
4.2 Families of Programs

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Overview of Chapter 4.2 433

Overview of Chapter 4.2

• basic idea of families of programs

• . . . and what to do if the first version is due yesterday

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 4.2 434

Text for Chapter 4.2

[Par76] Parnas, D. L. On the design and development of

program families. IEEE Trans. Softw. Eng. 2(1), 1–9 (Mar.

1976).

First paper to introduce families of programs explicitly.

Presents the essentials very clearly.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Text for Chapter 4.2 435

[WeLa99] Weiss, D. M. and Lai, C. T. R. Software Product

Line Engineering – a Family-Based Software Development

Process. Addison Wesley Longman (1999).

Best current book on how to do software product line

engineering (families of programs) in practice.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Definition of Program Family 436

Definition of Program Family

Definition 20 (Program family)

A set of programs constitutes a family
whenever it is worthwile to study programs from the set by
first studying the common properties of the set and
then determining the special properties of the individual
family members.

• examples:
◦ the set of versions of an embedded software for different

environments

◦ the set of versions of a software over time

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The “Classical” Method of Producing Program Families 437

The “Classical” Method of Producing
Program Families

1

2

3

7

9 8

5 64

0

incomplete program

working program

set of initial possibilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Newer Techniques 438

Newer Techniques

1 32 54

incomplete program

working program

set of initial possibilities

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Stepwise Refinement 439

Stepwise Refinement

• intermediate stages:
◦ complete programs

◦ except: certain operators and operand types

only specified, not yet implemented

• next step: provide some more implementation,

using more, newly introduced specifications as necessary

• linear sequence of steps towards one program
◦ if a step must be taken back, all subsequent steps are lost

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Module Specification 440

Module Specification

• intermediate stages:
◦ black-box specifications of modules

◦ not complete programs

• next step: add design decisions for a module,

using newly introduced sub-modules as necesary

• steps taken in different modules are independent
◦ any step taken back affects its sub-modules only

◦ order of steps: more important

◦ independent further development of modules

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Discussion of Both Development Approaches 441

Discussion of Both Development Approaches

• both based on same basic ideas:
◦ represent intermediate stages precisely

◦ postpone certain decisions

• extra effort to design first family member:
◦ stepwise refinement: none

◦ module specification: significant

• effort to design next family members:
◦ stepwise refinement: high, if early step taken back

◦ module specification: low, as long as low uses-level modules affected

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Dilemma: Careful Engineering vs. Rapid Production 442

Dilemma:
Careful Engineering vs. Rapid Production

• careful engineering:
◦ attractive functionality

◦ ease of use

◦ reliability

◦ easy to enhance

• rapid production:
◦ market it ahead of competition

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Solution in Other Fields 443

A Solution in Other Fields

• fields:
◦ aerospace

◦ automotive

◦ computer hardware

◦ . . .

• idea: a family of products

produced with a single production facility

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Solution in Other Fields 444

• family: set of items
◦ common aspects (e.g., chassis)

◦ predicted variabilities (e.g., engine)

• def. product line: a family of products

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Family-Oriented Abstraction, Specification, and Translation – FAST 445

Family-Oriented Abstraction, Specification,
and Translation (FAST)

domain
engineer

production
family

facility

family
definition

application
engineer

family
members

domain
engineering

application
engineering

creates and uses

creates

uses

creates

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Applications of FAST 446

Applications of FAST

• developed and in use within Lucent Technologies

(development: Bell Labs)

• many product lines already created there

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Basic Assumptions 447

Basic Assumptions

• redevelopment hypothesis

• oracle hypothesis

• organizational hypothesis

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Stages Towards an Engineered Family 448

Stages Towards an Engineered Family

1. potential family
◦ one suspects sufficient commonality

2. semifamily
◦ common and variable aspects identified

3. defined family
◦ semifamily + economic analysis of exploiting it

4. engineered family
◦ defined family + investment in processes, tools, resources

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

FAST Strategies 449

FAST Strategies

• identify collections of programs

that can be considered families

• design the family for producibility

• invest in family-specific tools

• create a family-specific way to model family members
◦ for validating the requirements by exploring the behaviour

◦ for generating code and documentation

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Outputs from Domain and Application Engineering 450

