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Abstract

In [24, 35, 38, 39] Parnas et al. advocate the use of relational model for doc-
umenting the intended behaviour of programs. In this method, tabular expres-
sions (or tables) are used to improve readability so that formal documentation
can replace conventional documentation. Parnas [36] describes several classes
of tables and provides their formal syntax and semantics. In this paper, an
alternative, more general and more homogeneous semantics is proposed. The
model covers all known types of tables used in Software Engineering.

1 Introduction

Software has become critically important, not only in the software industry, com-
puter industry, and information industries, but in all areas of modern technology. In
all software applications, the documentation is important in both the initial devel-
opment and the maintenance period that follows. Documentation is used in design
reviews, to guide the programmers, to guide the users and to save cost when the
software has to be extended or modified. One may observe that the inability of
computer systems developers to provide precise and systematic documentation is
major cause of expense and unreliability. Even small computer systems can be very
complex. In other engineering fields, mathematical formulas are used to document
the properties of products and their components.

However, in the classical engineering fields, as well as in mathematics, the formulas
are seldom longer than a dozen and so lines. In software engineering, the formulas
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are often much longer. For example, an invariant of a concurrent algorithm can
occupy more than one page, and the specification of a real system can be a formula
dozens or more pages long.

Standard mathematical notation works well for short formulas, but not for long ones.
One way to deal with long formulas is to use some form of module structure and
hierarchical structuring. The paper [26] is an excellent example of this approach.
However hierarchical structuring and modularity alone are not sufficient. The prob-
lem is that the standard mathematical notation is, in principle, linear. This makes
it poorly readable when many cases have to be considered, when functions have
many irregular discontinuities, or when the domain and range of functions are built
from the elements of different types. It turns out that using tables helps to make
mathematics more practical for computing systems applications [24].

Tabular notation for computer programs and modules made their appearence in the
late 1950s. The General Electric Company [7], and the U.S. Air Force at Norton Air
Force Base apperently played a large role in the inauduration of their use [29, 31].
The concept of using tables for software first appeared in the literature near the
start of 1960s (see [6, 11, 21, 28, 32]). The form and names given to the tables also
varied a lot. The designation that soon prevailed was decision tables. These tables
are two-dimentional tables. In this paper we are considering others alternative kind
of table which could be multi-dimensional. The most of (but not all) decision tables
[19, 20, 36] are special case of one of these type of table (input-vector type). The
multi-dimensional tabular notation makes it easier to consider every case separately
while writing or reading a design document.

The key ideas of a tabular notation, one of the cornerstones of the relational model
for documenting the intended behaviour of programs [24, 35, 38, 39], were first
developed in work for the U.S. Navy and applied to the A-7TE aircraft [9, 15, 16, 42].
The ideas were picked up by Grumman, the U.S. Air Force, Bell Laboratories and
many others. Recently the tabular notations have been applied by Ontario Hydro
in Darlington Nuclear Plant [4, 33, 34].

The industrial applications mentioned above were conducted on, more or less, an
ad hoc basis, i.e. without formal syntax and semantics (new types of tables were
invented according to the needs, the semantics was intuitive one, in particular the
inverted tables were ‘discovered’” almost by mistake [37]).

The papers [38, 39] show in a formal way how the documentation required for the
design and use of computing systems can consist of descriptions of a set of relations.
Those relations are represented by multi-dimensional expressions called tables. Par-
nas [36] describes several different classes of tables and provides their formal syntax
and semantics. All classes considered in [36] were invented for some specific practi-
cal applications. Formal relationship between some important classes of tables has
been analyzed in [45]. The overall methodology and recent results of the tabular
approach are presented in [24].



(% Power% (% Power% (% Power%: (% Power%
=$onS ) =%on$ ) =Soff§ ) =$%0f5 )
A A \% \%
(%%S hutdown%% (%%S hutdown%% (%%S hutdown %% (%%S hutdown%%
= $operates ) = Soperate$ ) = Sshutdown$ ) = $shutdown$ )
A A \% \%
(%% W atchdog%'% (%%W atchdog%% (%% W atchdog%% (%% W atchdog%'%
= $operateS ) = Soperate$ ) = Sshutdown$ ) = $shutdown$ )
A A \% \%
(QT (% Reset% (QT (% ResetT X Enter
= $releaseds)) = Spressed$) )
%% PumpSwitch%% = $closed$ $open$ $closed$ $open$

Figure 1: A part of the Software Requirements for the Water Level Monitoring
System of The A-7 aircraft

The tabular notation is currently used among others by the Software Engineering
Research Group (SERG) at McMaster University, Hamilton, Ontario, Canada [43],
Ontario Hydro [30], Naval Research Laboratory [14], ORA Inc., [19], and University
of California at Irvine [13, 27].

In this paper we propose a more general and more homogeneous approach. Instead
of many different classes of tables and separate semantics in each case (as in [36]),
we shall introduce only one general definition of tables, each class of [36] could be
derived as a special case. The model will also indicate the other, not considered
n [36], classes of tables that could be constructed in the general framework. The
central concept in our approach is so-called cell connection graph which characterizes
information flow (‘where do I start reading the table and where do I get my result?’)
of a given table. The model presented in this paper covers all the known types of
tables used in the Software Industry (compare [1]).

All examples of tables used in this paper are very simple on purpose. In actual
practice, the specifications, or the requirements for a software system are presented
with simple tables. For instance, the software requirements for the water level
monitoring system of A-7 aircraft is written as some small tables like the table in
Figure 1. This table is borrowed from [42] the notation used in it is introduced in
the A-7 document [16].

