
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

1 Sequential Transition Diagrams and Systems

1.1 Sequential Transition Diagrams

Transition diagrams describe the control structure of a program in terms of
locations and transitions. A location represents the program counter which
indicates the next instruction to be executed. A transition describes the effect
of the execution of an instruction in terms of the new value of the program
counter. The execution of an instruction itself is described in terms of a state
transformation, where a state represents the contents of the memory. A state
transformation consists of assigning to some memory cells the results of some
operation performed on values read from the memory.

Intuitively the control structure of a program can be pictured as a labelled
directed graph. The nodes in the graph are referred to as locations. Directed
edges connect these nodes. The entry node is a distinguished location where
computation starts. The similarly distinguished exit node has no outgoing edges.
Each edge is labelled by an instruction of the form c → f , where c denotes a
total boolean condition or state function, also called predicate, and f denotes a
total state transformation (such boolean functions will also be denoted by b):

��
��

-��
��

l l′
c→ f

The intuitive meaning of a transition is that execution may proceed from
a location l only if the current state at l satisfies the boolean condition c. In
such a case we say that the transition is enabled. The execution of a transi-
tion then consists of applying the state transformation f to the current state.
Subsequently, the execution moves to l′.

We proceed with giving a more formalised account of transition diagrams and
their semantics. First we introduce formally the semantical notions of predicates
and state transformations.

Definition 1.1 (Predicate, state transformation) Given a set of states Σ,
with typical element σ, a predicate is a total (boolean) function assigning truth
values to states. The set of predicates, with typical element ϕ, will be denoted
by Φ def= Σ → Bool, where Bool denotes the domain of truth values {tt,ff}. A
state transformation f is simply an element of Σ → Σ, i.e., the set of total
functions from Σ to Σ.

For a predicate ϕ we introduce the notation |= ϕ(σ) to indicate satisfaction
of ϕ in σ, defined by ϕ(σ) = tt (sometimes also the notation σ |= ϕ will be
used). Similarly, we use the notation |= ϕ to express validity of ϕ, defined by:
|= ϕ(σ) for all states σ. We often use the phrases “ϕ(σ) holds” and “ϕ is valid”
to express, respectively, that ϕ is satisfied in σ and that |= ϕ holds.

1

We have the usual lifting of the boolean operations to predicates: For ex-
ample the conjunction of two predicates ϕ and ψ, denoted by ϕ ∧ ψ, is defined
by |= (ϕ ∧ ψ)(σ) if |= ϕ(σ) and |= ψ(σ).

Transition diagrams are mathematically defined as follows:

Definition 1.2 (Transition diagram) A transition diagram is a tuple (L, T,
s, t), where L is a finite set of locations, with typical element l, T is a finite set of
triples (l, c→ f, l′) called transitions with l, l′ ∈ L, c : Σ → Bool and f : Σ → Σ
total functions where Σ denotes a set of states, s ∈ L is a distinguished location
called entry location, and t ∈ L is a distinguished location called exit location
such that for no label l and instruction c→ f we have that (t, c→ f, l) ∈ T .

A transition (l, a, l′) ∈ T , with a = c → f , we will also denote by l a→ l′ or
just l → l′. Simpler variants of the general form for instructions will often be
used such as c standing for a test with no state transformation, or f standing
for true→ f , where true denotes the predicate which assigns the truth value tt
to every state.

In concrete examples of transition diagrams a state will be a total function
assigning values to variables, i.e., Σ def= VAR → VAL, where VAR, with typical
elements x, y, z, . . ., denotes a set of variables, and VAL denotes the domain
of values, i.e., for y ∈ VAR one has that σ(y) denotes the value of variable y
in state σ, and this value belongs to VAL. A state transformation will then
denote an assignment of the form (y1, . . . , yn) := (g1, . . . , gn), or ȳ := ḡ, for
short, where gi : Σ → VAL denotes a total semantic function for computing
a value from VAL, called value expression, yi is a variable belonging to VAR,
i = 1, . . . , n, and the variables yi in ȳ are different from each other. Note that in
general it is not the case that VAR = {y1, . . . , yn}; usually only a few variables
of VAR are changed in such a state transformation.

The semantics of an assignment is given by the following definition:

Definition 1.3 (Semantic assignment) First we define the variant of a state
σ with respect to a sequence of distinct program variables x̄ = (x1, . . . , xn) and
a corresponding sequence of values d̄ = (d1, . . . , dn), denoted by (σ : x̄ 7→ d̄),

(σ : x̄ 7→ d̄)(y) =
{
di if y ≡ xi,
σ(y) if y 6≡ xi, for i = 1, . . . , n,

where ≡ denotes syntactic equality. Semantically an assignment ȳ := ḡ denotes
the state transformation: (ȳ := ḡ)(σ) = (σ : ȳ 7→ d̄), where d̄ = (g1(σ), . . . ,
gn(σ)).

Since f and g are total functions, this definition does not model the effect of
executing undefined or partially defined operations such as x := 1/0 or x := 0/y.

Now we are able to define formally the semantics Comp [[P]] of transition
diagrams: For a transition diagram P , an execution sequence (or computation)
η starting in σ0 is a sequence of configurations

η : 〈l0;σ0〉 −→ 〈l1;σ1〉 −→ 〈l2;σ2〉 −→ . . .

such that l0 ≡ s, and:

2

• For each computation step 〈li;σi〉 −→ 〈li+1;σi+1〉 in this sequence there is
a transition of P of the form

��
��

-��
��

li li+1

c→ f

such that c(σi) = tt and σi+1 = f(σi). Note that our transition diagrams
may be nondeterministic since two different transitions may depart from
a single location with conditions that are not necessarily disjoint.