Outputs from Domain and Application
Engineering

domain
engineer

engineering
application

process

family
definition

application
engineer

family
members

domain
engineering

application
engineering

engineering
application

environment

creates and uses

creates

creates

uses

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Predicting Change 451

Predicting Change

• is critical
◦ but is not all-or-nothing

• confidence should rule size of investment

• FAST: explicitly bounds change (oracle hypothesis)
◦ allows for common abstractions

• good guides for future change:
◦ past change

◦ your marketing organization

◦ early adopters

◦ experienced developers

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Organizational Considerations 452

Organizational Considerations

• reorientation of software development around domains
may need change in organization of development
◦ e.g., one sub-organization for each domain

◦ e.g., a product line composed out ouf several sub-domains

� example: protocol stack

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: FAST Applied to Commands and Reports 453

Example:
FAST Applied to Commands and Reports

• C&R: part of Lucent’s 5ESS telephone switch

• technicians monitor and maintain running switch
◦ issue commands

◦ receive status reports

• voluminous documentation

• command set: thousands of commands and report types

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Example: FAST Applied to Commands and Reports 454

define C&R family and
develop production facility

C&R domain engineering:

C&R application
engineering environment:

SPEC language

C&R application engineering process

ASPECT toolset

C&R application engineering:

produce C&R family members

command & report descriptions
and customer documentation

investment

payback

Feedback

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Defining the C-R Family 455

Defining the C&R Family

• identify potential family members,

characterize commonalities and differences

• 5ESS command:
◦ always command code followed by parameters

� command code: action and an object
• example: report status of a line connected to the switch

◦ the particular actions, objects, parameters vary

� over reasonably well-defined sets
� certain combinations not included in family
• example: remove clock is not included, but set clock is included

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

C-R Commonality Analysis Document 456

C&R Commonality Analysis Document

• introduction
◦ purpose of the commonality analysis

• overview
◦ brief overview of C&R domain

• dictionary
◦ defines technical terms for the C&R domain used

• commonalities
◦ assumptions true for every member

• variabilities
◦ assumptions about how members may vary

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

C-R Commonality Analysis Document 457

• parameters of variation
◦ the value space for each variability

◦ the time at which the value must be fixed

• issues
◦ issues that arose during analysis / how resolved

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Dictionary Section 458

Excerpts from Dictionary Section
Command code Unique identifier of an input command, consisting of

a verb and an object.
Input command A command entered by an office technician that acts

as a stimulus to the 5ESS to perform tasks. Such
tasks include changing the state or reporting the state
of the 5ESS.

Input command definition A specification of all the information needed to
identify and produce an input command or a set of
input commands with common structure and
contents.

Input command manual page Documentation of an input command for the
customer’s use.

Output report An information message that is printed on an output
device.

Output report definition A specification of all the information needed to
identify and produce an output report or a set of
output reports with common structure and contents.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Dictionary Section 459

Purpose Customer documentation that describes the use of
an input command.

Verb The name of the action indicated by an input
command.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 460

Excerpts from Commonality Section
COMMONALITIES

The following are basic assumptions about the domain of input commands, output
reports, and customer documentation.

INPUT COMMANDS

C1. Each input command is uniquely determined by its command code. When an
input command definition is used to define more than one input command, it
defines multiple command codes, all of which share the same set of input
parameters.

C2. Each input command is described on exactly one input manual page.

C3. The following administrative data are required in an input command definition:
msgid, process, ostype, schedule, and auth. Each input command has exactly one
value for each of these fields.

C4. A verb is an alpha-string with a maximum length.

C5. There is a fixed maximum number of input parameters permitted for input
commands.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 461

C6. An input parameter description consists of a parameter name and a value
specification. The value specification defines the range of values that an office
technician may use for the input parameter.

OUTPUT REPORTS

C7. Output reports appear in three different contexts as follows.

a. Runtime: At runtime an output report may appear on an output device, such as
the printer.

b. Report definition: The set of output reports that a 5ESS switch may produce at
runtime, and the meaning of each possible output report, must be defined before
building the software for the switch.

c. Output report documentation: Each output report must be documented for
customer use. The documentation of output reports must include all the
information that the office technician needs to know to understand the report and
determine the reason for its appearance at runtime.