For more realistic examples (as loop invariants, program specifications) the reader
is referenced to [1, 39, 43].

The key assumptions behind the idea of tabular expressions are:

e the intended behaviour of programs is modelled by a (usually complex) rela-
tion, say R.



e the relation R may itself be complex but it can be built from a collection of
relations R, o € I, where [ is a set of indices, each R, can be specified rather
easily. In most cases R, can be defined by a simple linear formula that can
be held in few cells of a table. Some cells define the domain of R,, the others
R, itself.

e the tabular expression that describes R is a structured collection of cells con-
taining definitions of R,’s. The structure of a tabular expression informs how
the relation R can be composed of all the R,’s.

The paper [36] provided a major motivation for this work. The early results have
been presented in [22]. The paper is a revised version of [23].

We assume that the reader is familiar with such concepts as function, relation, Carte-
sian product, etc. [12, 40]. The standard mathematical notation is used throughout
the paper.

In Section 2, we introduce tabular expressions of relations, present six “topologically”
different types of cell connection graphs, and give the definition of tabular expression
(or table) as 6-tuple. In section 3, we elaborate on two components of this 6-tuple:
the table predicate rule and the table relation rule. In section 4, we show how to
compose the relation specified by a tabular expression from the relations described
in appropriate guard and value cells. We also ahow how our approach is related to
the standard Relation Algebra. Section 5 contains a final comment.

2 Tabular Expressions

Intuitively, a table is an organized collection of sets of cells, each cell contains an
appropriate expression. Such an organized collection of empty cells, without expres-
sions, will be called a table skeleton. We assume that a cell is a primitive concept
which does not need to be explained.

e A header H is an indexed set of cells, H = {h; | i € I'}, where I = {1,2,...,k},
some k, is a set of indexes.

e A grid G indexed by headers Hy, ..., H,, with H; = {hf lie P}, j=1,..,n
is an indexed set of cells 7, where G = {g, | @ € I}, and I =[], I* (or
I=1"x..x1I"). The set I is the index of Gi.

A collection of headers Hy, ..., H, and a grid G indexed by them can be regarded as
a first approximation of table skeleton.

The elements of the set Components = {Hy, ..., H,, G} are called table components.



hi hy hy
h? gn 921 931
hZ 912 922 932

G={g;|i=1,2,3Nj=1,2}

Figure 2: An example of headers Hy, Hy, I' = {1,2,3}, I* = {1,2}, and grid G.
Figure 2 illustrates the above definitions.

A table is intended to represent a relation R. The relation R is composed from R,’s,
a €l ie. R=0,c7R,. The various types of operation © will be discussed in the
Section 4.

The assumption is that every R, is fully specified by some expressions held in one
grid cell g., and header cells hiu € H;, where aj is the jth coordinate of a (i.e. if

a = (j1,...,Jn), then a|3 = j3) for j =1,...,n.

For every « € I we define

Components, = {hl,, .., Py 9ot

allr

In the case of Figure 2, we have Componentssy = {hi, h3, g3z}, R = @Z;l’; 3R,
Ras is defined by the expressions held in ga2, hi, h2, while Rsy is defined by the

expressions held in g3, hl, h3, etc.

We assume that every relation R,, a € I is specified by an expression of the form!”.
if P, then £,

where P, is the predicate that defines the domain of R, and F,, is the predicate
that defines the values of R,,. For example if 1 < 0 A 23 < 0 then y* = 2% + 2%, or
if -1<2<0thenyi+2=0Vy =1 (see Figures 3).

1The predicate if P, then F, can equivalently be written as P, A En. We shall prefer if-then
form because it is more readable, in particular when P, itself contains “A” operator (see Figure 6).

But clearly if P, then £, = Py, A E,. Do not confuse “if P then £” with “P = I



R;j=ifz; <0Azy <0 then y* =2} + 23

x1 <0 hzl

h? 2o <0 y? =2t + 22| 9if

Ry=if-1<2<0thenyl+2=0Vy =1

y1=1 hi

2 \ly3+a=0| | —1<z<0 | %

Figure 3: Two examples of placing P, and F, into cells. The cells containing the
elements of F, have double line borders.

The expressions P, and FE,, are built from the other expressions, all the expressions
from which P, and F, are constructed are held in the cells h}l, ey N go, where
a = (i, ..., iy) (see Figure 3).

The following two important properties are assumed:

e cach cell may hold either a part of P, or a part of F,, but not both.

e the distribution of P, and FE, into appropriate cells is independent of a.

In other words, each table component, a header or grid, can either hold only the
elements used to define P,’s or the elements used to define £, ’s.

This means we can divide Components = {Hy, ..., H,, G} into two sets Guards and
Values, such that

Guards # 0, Values # 0, Components = GuardsNValues, GuardsNValues = ).

We also define Guards, = Guards N Components,, and Values, = Values N
Components,, o € 1.

The Guards, contains elements of P,, Values, contains elements of F,. There is
only one grid G, so it may belong to either Values or Guards.



The definition of Guards and Values enables us to introduce the concept of a cell
connection graph?

The cell connection graph characterizes information flow ( “where do I start reading
the table and where do I get my result?”). 1t is a relation that could be interpreted
as an acyclic directed graph with the grid and all headers as the nodes.

Let — be a relation —C C'omponents x Components satisfying:
VA, B € Components A— B = (A=GVB=G)NA#B). (1)

In other words, each arc that represents —— must either start from or end at the

grid G.

The relation —*, transitive and reflexive closure of —, is a partial order [12], so
we can talk about both maximal and minimal elements w.r.t. ——*.

