00200 The causes for machine check exceptions are implementation-dependent, but
typically these causes are related to conditions such as bus parity errors or
attempting to access an invalid physical address. Typically, these exceptions are
triggered by an input signal to the processor. Note that not all processors
provide the same level of error checking.
The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state.
If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

DSI 00300 A DSI exception occurs when a data memory access cannot be performed.
Such accesses can be generated by load/store instructions, certain memory
control instructions, and certain cache control instructions. For more detailed
information, refer to Chapter 6, “Exceptions,” in The Programming Environments
Manual.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed. For
more detailed information, refer to Chapter 6, “Exceptions,” in The Programming
Environments Manual.

External
interrupt

00500 An external interrupt is generated only when an external exception is pending
(typically signaled by a signal defined by the implementation) and the interrupt is
enabled (MSR[EE] = 1).

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access because of alignment or endian reasons.
Note that an implementation is allowed to perform the operation correctly and
not cause an alignment exception. For more detailed information, refer to
Chapter 6, “Exceptions,” in The Programming Environments Manual.

Program 00700 A program exception is caused conditions which correspond to bit settings in
SRR1 and arise during execution of an instruction. For more detailed
information, refer to Chapter 6, “Exceptions,” in The Programming Environments
Manual.

Floating-point
unavailable

00800 A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is cleared, MSR[FP] = 0.

PowerPC Microprocessor Family: The Programmer’s Reference Guide 41

Part 4 PowerPC Instruction Set
The following sections include an instruction field summary, a list of split-field notation
and conventions, and the entire PowerPC instruction set, sorted by mnemonic and opcode.

4.1 Instruction Field Summary
Table 31 describes the instruction fields used in the various instruction formats.

Decrementer 00900 The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

Reserved 00A00 Reserved for implementation-specific exceptions. For example, the PowerPC
601 microprocessor uses this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception is optional. It occurs if either the MSR[SE] = 1 and any
instruction (except rfi) successfully completed or MSR[BE] = 1 and a branch
instruction is completed.

Floating-Point
Assist

00E00 The floating-point assist exception is optional. This exception can be used to
provide software assistance for infrequent and complex floating-point operations
such as denormalization.

Reserved 00E10–00FFF —

Reserved 01000–02FFF Reserved for implementation-specific exceptions.

Table 31. Instruction Syntax Conventions

Field Description

 AA (30) Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA).

The effective (logical) address of the branch is either the sum of the LI field sign-extended to
64 bits and the address of the branch instruction or the sum of the BD field sign-extended to
64 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch
is the LI field sign-extended to 64 bits or the BD field sign-extended to 64 bits.

Note: The LI and BD fields are sign-extended to 32 bits in 32-bit implementations.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 64 bits (32 bits in 32-bit
implementations).

BI (11–15) Field used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6–10) Field used to specify options for the branch conditional instructions.

Table 30. Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

42 PowerPC Microprocessor Family: The Programmer’s Reference Guide

crbA (11–15) Field used to specify a bit in the CR to be used as a source.

crbB (16–20) Field used to specify a bit in the CR to be used as a source.

crbD (6–10) Field used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an
instruction.

crfD (6–8) Field used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crfS (11–13) Field used to specify one of the CR fields, or one of the FPSCR fields, as a source.

CRM (12–19) Field mask used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31) Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 64
bits (32 bits in 32-bit implementations).

ds (16–29) Immediate field specifying a 14-bit signed two’s complement integer which is concatenated on
the right with 0b00 and sign-extended to 64 bits. This field is defined in 64-bit implementations
only.

FM (7–14) Field mask used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11–15) Field used to specify an FPR as a source.

frB (16–20) Field used to specify an FPR as a source.

frC (21–25) Field used to specify an FPR as a source.

frD (6–10) Field used to specify an FPR as the destination.

frS (6–10) Field used to specify an FPR as a source.

IMM (16–19) Immediate field used as the data to be placed into a field in the FPSCR.

L (10) Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-
bit numbers. This field is defined in 64-bit implementations only.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the
right with 0b00 and sign-extended to 64 bits (32 bits in 32-bit implementations).