C8. An output report contains the report type – spontaneous or solicited – and the
text of the report.

C9. There is a fixed maximum number of characters in a line of an output report.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Commonality Section 462

C10. Each output report is described on exactly one output manual page; however, an
output manual page may describe more than one output report.

C11. An output report definition is a sequence of text block definitions.

DOCUMENTATION

C12. An (input command or output report) manual page consists of several fixed
sections. It may also reference an appendix.

C13. An (input command or output report) manual page documents one or more
input commands or output reports.

SHARED COMMONALITIES

C14. All the information needed to define an input command, the associated solicited
output report, and the associated manual pages must be describable as one
specification. It must be possible to generate from such a specification all the files
and data needed to process input commands and produce output reports at
runtime and to generate either (1) the input command and output manual pages or
(2) files and data that can be used to generate the input command manual pages
and output manual pages.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Variabilities Section 463

Excerpts from Variabilities Section
The following statements describe how input commands, output reports, and customer
documentation may vary.

VARIABILITIES

INPUT COMMANDS

V1. The maximum length of a verb, object, parameter name, or enumeration value.

V2. The domain for verbs.

V3. The maximum number of input parameters.

V4. The Csymbol used to designate a msgid.

OUTPUT REPORTS

V5. The maximum number of characters in a line of an output report.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Excerpts from Variabilities Section 464

DOCUMENTATION

V6. The representation of an input command on an input manual page, particularly

the following in the syntactic template for the input command :

a. The separators used between the command code and the list of input parameters
b. The terminator for the representation of the input command
c. The separator used between the verb and the object
Typical input command representations appear as follows:

<command code rep><separator1><input parameter rep><input terminator>
<command code rep><input terminator>
<verb><separator2><object>

V7. Typographic distinguishers for command templates.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Sample Command Template, Written in SPEC 465

Sample Command Template, Written in SPEC

COMMAND {
TEMPLATE {

abt-task:tlws;
purpose: "Aborts an active trunk and line workstation

(TLWS) maintenance task.";
warning: "Once this command is entered, the

consistency of all hardware states and data
in use by the task is questionable.";

}
}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Formatted Generated Documentation 466

Formatted Generated Documentation

ABT-TASK:TLWS=a;

Warning: Once this command is entered, the consistency of
all hardware states and data in use by the task is
questionable.

• Purpose

Aborts an active trunk and line workstation (TLWS) maintenance task.

• Explanation of Parameters
a = Task identifier given to active TLWS maintenance

tasks by the OP-JOBST command.

• Responses

Only standard system responses apply.

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Sample Parameter Definition 467

Sample Parameter Definition

COMMAND {
..........

PARAM tlws {
TYPE {

domain: num;
min: 0;
max: 15;
default: 0;
}

desc: "Task identifier given to active TLWS
maintenance tasks by the OP-JOBST command.";

csymbol: task_id;
}

}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

A Parameterized Version of TLWS 468

A Parameterized Version of TLWS

PARAM lib_tlws(x) {
TYPE {

domain: num;
min: 0;
max: 15;
default: 0;
}

desc: "Task identifier given to active TLWS
maintenance tasks by the OP-JOBST command.";

csymbol: x;
}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Reuse of TLWS 469

Reuse of TLWS

COMMAND {
TEMPLATE {

abt-task:tlws;
purpose: "Aborts an active trunk and line workstation

(TLWS) maintenance task.";
warning: "Once this command is entered, the

consistency of all hardware states and data
in use by the task is questionable.";

}

PARAM tlws use lib_tlws(task_id)

}

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Producing Multiple Documentation Formats 470

Producing Multiple Documentation Formats

text preview

SGML

Postscript

HTML

TROFF

ASPECTSPEC source

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Designing the Translators 471

Designing the Translators

• existing parser generator tools used

• principles of software family development applied

• combined with SCR design process

• minimal toolset:
◦ command translator

◦ report translator

◦ command documentation generator

◦ report documentation generator

• much overlap between translators expected

(commonalities)

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Using the SCR Design Process 472

Using the SCR Design Process

• information hiding hierarchy
◦ module guide

◦ uses relation

• ASPECT:
◦ external interface module

� . . .