The relation — is a cell connection graph if
1. Ais maximal w.r.t. —* =— A € Values,
2. A is minimal w.r.t. —* — A € Guards,

3. VA € Guards(T).VB € Values(T). A~—"* B.

The cell connection graph — represents information flow among table cells and,
intuitively, if the component A is built from the cells describing the domain of a
relation /function specified, and the component B is built from the cells that de-
scribe how to calculate the values of the relation/function specified, than we expect
A ——7T B, where —71 is the transitive closure of —. This means that the com-
ponents built from the cell describing the domains are never mazimal, while the
components built from the cells containing formulae for values are never minimal.

One can also easily prove the following Lemma.

Lemma 2.1

Only the grid G can be neutral, and there exists at most one neutral component.
|

There are six “topologically” different types of cell connection graphs.

2In earlier papers [1, 22, 23], the cell connection graph was introduced first and the partition of
Components later.



Type 1. Each element is either maximal or minimal. There is only one maximal
element.

Type 2a. There is only one maximal element and one neutral element. The neutral
element belongs to Guards.

Type 2b. There is only one maximal element and one neutral element. The neutral
element belongs to Values.

Type 3a. There is a neutral element and more than one maximal element. The
neutral element belongs to Guards.

Type 3b. There is a neutral element and more than one maximal element. The
neutral element belongs to Values.

Type 4. Each element is either maximal or minimal. There is only one minimal
element.

The division into types 1, 2, 3 and 4 is based on the shape of the relation —, the
types a and b result from different decompositions into Guards and Values. Figure
4 illustrate all cases for n = 3. When the number of headers is smaller than 3, the
cases 3a and 3b disappear.

It turns out that:

e Normal Tables of [36] are of Typel,
e Inverted, Decision and Generalized Decision Tables [19, 36] belong to Type 2a,

e type 2b Vector Tables of [36] are of Type 2b.

The types 3a, 3b and 4 have no known wide application yet. They seem to be useful
when some degree of non-determinism is allowed. The types 3a and 3b might also
be useful as a representation of complex vector tables. The paper [1] provides an
excellent survey of all type of tables used in Software Engineering practice.

The type of Cell Connection Graph will usually be identified by a small icon resem-
bling an appropriate graph from Figure 4. The icon is placed in left upper corner
of the table. Table components belonging to Values have double borders. Figure 5
illustrates the concepts discussed above.

The triple
TSK = (Components, Guards, Values)

will be called a Table Skeleton. A table skeleton represents the structure of a tabular
expression that is independent of the particular values of R,’s. To define tabular



!

Hy —~| G | H

Type 1. Fach element is either

mazimal or minimal. There is
only one mazximal element.

Hy

1

Hy | G | H3

Type 2b. There is only one
mazimal element and a
neutral element. The neutral
element belongs to Values.

Hy

i

Hy | G || H3

Type 3b. There is a neutral
element and more than one
mazximal element. The neutral
element belongs to Values.

Hy — G 1 H3

Type 2a. There is only one
maximal element and

a neutral element. The neutral
element belongs to Guards.

Hy

1

Hy — G | H3

Type 3a. There is a neutral
element and more than one
mazximal element. The neutral
element belongs to Guards.

Hy

1

Hy |/ G | H3

Type 4. Fach element is either

mazimal or minimal. There is
only one minimal element

Figure 4: Six different types of cell connection graphs (n = 3).



D——E B D—E B
H2 H2
G G
H1 Hl
H2 H2
—= —=
G \. G
Guards = {Hy, Hy} Guards = {Hz, G}
Values = {G} Values = {H,}

Figure 5: Two examples of Guards, Values and —

expressions completely we have to precisely describe how particular cells are filled,
how P, and FE,, should be constructed from the contents of appropriate cells.

Recall the idea we were using is the following;:

e the expressions defining the relational expression’s F,’s are held in value cells
Values.

e the expressions defining the predicate expression’s P,’s are held in guard cells

Guards.

However, the partition of cells into value and guard types is not sufficient. Let us
consider the examples in Figure 3. The top one is intended to corresponded to the
expression if 21 < 0Az9 < 0 then y? = x%—l—w% But why we write 21 < 0Axo < 07
Why not for example: 21 < 0V zy < 0, or =(21 < 0) Azg < 0 etc.? The bottom one
is intended to correspond to the expression if —1 <z < 0theny; =1Vyi+az =0,
or, using slightly different notation, R;; = Q;; U S;;, where Q;; = if —1 < 2 <
0 then y; = 1 and S;; = if — 1 <2 < 0 then y + 2 = 0. Again, why we write
y1 =1Vys+2=0,or why we use R;; = Q;; US;;?

A table skeleton does not provide any information on how the domain and values of
the relation (function) specified are determined; such information must be added.

Let TSK = (Components, Guards,Values) be a table skeleton. Assume that
Guards = {By, ..., B.}, Values = {Ay, ..., As}.

e A predicate expression PR(By, ..., B;), where By, ..., B, are variables, is called
a table predicate rule.

10



e A relation expression RR(A1, ..., As), where Ay, ..., A, are variables, is called
table relation rule.

The predicate P,, o € I can now we derived from PR(Bj, ..., B,) by replacing each
variable B; by the content of the cell that belongs to { B;} NGuards,. Similarly, the
relation expression F, can now we derived from RR(A4, ..., As) by replacing each
variable A; by the content of the cell that belongs to {A;} N Values,.

More detailed forms of table predicate rules and table relation rules are discussed
in the Section 4. The table predicate and relation rules are sufficient to understand
how the expressions if P, then F, can be built from the contents of appropriate
cells. We still do not know how the relation R should be built from all R, ’s.

e A relation expression C'R of the form R = O, 1R, is called a table composition
rule.