LK (31) Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction

following the branch instruction is placed into the LR.

MB (21–25) and
ME (26–30)

Fields used in rotate instructions to specify a 64-bit mask (32 bits in 32-bit implementations)
consisting of 1 bits from bit MB + 32 through bit ME + 32 inclusive, and 0 bits elsewhere.

NB (16–20) Field used to specify the number of bytes to move in an immediate string load or store.

OE (21) Used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field.

rA (11–15) Field used to specify a GPR to be used as a source or destination.

rB (16–20) Field used to specify a GPR to be used as a source.

Table 31. Instruction Syntax Conventions (Continued)

Field Description

PowerPC Microprocessor Family: The Programmer’s Reference Guide 43

Split fields—mb, me, sh, spr, and tbr—are described in Table 32.

Rc (31) Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0–2 are set to reflect the result as a signed quantity and CR
bit 3 receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned
quantity or a bit string can be deduced from the EQ bit. For floating-point instructions, CR bits
4–7 are set to reflect floating-point exception, floating-point enabled exception, floating-point
invalid operation exception, and floating-point overflow exception. (Note that the architecture
specification refers to exceptions also as interrupts.)

rD (6–10) Field used to specify a GPR to be used as a destination.

rS (6–10) Field used to specify a GPR to be used as a source.

SH (16–20) Field used to specify a shift amount.

SIMM (16–31) Immediate field used to specify a 16-bit signed integer.

SR (12–15) Field used to specify one of the 16 segment registers (32-bit implementations only).

TO (6–10) Field used to specify the conditions on which to trap.

UIMM (16–31) Immediate field used to specify a 16-bit unsigned integer.

XO (21–29,
21–30, 22–30,
26–30, 27–29,
27–30, or 30–31)

Extended opcode field.
Bits 21–29, 27–29, 27–30, 30–31 pertain to 64-bit implementations only.

Table 32. Split-Field Notation and Conventions

Field Description

mb (21–26) Field used in rotate instructions to specify the first 1 bit of a 64-bit mask (32 bits in 32-bit
implementations). This field is defined in 64-bit implementations only.

me (21–26) Field used in rotate instructions to specify the last 1 bit of a 64-bit mask (32 bits in 32-bit
implementations). This field is defined in 64-bit implementations only.

sh (16–20) and
sh (30)

Fields used to specify a shift amount (64-bit implementations only).

spr (11–20) Field used to specify a special purpose register for the mtspr and mfspr instructions.

tbr (11–20) Field used to specify either the time base lower (TBL) or time base upper (TBU).

Table 31. Instruction Syntax Conventions (Continued)

Field Description

44

PowerPC Microprocessor Family: The Programmer’s Reference Guide

4.2 PowerPC Instruction Set Listings

A0
A0

This section lists the PowerPC architecture’s instruction set. Instructions are sorted by
mnemonic and opcode. Note

that split fields, that represent the concatenation of sequences
from left to right, are shown in lowercase.

Table 33 lists the instructions implemented in the PowerPC architecture in alphabetical
order by mnemonic.

Table 33. Complete Instruction List Sorted by Mnemonic

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

add

x

31 D A B OE 266 Rc

addc

x

31 D A B OE 10 Rc

adde

x

31 D A B OE 138 Rc

addi

14 D A SIMM

addic

12 D A SIMM

addic.

13 D A SIMM

addis

15 D A SIMM

addme

x

31 D A 0 0 0 0 0 OE 234 Rc

addze

x

31 D A 0 0 0 0 0 OE 202 Rc

and

x

31 S A B 28 Rc

andc

x

31 S A B 60 Rc

andi.

28 S A UIMM

andis.