◦ behaviour hiding module

� . . .

◦ software decisions module

� . . .

• result: substantial code reuse

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT External Interface Module 473

ASPECT External Interface Module

• output drivers module
◦ command format module

◦ report format module

◦ documentation format module

• library reference module

• device drivers module
◦ text module

◦ HTML module

◦ formatter macros (TROFF) module

◦ Postscript module

◦ SGML module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Behaviour Hiding Module 474

ASPECT Behaviour Hiding Module

• tool builder module

• input command traversal module

• output report traversal module

• command documentation traversal module

• report documentation traversal module

• shared services module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Software Decisions Module 475

ASPECT Software Decisions Module

• cross reference module

• database module

• domain translator module

• error recorder module

• global context module

• preprocessors module
◦ alter structure module

◦ alter syntax module

◦ random access module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

ASPECT Software Decisions Module 476

• semantic verification module
◦ completeness module

◦ consistency module

◦ placement module

• specification expander module

• symbol reference module

• text function module

• text translation module

• global language data module

• system interface module

• transversal module

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

The Economics of FAST 477

The Economics of FAST

0 C T

2 C T

4 C T

1 C T

3 C T

0 1 2 3 4

cost
cumulative

number of
family members

without domain engineering

with domain
engineering

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Modelling the FAST Process 478

Modelling the FAST Process

• there is a precise model for the FAST process
◦ see [WeLa99]

• description of process models: PASTA approach
(Process and Artifact State Transition Abstraction)
◦ see [WeLa99]

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Finding Domains where FAST is Worth Applying 479

Finding Domains where FAST is Worth
Applying

• usually apply to legacy systems

• look for domain with
◦ frequent, continuing change

◦ change at high cost

◦ predictable change

◦ (quick change needed)

• do an informal or formal economic analysis

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Applying FAST Incrementally 480

Applying FAST Incrementally

• early activities of FAST:
better understanding of market, customers, requirements
◦ facilitates communication, staff training, member design

◦ modest cost

• later activities of FAST:

make effective use of information and understanding

• apply FAST iteratively, e.g.:
1. commonality analysis only, to make design more flexible

2. introduce a rudimentary language

to generate data structures changing most often

3. expand language to generate majority of code

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

Transitioning to a FAST Process 481

Transitioning to a FAST Process

• FAST process allows for gradual introduction into company

• early: staff learns to think in terms of families
◦ test: can they predict future changes?

• later: use this thinking

• one way to start:
◦ pick a few, high-leverage, well-understood domains

◦ apply a simple version of FAST

◦ several iterations

◦ if you understand it and if it works,

spread to more domains and more parts of company

• you might have to reengineer your organization later

Jan Bredereke: SCS4: Engineering of Embedded Software Systems, WS 2002/03

	4.2 Families of Programs
	Overview of Chapter 4.2
	Text for Chapter 4.2
	Definition of Program Family
	The ``Classical'' Method of Producing Program Families
	Newer Techniques
	Stepwise Refinement
	Module Specification
	Discussion of Both Development Approaches
	Dilemma: Careful Engineering vs. Rapid Production
	A Solution in Other Fields
	Family-Oriented Abstraction, Specification, and Translation -- FAST
	Applications of FAST
	Basic Assumptions
	Stages Towards an Engineered Family
	FAST Strategies
	Outputs from Domain and Application Engineering
	Predicting Change
	Organizational Considerations
	Example: FAST Applied to Commands and Reports
	Defining the C-R Family
	C-R Commonality Analysis Document
	Excerpts from Dictionary Section
	Excerpts from Commonality Section
	Excerpts from Variabilities Section
	Sample Command Template, Written in SPEC
	Formatted Generated Documentation
	Sample Parameter Definition
	A Parameterized Version of TLWS
	Reuse of TLWS
	Producing Multiple Documentation Formats
	Designing the Translators
	Using the SCR Design Process
	ASPECT External Interface Module
	ASPECT Behaviour Hiding Module
	ASPECT Software Decisions Module
	The Economics of FAST
	Modelling the FAST Process
	Finding Domains where FAST is Worth Applying
	Applying FAST Incrementally
	Transitioning to a FAST Process