In general, ©,crR, is a relational expression builts from the expressions defining
R,’s, and various relational operators. We shall discuss it in detail in Section 4.

We can now define formally the concept of a tabular expression:

e A tabular expression (or table) is a tuple
T = (I'SK, PR, RR,C'R,IN,OUT)

where T'SK is a table skeleton, PR, RR, C'R are respectively table predicate
rule, table relation rule, and table composition rule, ¥ is a mapping which
assigns a predicate expression, or part of it, to each guard cell, and a relation
expression, or part of it, to each value cell. The predicate expressions have
variables over IN, the relation expression have variables over IN x OUT,
where IN is the set (usually heterogenous Cartesion product) of inputs, and
OUT is the set (usually heterogenous Cartesia product) of outputs.

For every tabular expression T, we define the signature of T' as:
Signt = (PR, RR,CR,—).

The signature describes all the global and structural information about the table.
We may say that a tabular expression is a triple: signature, skeleton - which describes
the number of elements in headers and indexing of the grid, and the mapping ¥ -
which describes the content of all cells.

11



Examples of tables are presented in Figures 6, 7 and 8. The signatures enriched by
information about variables are presented separately in special two column tables.
The above definitions describes, more or less, the syntax of tables. However the word
‘syntax’ here has the meaning closer to that used in Linguistics than in Mathematics
and Computer Science. In general W may assign predicate expression, or part of it,
to guard cells, and relation expression, or part of it, to value cells. We do not assume
much about W.

Let I be the index of T, let

P, = PR[U(c1)/By, ..., ¥(cs)/ By) )
E. = RR[W(dy) /A1, ..., U(d,)/A,]

where ¢; = B; NGuards,, 1 =1, ...,s,and d; = A; N Values,, i =1, ..., 1,

PR[V(cy)/By, ..., ¥(cs)/Bs] is obtained from PR by replacing each B; by ¥(¢;), and
simiraly for RR]...].

Both PR and RR must satisfy the following consistency rule

o for every a € I, PP, is a syntactically correct predicate expression.

o for every a € I, RR,, is a syntactically correct relation expression.

The relation composition expression C'R is built from the relation /function names,
indexes, and relational operators (see Section 4).

e The semantics of a tabular expression T can now be defined as a relation
Ry =CR(R,),

where R, = if P, then F,.

Figures 6, 7 and 8 illustrate the above definitions.

3 Table Predicate Rules and Table Relation Rules

The predicate expression PR is built from table component names (variables) By, ..., B,

where Guards = {By, ..., B, }, logical operators “A”, “v” “=” (however

present disallowed for implementation reasons in the SERG tool package [1, 43]),

CL_|77 iS at

the replacement operator, some constant and relation symbols. The replacement

operator is of the form E[F;/z], where F| F| are expressions, x is a variable or con-
stant, and F[F)/x] represents a new expression derived from E by replacing every

12



0 ife >0Ay =10
z ifz <O0Ay=10
f _ 32 ifz>0Ay > 10
(z,y) = —y? ifz>0Ay<10
rz+y ifzx<O0Ay>10
r—y ifzx<O0Ay<10
input variables z,y : Reals Hl
output variables | f : Reals |
y=10]y>10 |y <10 ]
— D’E Hy
PR Hy A Hp x>0 0 Y —y’ G
RR G _0
Function name f T < Tty rT—y
CR Ui:lU?:lfm
z+y f(z<0Ay>0)V(z<yAy<O0)
_) z—y if(0<z<yAry>0)
9(e,y) = Vy<z<0Ay <0)
y—z H(z>0Ay>0)V(z>0Ay<0)
input variables z,y : Reals
output variables | g : Reals
(]
o letyl -y [y-e] H
— H
PR H, NG 2
RR H, y>0 r<0|0<az<y|a>y G
Function name g , y<0 <y y<$<0 9520
CR Ui=1U]=19m

Figure 6: Two examples of tabular expressions - normal (above) and inverted (below)
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y1 =x1+z2 A y2l’1—l’2=y§

Ao + 172 = Jys oz <0
3 1%2 = Y3
r1,22)R <~
(@1, 22)R(y1,92,32) y1 =x1 — w2 A w1+ o2 + T2v2 = |y .
ifzy >0
ANys =1
input variables r1,w2 : Reals
output variables | vy1,y2,y3 : Reals
— (O«
PR H,
RR Hy oG
Relation name R
2
CR ®]=1 Uiz1 Biy
Hy | 29 <0 | zg >0 | H
Y = T+ T2 Ti — T G
—_ 2 —
Y| Yor1 — 2 =y5 | v1+ T2+ x2y2 = |y
_ 3 —
ya| Y3 + x122 = |ys Ys = a1
The symbol "=" after y1 in H» indicates that the relations R; 1, ¢ = 1,2, are functions. The symbol ”|”

after y2 and ys in H> indicates that R; 2 and R; 3, ¢+ = 1,2 are relations with y2 and y3 as a respective
output variables.

© : Temperature x Weather X Windy — Activities, where
Activities = { go salling, go to the beach, play bridge, garden}.