29 S A UIMM

b

x

18 LI AA LK

bc

x

16 BO BI BD AA LK

bcctr

x

19 BO BI 0 0 0 0 0 528 LK

bclr

x

19 BO BI 0 0 0 0 0 16 LK

cmp

31 crfD 0 L A B 0 0

cmpi

11 crfD 0 L A SIMM

cmpl

31 crfD 0 L A B 32 0

cmpli

10 crfD 0 L A UIMM

cntlzd

x

4

31 S A 0 0 0 0 0 58 Rc

cntlzw

x

31 S A 0 0 0 0 0 26 Rc

crand

19 crbD crbA crbB 257 0

Reserved bits

Key:

This document was created with FrameMaker 4.0.4

PowerPC Microprocessor Family: The Programmer’s Reference Guide

45

crandc

19 crbD crbA crbB 129 0

creqv

19 crbD crbA crbB 289 0

crnand

19 crbD crbA crbB 225 0

crnor

19 crbD crbA crbB 33 0

cror

19 crbD crbA crbB 449 0

crorc

19 crbD crbA crbB 417 0

crxor

19 crbD crbA crbB 193 0

dcbf

31 0 0 0 0 0 A B 86 0

dcbi

1

31 0 0 0 0 0 A B 470 0

dcbst

31 0 0 0 0 0 A B 54 0

dcbt

31 0 0 0 0 0 A B 278 0

dcbtst

31 0 0 0 0 0 A B 246 0

dcbz

31 0 0 0 0 0 A B 1014 0

divd

x

4

31 D A B OE 489 Rc

divdu

x

4

31 D A B OE 457 Rc

divw

x

31 D A B OE 491 Rc

divwu

x

31 D A B OE 459 Rc

eciwx

31 D A B 310 0

ecowx

31 S A B 438 0

eieio

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqv

x

31 S A B 284 Rc

extsb

x

31 S A 0 0 0 0 0 954 Rc

extsh

x

31 S A 0 0 0 0 0 922 Rc

extsw

x

4

31 S A 0 0 0 0 0 986 Rc

fabs

x

63 D 0 0 0 0 0 B 264 Rc

fadd

x

63 D A B 0 0 0 0 0 21 Rc

fadds

x

59 D A B 0 0 0 0 0 21 Rc

fcfid

x

4

63 D 0 0 0 0 0 B 846 Rc

fcmpo

63 crfD 0 0 A B 32 0

fcmpu

63 crfD 0 0 A B 0 0

fctid

x

4

63 D 0 0 0 0 0 B 814 Rc

fctidz

x

4

63 D 0 0 0 0 0 B 815 Rc

fctiw

x

63 D 0 0 0 0 0 B 14 Rc

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

46

PowerPC Microprocessor Family: The Programmer’s Reference Guide

fctiwz

x

63 D 0 0 0 0 0 B 15 Rc

fdiv

x

63 D A B 0 0 0 0 0 18 Rc

fdivs

x

59 D A B 0 0 0 0 0 18 Rc

fmadd

x

63 D A B C 29 Rc

fmadds

x

59 D A B C 29 Rc

fmr

x

63 D 0 0 0 0 0 B 72 Rc

fmsub

x

63 D A B C 28 Rc

fmsubs

x

59 D A B C 28 Rc

fmul

x

63 D A 0 0 0 0 0 C 25 Rc

fmuls

x

59 D A 0 0 0 0 0 C 25 Rc

fnabs

x

63 D 0 0 0 0 0 B 136 Rc

fneg

x

63 D 0 0 0 0 0 B 40 Rc

fnmadd

x

63 D A B C 31 Rc

fnmadds

x

59 D A B C 31 Rc

fnmsub

x

63 D A B C 30 Rc

fnmsubs

x

59 D A B C 30 Rc

fres

x

5

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsp

x

63 D 0 0 0 0 0 B 12 Rc

frsqrte

x

5

63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsel

x

5

63 D A B C 23 Rc

fsqrt

x

5

63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrts

x

5

59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsub

x

63 D A B 0 0 0 0 0 20 Rc

fsubs

x

59 D A B 0 0 0 0 0 20 Rc

icbi

31 0 0 0 0 0 A B 982 0

isync

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz

34 D A d

lbzu

35 D A d

lbzux

31 D A B 119 0

lbzx

31 D A B 87 0

ld

4

58 D A ds 0

ldarx

4

31 D A B 84 0

ldu

4

58 D A ds 1

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide

47

ldux

4

31 D A B 53 0

ldx

4

31 D A B 21 0

lfd

50 D A d

lfdu

51 D A d

lfdux

31 D A B 631 0

lfdx

31 D A B 599 0

lfs

48 D A d

lfsu

49 D A d

lfsux

31 D A B 567 0

lfsx

31 D A B 535 0

lha

42 D A d

lhau

43 D A d

lhaux

31 D A B 375 0

lhax

31 D A B 343 0

lhbrx

31 D A B 790 0

lhz

40 D A d

lhzu

41 D A d

lhzux

31 D A B 311 0

lhzx

31 D A B 279 0

lmw

3

46 D A d

lswi

3

31 D A NB 597 0

lswx

3

31 D A B 533 0

lwa

4

58 D A ds 2

lwarx

31 D A B 20 0

lwaux

4

31 D A B 373 0

lwax

4

31 D A B 341 0

lwbrx

31 D A B 534 0

lwz

32 D A d

lwzu

33 D A d

lwzux

31 D A B 55 0

lwzx

31 D A B 23 0

mcrf

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs

63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

48

PowerPC Microprocessor Family: The Programmer’s Reference Guide

 mcrxr

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mfsr 1,6 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1,6 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 S spr 467 0

mtsr 1,6 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1,6 31 S 0 0 0 0 0 B 242 0

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldclx 4 30 S A B mb 8 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 49

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdcx. 4 31 S A B 214 1

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

50 PowerPC Microprocessor Family: The Programmer’s Reference Guide

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tdi 4 02 TO A SIMM

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 51

Table 34 lists the instructions defined in the PowerPC architecture in numeric order by
opcode.

Table 34. Complete Instruction List Sorted by Opcode

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction
6 32-bit instruction only

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 4 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved bits

Key:

52 PowerPC Microprocessor Family: The Programmer’s Reference Guide