• This sequence cannot be extended; i.e., if the sequence is finite, its last
configuration has no possible successors.

Consequently, such an execution sequence satisfies one of the following cases:

1. The sequence is finite, and its last configuration is of the form 〈t;σ〉. Such
a sequence is called a terminating sequence, and we define the value of the
sequence η as:

val(η)
def
= σ, with σ ∈ Σ.

2. The sequence is finite, but its last configuration is of the form 〈l;σ〉, l 6≡
t. This must therefore be a deadlock state such that for no transition
departing from l there exists a condition c with c(σ) = tt. Such a sequence
is called a failing sequence, and we define its value as:

val(η)
def
= fail.

3. The sequence is infinite. Such a sequence is called divergent, and we define
its value as:

val(η)
def
= ⊥.

The values fail and ⊥ are special symbols used to denote failure and divergence,
respectively, and are not contained in Σ.

Denote by Comp [[P]]σ the set of all computations of P starting with the
initial state σ. We define the meaning of the transition diagram P as a function
M [[P]] :

M [[P]]σ
def
= {val(η) | η ∈ Comp [[P]]σ}.

Thus the meaning of a transition diagram P is a function which for a given
initial state σ gives the set of all possible outcomes, including the possibility of
failing and of divergent computations (fail ∈M [[P]]σ or ⊥ ∈M [[P]]σ).

It is customary to write M [[P]] (σ) in order to emphasise that M is a map-
ping which for each transition system P yields a function M [[P]] describing the
initial-final state, failure and divergent behaviour of the computations of P :

M [[P]] : Σ → 2Σ∪{⊥,fail}.

3

1.2 Transition Systems

The val function used to define the M [[P]] semantics ignores the actual loca-
tions of execution sequences. The only aspect that remains is whether the last
location is the exit location or not, and whether the computation is infinite.
Therefore the meaning M [[P]] of a transition diagram P does not depend on
the particular names of the locations in a transition diagram. Informally, two
transition diagrams are equivalent if they are the same up to a renaming of
the locations, where the renaming should respect the start and exit locations.
Assume that we have two transition diagrams P ≡ (L, T, s, t) and P ′ ≡ (L′, T ′,
s′, t′), with the same state space Σ. A renaming that transforms the names of
the nodes of P into those of P ′ can be formalised as a bijection φ between L
and L′ that respects the entry and exit locations and the T relation:

Definition 1.4 (Equivalence of transition diagrams) We call two transi-
tion diagrams, P def= (L, T, s, t) and P ′ def= (L′, T ′, s′, t′), equivalent , if there exists
a bijection φ : L→ L′ such that

• s′ = φ(s),

• t′ = φ(t), and

• (l, a,m) ∈ T if and only if (φ(l), a, φ(m)) ∈ T ′.

Observe that renaming is an equivalence relation.

Definition 1.5 (Transition systems and programs) A transition system is
an equivalence class of transition diagrams. Such an equivalence class is also
called a program.

Let P be a program, i.e., an equivalence class of transition diagrams. As
remarked above, all transition diagrams in this class have the same meaning.
Hence we can define the meaning of the program by taking the meaning of an
arbitrary element from the equivalence class.

In the sequel, when dealing with transition systems we will often use tran-
sition diagrams that represent these equivalence classes instead. We say for
instance: “let program P be represented by (L, T, s, t)”, or even “let program
P

def= (L, T, s, t)”. One should check in such cases that the results are indepen-
dent from the choice of the representatives. This is usually left to the reader.

Example 1.6 Consider program P = (L, T, s, t) with

• L = {s, l, t} and

• T = {(s, true→ f0, l), (l, c1 → f1, l), (l, c2 → f2, t)}, where

c1(σ) = tt iff σ(y) > 0, c2(σ) = tt iff σ(y) = 0,

f0(σ) = (σ : y, z 7→ σ(x), 0),

f1(σ) = (σ : y, z 7→ σ(y)− 1, σ(y) + σ(z)), and

f2(σ) = σ,

4

����
sP :

?

true→ f0

����
l

����)
PPPP

�
�c1 → f1

?

c2 → f2

����
t

Figure 1: A simple transition diagram.

where σ ∈ Σ, with Σ def= {x, y, z} → Z, and Z denoting the set of integers.
Graphically, P can be represented as the transition diagram in Figure 1.
It is easy to check that, if σ(x) ≥ 0, then M [[P]]σ = {(σ : y, z 7→ 0,

∑σ(x)
i=0 i)}

and that, if σ(x) < 0, then M [[P]]σ = {fail}.

These assignments f1 and f2 we abbreviate, respectively, to (y, z) := (x, 0)
and (y, z) := (y−1, y+z). Similarly, condition c1 will be abbreviated to (y > 0)
and c2 to (y = 0). Parentheses are dropped whenever this does not lead to
confusion.

Now P can be represented as in Figure 2 below, using the above abbre-
viations and the additional ones introduced in Section 1.1. Whenever this is
convenient, we will stick to these abbreviations.

����
sP :

?

(y, z) := (x, 0)

����
l

����)
PPPP

�
�y > 0 → (y, z) := (y − 1, y + z)

?

y = 0

����
t

Figure 2: A more convenient notation for the simple transition diagram.

5