Temperature: hot, cold

Weather: sunny, cloudy, rain

Windy: true, false

© :go sailing, go to the beach
play bridge, garden

_ o

input variables

output variables

PR H, =G
RR H;
Function name ©
CR U?=1 ®]=1 ¥i,g
notation * = don't care
H,y
|| go sailing | go to the beach | play bridge | garden ||
H,
Temperature € {hot, cool } * * hot * cool
Weather € {sunny, cloudy,rain} sunny V cloudy | sunny | cloudy rain cloudy
Windy € {true, false} true false false * false
G

Figure 7: Next two examples of tabular expressions - vector table (above) and

decision table [20] (below)
14



xr1 + x2 if 120 < 20N 21 + 32 > 30
h(l’l,l’g): Tl — T2 if z12o > 20Nz +22 <30
xr1T2 ifz1 + a0 =30
input variables r1,w2 : Reals
output variables | h : Reals
(]
% || T+ T2 |961—962 | 1T || H,y
— I
PR GlH/#] 2
RR H, L1 H <20 | #£>20 true G
Function name h , Ty~ T # < 30 # > 30 # =30
CR Uizs ®]=1 hi g
(r=0 A =0Ayi+z=1)
vV o (z< -1 A y1:0/\y§—|—x:0)
v (o= A y1 =0Ayy =2°)
#T(v1,92) = v (0<w<1 Ay =1Aysde=1)
V (-1<2<0 A y1=1Ay5+x=0)
vV (z>1 A oy =1Ays =2?)
input variables z : Reals
output variables yl,yug : Reals H2 || yi=0 | =1 ” Hl
— yﬁ—l—x:l r=20 O<e <1 G
PR G z
RR H, 0 H, y2—|—x:ZO r<—-1| -1<x<0
Relation name T Y2 =2 z=1 z>1
CR U]=1 U?:me

Figure 8: Another two examples of tabular expressions - generalized decision (above)
and type 4 (below).
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occurrence of z in F by F;. The constants and relation symbols depend on the type
of input domain of the relation specified, dom(R). The relation symbol “=" can
always be used. If the elements of dom(R) are ordered, the relation symbols “<”,

“>” can be used?.

The relation expression RR is built from table component names Ay, ...., A, (vari-
ables), where Values(T) = {44, ..., A, }, set operators “U”, “N”, etc., relation oper-
ators “=", “<”, “>” etc., the operator of concatenation’ “o”*.

4 Composing R from R,

One of the fundamental assumptions behind the concept of tabular expressions is
that the relation R specified by a tabular expression can be composed from the
relations R,, o € I, where all R,’s are described in appropriate guard and value
cells i.e. Q,er. In this section we study some operations that can be regarded as Q.
We start with introducing some basic concept of the algebra of relation. The next
subsection contain the classical definitions and results ([40]). The new concepts and
results start from subsection 4.2, where the concept of ”"being a part of” and some
new operations are discussed.

4.1 Basic Elements of Relation Algebra

By a (heterogenous) relation R from X to Y we mean any subset of the Cartesian
product X xY,ie. R C X xY. In this case we say that the relation R has the type
X &Y, which we write as R: X < Y (and we read : R has the type X < Y). By
convention, when we write 2, ., we mean that this relation has the type X < Y.
We say that the relation R, ., is homogeneousif X =Y. When the context allows
to identify the type or when the type is of no importance, we simply write R.

For every relation R: X & Y, we define:

dom(R) = {a|3JyeVY.(z,y) € R},
range(R) = {y|3dz € X. (z,y) € R},

In this paper we assume the relations are heterogeneous in general. We shall now
recall the basic components and operations of heterogenous relation algebras.

®The survey [1] indicates that “A”, “v”, “=” and “E[E/z]” suffice in most cases. They are the
only operators used in [1] here the most of known types of tables were analyzed and converted in
the extension of the earlier version [22] of the approach presented here.

*For example for Figure 6 we have ((y1 =)o (x1 4+ 22)) = (1 =21 +22), (y3]) o (ys + 2132 =
|y3|3) = (ys | ys+ z1202 = |y3|3)7 where (ys | ys + z122 = |y3|3) means that ys is the (only) output
variable in the expression ys + 122 = |ys|”.
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We have five basic relational operations: supremum (union), infimum (intersection),
complement, inverse and composition.

Let P, ., and @, .. be two relations.
e The supremum (union) of P, _, and Q, ., denoted by P, . U Q. ., is
defined as:
{(xvy) | (wvy) €P..pV (ac,y) S QB(—)C} fA=C
and B = D;
P,ogUQp,c=
undefined otherwise.

e The infimum (intersection) of P

vop and Q. ., denoted by P, .. N Gy,
is defined as:

{($7y)|($7y)€PAHB N (%y)EQB(_)C} iftA=C
and B = D;
PA(—)BOQB(—)C:

undefined otherwise.

e The complement of P, denoted by P is defined as:

«+B? A B

FA(—)B:{($7y)|$€A ANyeBA (x7y)€PA<—>B}

e The converse of relation P, ,, P, _ . is defined as:

P;(_)B = {(yc,z) | (va) €P,.p ).

e The relational composition of P, and )., ,, denoted by P, Q.. ,, is

defined as:
{(xvy) | Jz € B'((xvz) € PA(—)B N (Zvy) € QC(—)D)}
it B=C,
P,5Qoup =
undefined otherwise.
The unary operations  and ~ are total, while the binary operations U,N, and ;

are partial. The operations supremum and infimum are just set theoretical union
and intersection but restricted to the relations of the same type. We shall use the
same symbol for both relational and set theoretical operations, however for relations
these operations are no longer total.

We have three special kind of relations: identity, universal relation, and the empty
relation.
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e For every set A, the relation I, , ={(z,2) |2 € A} is called the identity on
A (of type A  A).

e For every two sets A, B, the relation T,,, = A X B is called the universal
relation (of type A <+ B).

e For every two sets A, B, the relation L, ., = {(z,y) | false} is called the
empty relation (of type A < B).

For the usual rules of the calculus of relations see [5, 8, 40, 41].