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 4 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 4 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 4 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 4 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 4 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 4 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdux 4 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 4 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 53

sldx 4 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

ldux 4 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 4 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 4 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 4 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 4 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 4 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 1,6 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 4 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

54 PowerPC Microprocessor Family: The Programmer’s Reference Guide

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 4 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullwx 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 1,6 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 4 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 4 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 4 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 4 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 2 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 55

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divdx 4 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 4 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 1,6 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 1,6 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 4 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

56 PowerPC Microprocessor Family: The Programmer’s Reference Guide

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 4 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 4 1 1 1 0 1 0 D A ds 0 0

ldu 4 1 1 1 0 1 0 D A ds 0 1

lwa 4 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PowerPC Microprocessor Family: The Programmer’s Reference Guide 57

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 4 1 1 1 1 1 0 S A ds 0 0

stdu 4 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 5 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

58 PowerPC Microprocessor Family: The Programmer’s Reference Guide

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction
6 32-bit instruction only

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Motorola Inc. 1995
Portions hereof

 International Business Machines Corp. 1991–1995. All rights reserved.

This document contains information on a new product under development by Motorola and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses granted hereunder by Motorola or IBM to design, modify the design of, or
fabricate circuits based on the information in this document.

The PowerPC 60x microprocessors embody the intellectual property of Motorola and of IBM. However, neither Motorola nor IBM assumes any
responsibility or liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by
any third party. Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby
any right or authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as data
sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling the product.
Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this manual and/or any of the products as described herein without further notice.

NOTHING IN THIS
MANUAL, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE INTERPRETED AS
THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY, REPRESENTATION, OR
GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR PURPOSE

. Neither Motorola nor
IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials. Any warranty or other obligations
as to the products described herein shall be undertaken solely by the marketing party to the customer, under a separate sale agreement between the
marketing party and the customer. In the absence of such an agreement, no liability is assumed by Motorola, IBM, or the marketing party for any damages,
actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this manual are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM and IBM logo are registered trademarks, and IBM Microelectronics is a trademark of International Business Machines Corp.
The PowerPC name, PowerPC logotype, and PowerPC 601 are trademarks of International Business Machines Corp. used by Motorola under license
from International Business Machines Corp. International Business Machines Corp. is an Equal Opportunity/Affirmative Action Employer.

This document was created with FrameMaker 4.0.4

