
SCANF(3) Linux Programmer’s Manual SCANF(3)

NAME
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf − input format conversion

SYNOPSIS
#include <stdio.h>

int scanf(const char * format , ...);
int fscanf(FILE * stream , const char * format , ...);
int sscanf(const char * str, const char * format , ...);

#include <stdarg.h>
int vscanf(const char * format , va list ap);
int vsscanf(const char * str , const char * format , va list ap);
int vfscanf(FILE * stream , const char * format , va list ap);

DESCRIPTION
The scanf family of functions scans input according to a format as described below. This format
may contain conversion specifiers ; the results from such conversions, if any, are stored through the
pointer arguments. The scanf function reads input from the standard input stream stdin , fscanf
reads input from the stream pointer stream , and sscanf reads its input from the character string
pointed to by str .

The vfscanf function is analogous to vfprintf(3) and reads input from the stream pointer stream
using a variable argument list of pointers (see stdarg(3). The vscanf function scans a variable
argument list from the standard input and the vsscanf function scans it from a string; these are
analogous to the vprintf and vsprintf functions respectively.

Each successive pointer argument must correspond properly with each successive conversion speci-
fier (but see ‘suppression’ below). All conversions are introduced by the % (percent sign) charac-
ter. The format string may also contain other characters. White space (such as blanks, tabs, or
newlines) in the format string match any amount of white space, including none, in the input.
Everything else matches only itself. Scanning stops when an input character does not match such
a format character. Scanning also stops when an input conversion cannot be made (see below).

CONVERSIONS
Following the % character introducing a conversion there may be a number of flag characters, as
follows:

* Suppresses assignment. The conversion that follows occurs as usual, but no pointer is
used; the result of the conversion is simply discarded.

a Indicates that the conversion will be s, the needed memory space for the string will be
malloc’ed and the pointer to it will be assigned to the char pointer variable, which does
not have to be initialised before. This flag does not exist in ANSI C .

h Indicates that the conversion will be one of dioux or n and the next pointer is a pointer
to a short int (rather than int).

l Indicates either that the conversion will be one of dioux or n and the next pointer is a
pointer to a long int (rather than int), or that the conversion will be one of efg and the
next pointer is a pointer to double (rather than float). Specifying two l flags is equivalent
to the L flag.

L Indicates that the conversion will be either efg and the next pointer is a pointer to long
double or the conversion will be dioux and the next pointer is a pointer to long long .
(Note that long long is not an ANSI C type. Any program using this will not be portable
to all architectures).

q equivalent to L. This flag does not exist in ANSI C .

In addition to these flags, there may be an optional maximum field width, expressed as a decimal
integer, between the % and the conversion. If no width is given, a default of ‘infinity’ is used
(with one exception, below); otherwise at most this many characters are scanned in processing the

LINUX MANPAGE 1 November 1995 1

SCANF(3) Linux Programmer’s Manual SCANF(3)

conversion. Before conversion begins, most conversions skip white space; this white space is not
counted against the field width.

The following conversions are available:

% Matches a literal ‘%’. That is, ‘%%’ in the format string matches a single input ‘%’ char-
acter. No conversion is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer to int .

D Equivalent to ld; this exists only for backwards compatibility. (Note: thus only in libc4.
In libc5 and glibc the %D is silently ignored, causing old programs to fail mysteriously.)

i Matches an optionally signed integer; the next pointer must be a pointer to int . The inte-
ger is read in base 16 if it begins with ‘0x’ or ‘0X’, in base 8 if it begins with ‘0’, and in
base 10 otherwise. Only characters that correspond to the base are used.

o Matches an unsigned octal integer; the next pointer must be a pointer to unsigned int .

u Matches an unsigned decimal integer; the next pointer must be a pointer to unsigned int .

x Matches an unsigned hexadecimal integer; the next pointer must be a pointer to unsigned
int .

X Equivalent to x

f Matches an optionally signed floating-point number; the next pointer must be a pointer to
float .

e Equivalent to f.

g Equivalent to f.

E Equivalent to f

s Matches a sequence of non-white-space characters; the next pointer must be a pointer to
char , and the array must be large enough to accept all the sequence and the terminating
NUL character. The input string stops at white space or at the maximum field width,
whichever occurs first.

c Matches a sequence of width count characters (default 1); the next pointer must be a
pointer to char , and there must be enough room for all the characters (no terminating
NUL is added). The usual skip of leading white space is suppressed. To skip white
space first, use an explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted characters;
the next pointer must be a pointer to char , and there must be enough room for all the
characters in the string, plus a terminating NUL character. The usual skip of leading
white space is suppressed. The string is to be made up of characters in (or not in) a par-
ticular set; the set is defined by the characters between the open bracket [character and a
close bracket] character. The set excludes those characters if the first character after the
open bracket is a circumflex ˆ. To include a close bracket in the set, make it the first
character after the open bracket or the circumflex; any other position will end the set.
The hyphen character - is also special; when placed between two other characters, it adds
all intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instance, ‘[ˆ]0-9-]’ means the set ‘everything except
close bracket, zero through nine, and hyphen’. The string ends with the appearance of a
character not in the (or, with a circumflex, in) set or when the field width runs out.

p Matches a pointer value (as printed by ‘%p’ in printf(3); the next pointer must be a
pointer to void .

n Nothing is expected; instead, the number of characters consumed thus far from the input
is stored through the next pointer, which must be a pointer to int . This is not a conver-
sion, although it can be suppressed with the * flag. The C standard says: ‘Execution of a

LINUX MANPAGE 1 November 1995 2

SCANF(3) Linux Programmer’s Manual SCANF(3)

%n directive does not increment the assignment count returned at the completion of exe-
cution’ but the Corrigendum seems to contradict this. Probably it is wise not to make any
assumptions on the effect of %n conversions on the return value.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for,
or even zero, in the event of a matching failure. Zero indicates that, while there was input avail-
able, no conversions were assigned; typically this is due to an invalid input character, such as an
alphabetic character for a ‘%d’ conversion. The value EOF is returned if an input failure occurs
before any conversion such as an end-of-file occurs. If an error or end-of-file occurs after conversion
has begun, the number of conversions which were successfully completed is returned.

SEE ALSO
strtol(3), strtoul(3), strtod(3), getc(3), printf(3)

STANDARDS
The functions fscanf, scanf, and sscanf conform to ANSI X3.159-1989 (‘‘ANSI C’’).

The q flag is the BSD 4.4 notation for long long , while ll or the usage of L in integer conversions
is the GNU notation.

The Linux version of these functions is based on the GNU libio library. Take a look at the info
documentation of GNU libc (glibc-1.08) for a more concise description.

BUGS
All functions are fully ANSI X3.159-1989 conformant, but provide the additional flags q and a as
well as an additional behaviour of the L and l flags. The latter may be considered to be a bug, as
it changes the behaviour of flags defined in ANSI X3.159-1989.

Some combinations of flags defined by ANSI C are not making sense in ANSI C (e.g. %Ld).
While they may have a well-defined behaviour on Linux, this need not to be so on other architec-
tures. Therefore it usually is better to use flags that are not defined by ANSI C at all, i.e. use q
instead of L in combination with diouxX conversions or ll.

The usage of q is not the same as on BSD 4.4 , as it may be used in float conversions equivalently
to L.

LINUX MANPAGE 1 November 1995 3