There are many different types of relations, however in this paper we shall use only
two: total relations, and functions (univalent relations).

e The relation R is total if dom(R = A.

AeB A(—)B)

e The relation R, ., is a function (univalent relation) if

Ve e AVy,z€ B. (z,y) € RA(z,2) € R = y==z.

If fis a function we shall rather write f: A — B instead of f,,, ;.
Corollary 4.1 For each relation R :

1. Ris total <— T = R;T;

2. Ris function <= RRCI < RICR. [ |
We shall now define the concept of a restriction of a relation.

e Foreveryset A C X and every relation R, ., we define arelation R|4 C X xY,
restriction of R to A, as:

Ve e X.VyeY. (2,y) € Rla < z€ AN (z,y) € R.

In other words, if P4(z) is a predicate that describes the set A, ie. 2 € A <—
Pyi(z), and R(z,y) is a relational expression that defines the relation R, i.e. (z,y) €
R < R(z,y), then the relation R|4 is described by the expression Py (z)AR(z,y)
or if P4(z) then R(z,y) (see Footnote 1) If R has a type X <+ Y then R|4 has a
type A & Y. The same notation will be used for functions.

For the rest of the paper, we assume T' to be an universal set of indexes and {D; |
i € T} to be an appropriate set of domains.
We shall also use the following notation:
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e Lorevery I CT,let D = [[;c; Di, where [[;c; is a direct product over 1.

The set Dy can be seen as the set of all functions f : I — UiEI D; such that
Viel. f(i) € D;.

A reader without experience in this kind of notation is referred to the Appendix
which contains illustrative examples.

We will always write explicitly f|x to denote the restriction of the function f to K.

We shall now recall the concept of a projection.

o Let J C I CT. The projection from Dy onto Dy, denoted by ,II,, is defined
as:

IHJ:{(f7g)|f€DI/\g:f|J}

Note that ,II, is a relation, 11, : Dy < Dj. From this definition, it follows
immediately that, Il =1 yand 1175 01, =1 and ,II, is total.
J

Dp<Dp DjyjeDy

4.2 The Relation Part of

The fundamental idea behind the concept of tabular expressions is that it allows to
specify, in an intuitive and relatively easy way, a complex relation or function from
parts. It is assumed that the parts may be defined rather easily, but the whole may
not. When software engineers discuss a specification using tabular expression, the
statements like "this is a part of a bigger relation” can be heard very often.
Unfortunately, the only meaning of ”being a part of”, can so far be only an intuitive
one, since the standard algebra of relations lacks the formal concept of being a
part of concept®. The concept of subset is not enough, for instance if A C B and
D = B x C, then A is not a subset of of D, but is obviously a part of D.
Intuitively, in most cases, R, is a part of R.

In this subsection we give an initial attempt to define the relation ”a part of” for
the algebra of relations. We start with the concept of "part of” for direct prducts.

o Let I, J be subsets of T such that 7 C.J, and let A C Dy, B C Dj. We define
the relation C as:

ACB < Yfe€AJgeB.f=g|;

5The relation part of is the basic notion of Lesniewski’s Mereology [44], which is a version of set
theory proposed as an antinomy-free counterpart of naive Cantor set theory. Lesniewski’s systems
are different than the standard set theory based on Zermello-Freankel axioms. Unfortunately the
formal translation of Lesniewski’s ideas into the standard set theory framework is not obvious,
although possible [44], and certainly beyond the scope of this paper. The relation C introduced
in this paper roughly (and intuitively) can be seen as a special case of Lesniewski’s part of. The
relation part of was also a partial motivation for introduction the cylindric algebras ( ”a circle is a
part of a cylinder”, see [17]), but this concept never become a formal part of cylindric algebras.
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We shall say that A is part of B is A C B.

Clearly if I = J then AC B <= A C B. For example, if B C X; x X3 X
X x Xy and A C X3 X Xy, then A C B < V(ag,24) € AJ2; € Xy,23 €
X3. ($17$27$37$4) € B.

We shall now extend the concept of part of to the relations.

o Let I,.J, K and L be subsets of T such that K C T and L C J. Let P: Dg +
Dyp and Q) : Dy <+ Dj be two relations. We define C as:

PCQ < Y(f1,f2) € PAg1,92) €EQ.[i =1l N fa=g2]L

If P C @ we say that P is part of ). Consider the following example. We take
I'=A{2,3}and J ={2}, T ={1,2,3}. Let P: Dy <> Dy and let Q : Dy <> D7 be

relations such that
P={(tam).5). (5., )}

Q= {((avm), 2 8.m), (2 8,m), 2 an), (2.asm), 2,8,m) |
We have P C @ since (a,m) = (1,a,m)|(23,8 = (2,8,m)|(2), and (8,n) =

(2,8,n)|23, @ = (2,a,7)|123. A question one may ask is “can T be expressed
in terms of standard relational algebra operations?”. To answer this question we
start with the concept of a cylindrification relation.

o Let ¢, called a cylindrification relation, be the following relation

I(SJ = IHJ;IHVJ

The relation ,6, expresses the fact that projecting from Dy onto Dj; followed by
the inverse operation comes down to preserve uniquely the components given by the
family of indexes .J. The effect of this relation is similar to what is expressed in cylin-
dric algebras [3, 17, 18] by some unary operators called cylindrification operators.
The relation ,J, has been introduced and analyzed in [25].

Clearly we have 6, = 67, and if K C J then ,6,;,0, = ;4.

The relation ,6, can also be defined element-wise.

Lemma 4.2

(fi9)€,6, < [fe€Dr NgeDr A fly=gls
Proof. Directly from the definiton of projection and composition [ |
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Corollary 4.3 Let I,J, K, and L be subsets of T such that K C I and L C.J. Let
P:Dg < Dp and Q) : Dy <+ Dy be two relations.

L IHK;P;JHZ :{(fvg)|f€DI NgeDy A (f|](7g|L) GP}

2. 0,0Q3,0, = {(f7g) |feDr AN ge Dy
Ak t) € Q-(h|lk = flk AN tlL =glL) }

We can now define C in terms of projections and cylindrifications.

Theorem 4.4 Let I, J, K, and L be subsets of T, such that K C I and L C J. Let
P:Dg < Dp and Q) : Dy <+ Dy be two relations. Then

PCQ < ,II:P; Iy C ,6,.:Q;:,6,.

Proof.

Al Pi Il C I(SK;Q;J(SL

= ( corollary 4.3 )

{(fs9) | feDr AngeDy A (flx,gl) € P}

C {(i9)|feDrANgeDy A I, g2) €Q(oilx = flx N g2l =9lr) }
= ( relabelling f|x and g¢|z, as fi and f3, respectively )

V(/f1, f2) € P (3(91792) €Q(nlxk=5H N g2l = fz))
= ( definition of C )

PLCQ

4.3 Operations ¢, ® and &

The survey of known tables used in Software Engineering [1] has shown that in all
cases we have either R = QR R, or R = QP R, (or some special case of the
above two) where & and @ are some generalizations of U and N. The opration & is
a generalization of \. Note that the operations &, @ are total (U, N are partial).

Let P and @) be two relations such that: P: Dy« Djyand @ : Dg < Dyp. W define

e PQ={(f,9) € Diux x Dyur, | (flr,9l5) € P A (flx,9l) € Q}
e PO Q={(f,9) € Diux x Dyur. | (flrgls) € PV (flx,9lr) € Q}
e PQ={(f,9) € Diux x Dyur, | (flgls) € P N (flx,9ln) € Q}
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LetP:X1XX3HX5 andQ:X1><X2HX4WhereX1:X2:X3:X4:X5:
Reals. Suppose that

P=A{((z1,23),25) | 5 = 21 + 23}
and
Q={((z1,22),24) | x4 = 21 ¥ 23. }
Then we have
P& Q= {((z1,22,23), (za,25)) | ((z1,23),25) € PV ((x1,22),24) € Q },
PeQ={((z1,22,23), (za,25)) | ((z1,23),25) € P A ((x1,22),24) € Q },

and

Po@= {((xlvx%xi’))v ($47$5)) | (($17$3)7$5) ceP A (($17$2)7$4) ZQ}.

Lemma 4.5
If P:D;j+ Dyand Q : Dg < Dy. then

L. P®Q :(IUK)HI;P;(JUL)HVJ U (IUI\")HI\’;Q;(JUL)H\Z
2. P2Q= (IUI\")HI;P;(JUL)HVJ N (IUI\")HI\’;Q;(JUL)H\Z
3. POQ= (IUI\")HI;P;(JUL)HVJ N (IUI\")HI\’;Q;(JUL)H\Z

Proof.

L. PoQ= (IUI\")HI;P;(JUL)HVJ U (IUI\")HI\’;Q;(]UL)H\L
= ( corollary 4.3(1) & {z|pfu{z|q¢}={zlp V ¢})
1(f,9) € Divk x Dyar | (flr9ls) € PV (flx,9lr) € Q}

The proofs of 2 and 3 are similar. [ |

One may observe that if I = K and J = L then PR Q = PNQ, P& Q =

PUQ, and P& @ = P\ Q. The operator @ can also be regarded as a generalization
of a natural join operator used in relational data bases [2].
It turns out we can express & and ¢ using ®, U, and .
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Lemma 4.6
Let P,Q, and R be relations. Then

PoQ=PoQand also PHEQ=PQUPRQUP®®Q.

The proof follows from the fact that ,1I, is total and univalent.

We will now show that & and ® obey distributivity laws similar to those for U and
n.

Lemma 4.7
Let P,Q, and R be relations.

1. P2 (Q®R)=(P2Q)D (POR)
2. PH(QOR)=(P2Q)®(P®Q)

Proof. Let P: Dy < Dj, Q) : D <> Dy, and R: Dy < Dy.

1. Po(Q4R)
= ( definition of & )
P ® ((I\"UM) HI\";Q;(LUN) H\L U (KuM) HM 7R’(LU]V) H\;V)
= ( definition of @ )
(IUI\"UM)HI;P;( )HVJ
N (IUI\"UM)HI\"UM; (KUM)HK ;Q;(LUN) 1_IVL U (I\"UM)HM;R;(LUN
= ( U-distributivity of; & U-distributivity of 1)
I P5, 11~

JULUN) J

JULUN

)H\;\f) ;(JULUN)H

(ITUKUM)
N (IUKUM)HKUM ;(I\"UM)HI\" ;Q;(LUN) 1_IVL ;(JULUN) HvLuN
U AL Ps 105

(TUKuUM
N Il )HM;R;(LUN) H\;V;(JULUN) HvLuN

JULUN

(ITUKUM) I\"UM;(I\"UM

= < s e =1
& (PQ) =Q7:P7)
HI§P§( )HVJ N I~

(IUKUM)HK ;Q;(JULUN) L
U (IUI\"UM)HI;P;(JULUN)H\} N (IUI\"UM)HM;R; JULUN)H\;V
= (for K CJ C I we have I ; 11, = Il
& (PQ) =Q P~
& U-distributivity of; )

(ITUKUM) JULUN
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(IUI\"UM)HIUI\"; ((IUI\")HI;P;(JUL) HVJ N (IUK)HK ;Q;(JUL) HVL) ;(JULUN) HvJUL

U(IUKUM)HIUM; ((IUM)HI;P;(JUN) 15 n (IuM)HM;R;(JuN) HVN) (JULUN) 50y
= ( definition of @ )

(IUI\"UM)HIUK; (PoQ) (JULUN) I,

Uiroreuan ot (P @ R) 50 p0m Won

= ( definition of & )
(POQ)® (PO R)

2. The proof is similar to the previous, except that we use the following facts:
11, is univalent, and if P is univalent then we have P;(QNR):P~ = P:Q;P™N
PiR:P~.

|

4.4 Classification on the Basis of Table Composition Rule

Let R be a relation specified by a tabular expression. The survey [1] shows that the
patterns B; &), Ri.;, Q; D, Rij, and their special cases as &) U; Rij, U, Ra, and
U, ®j R; ; are sufficient in all the cases. This gives us some bases for the following
classification.

e The table is called plain if R = J,c; Rao-
e The table is called output-vector it R =), P; Ri ;-
e The table is called input-vector if R =P, Q; R ;-

All tables modeled in [22] are plain. The vector tables of [36] are of output-vector
type, the most of (but not all) decision tables [19, 20, 36] are of input-vector type.

5 Final Comment

In the paper a formal semantics for tabular expressions is proposed. The tables in-
troduced here are generalizations of those from [22, 36] and [1]. As opposed to [36],
one model covers all cases. An introduction of cell connection graph, table predicate
rules, table relation rules and table composition rules gives us a tool to define various
types of tables, some of them could really be useful. The cell connection graph and
the table composition rule are major sources of the classification (on the syntactic
level, without taking W into account). In this paper the tabular expressions have
been divided into six different classes according to cell connection graph, and three
major types have been distinguished according to the table connection rule. This
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paper is an extension and continuation of [1, 22, 23]. In [22] only plain tables were
considered, [1] gives some initial models for non-plain tables. The model covers all
types of tables currently used in Software Engineering. It also allows us to define
precisely new types tables.

An alternative semantics in terms of arrays of relations has been proposed in [10].
The operations ¢, ® and & were application driven. We think that in general the
problem of composing R from R,’s, o € I is an open reserach problem, that can be
formulated as "how to build the whole, i.e. R, from the parts, i.e.R,’s” in terms of
the algebra of relations.
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Appendix
This Appendix contains some illustrative examples of direct product, restriction

operation, projection and cylindrification relations. We start with the example of a
direct product.
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Example 5.1 Let T = {u,v,w}, D, ={1,2}, D, ={a,f} and D,, = {m,n}.

DT:HDt:DuxDUwa:{(a,b,cHaeDu AbeD, AceD,}
teT

The set D can be seen as the folowing relation.

{fIf:{u7v,w}—>{1,27a,ﬁ7m7n} A f(u) € Dy A fv) € Dy A f(w) GDw}-

The three following tables represent these two isomorphic representations of Dr.
The first table represents Dt as a set of functions. In the second table we have, with
a permutation of the columns, the same set of functions. The representation given
by the third table supposes that the elements of the first column belong to D,, the
elements of the second column belong to D, and the elements of the third column
belong to D,,.

(@) [ f() [ f(w) ] | J(w) [ J(o) | f(u) |
1 « m m « 1 lja|lm
1 « n n « 1 la|n
1 3 m m 3 1 1|8 |m
1 p n — n J¥ 1 18| n
2 « m m « 2 2la|m
2 « n n « 2 2|a|n
2 3 m m 3 2 2|18 |m
2 B n n J¥ 2 218 | n

The next example is an example of a function restriction.

Example 5.2 If I = {1,2,3,4}, K = {2,4}, Dy = X1 x Xy x X3 x Xy, f =
(x1,29,23,24) € Dy (or f:{1,2,3,4} — D1 U Dy U D3 U Dy, and f(i) = w;,
i=1,2,3,4), then fic :{2,4} — DyUDy, flx (i) = i, 1 =2,4, i.e. flx = (22,24).

|

We shall now illustrate the concept of projection relation.

Example 5.3 We continue with the terms of Fxample 5.1. Let us take I = {v,w}.
The following tables illustrate the relation ,11,. A row from the first table represents
a function f € Dy and the corresponding row from the second table represents a
function g € Dy. Hence, a whole row represents a member of .11, i.e. , third row,

((1,8,m), (8, m)) € ,11,.

29



| f(W) | J(o) | J(w) ] [g(v) ] g(w)]
1 « m « m
1 « n « n
1 08 m 08 m
1 08 n 08 n
2 « m « m
2 « n « n
2 08 m 08 m
2 08 n 08 n

In this case we can either write:

AL =A{f9) | feDr AgeDr A flv)=g(v) A flw)=g(w)}.

or, by using tuples instead of functions,

AL ={((a,b,0), (0, ) |V =b A I =c}.

The last example is an example of cylindrification relation.
Example 5.4 Let us take the projection 11, of Example 5.3. We have

20 = o5 107
= ( Frample5.3 )

{((a,b,¢),(,)) |0 =b A ' =c}{((b,c), (U, )|V =b A =c}
= ( definition of ;)

{({a;b,¢), (0, ) |0 =b A ! =c}

The below tables illustrate the relation .0,, where T, I, and Dt are those from
Example 5.1. A row from the first table is an element of Dy. The same row from
the second table corresponds to this element by ,.9,. A tuple: (a row from first table,

a row from the second table) is an element of the relation ,.¢,.
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2
2
2
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