Verifikation nebenläufiger Programme Wintersemester 2004/05 Ulrich Hannemann Jan Bredereke

10 The Proof Method of Owicki & Gries

10.1 Soundness of the Owicki & Gries Proof Method

In order to prove the soundness of the Owicki & Gries proof method we first prove the soundness of the initialisation and the auxiliary variables rules.

Lemma 10.1 (Initialisation rule) Let *h* be a total function such that the set of write variables of *h* consists of auxiliary variables of *P* which do not occur in ψ , then $\models \{\varphi\}P\{\psi\}$ implies $\models \{\varphi \circ h\}P\{\psi\}$.

Proof

First note that $\varphi \circ h$ is a total boolean function because both φ and h are total and φ is boolean. Next, let $\overline{z} = write(h)$ and $c \to f$ be a transition of P. Then $f = f_1 \circ f_2$, for some f_1 and f_2 such that $\overline{z} \cap var(f_1) = \emptyset$ and the write variables of f_2 are only among \overline{z} . Since \overline{z} is a collection of auxiliary variables of P, for every pair of states σ and σ' such that $\sigma(x) = \sigma'(x)$, for all $x \in VAR \setminus \overline{z}$, we have that $\sigma \models c$ if and only if $\sigma' \models c$, because c does not involve the variables of \overline{z} . Moreover, for all $x \in VAR \setminus \overline{z}$, we have that $f(\sigma)(x) = f_1(\sigma)(x) = f_1(\sigma')(x) = f(\sigma')(x)$, because the write variables of f_2 are only among \overline{z} and f_1 does not involve the variables of \overline{z} . Now let $\sigma \models \varphi \circ h$ and σ' be a final state of a terminating computation of P starting from σ . By a straightforward induction on the length of the computation, using the above observation, we derive that there exists an execution of P starting from $h(\sigma)$ and resulting in a state σ'' such that $\sigma'(x) = \sigma''(x)$, for all $x \in VAR \setminus \overline{z}$. So, since $h(\sigma) \models \varphi$, we infer by $\models \{\varphi\} P\{\psi\}$ that $\sigma'' \models \psi$. But the variables of \overline{z} do not occur in ψ so we also conclude that $\sigma' \models \psi$.

Lemma 10.2 (Auxiliary variables rule) Let \bar{z} be a set of auxiliary variables of P', and P be obtained from P' by restricting all state transformations of P' to all variables excluding \bar{z} . Furthermore let ψ be a predicate in which no variable of \bar{z} occurs. Then $\models \{\varphi\}P'\{\psi\}$ implies $\models \{\varphi\}P\{\psi\}$.

Proof

Let $c \to f$ be a transition of P and $c \to f \circ g$ be the corresponding transition of P'. Since c and g are total functions, and g only changes the values of variables belonging to \bar{z} , the effect of executing $c \to f$ in some state σ such that $c(\sigma) = tt$ is well-defined iff executing $c \to f \circ g$ in σ is well-defined, since f does not involve \bar{z} . We have that f does not involve the auxiliary variables \bar{z} and that the write variables of g are among \bar{z} . For every pair of states σ and σ' such that $\sigma(x) = \sigma'(x)$, for every $x \in VAR \setminus \bar{z}$, it follows that $\sigma \models c$ if and only if $\sigma' \models c$ and that $f(\sigma)(x) = f \circ g(\sigma)(x)$ is well-defined whenever $f(\sigma)(x)$ is well-defined,

for all $x \in VAR \setminus \overline{z}$. Now let $\sigma \models \varphi$ and σ' be the final state of a terminating computation of P starting from σ . By a straightforward induction on the length of the computation we derive, using the above observations, that there exists a final state σ'' of an execution of P' starting from σ such that $\sigma'(x) = \sigma''(x)$, for every $x \in VAR \setminus \overline{z}$. So by $\models \{\varphi\}P'\{\psi\}$ we infer that $\sigma'' \models \psi$ and, thus, since σ' and σ'' only differ with respect to the values of the variables \bar{z} , and the variables of \bar{z} do not occur in ψ , we conclude that $\sigma' \models \psi$.

Observe that had we allowed undefined, or partially defined, operations upon auxiliary variables, then the auxiliary variables rule would have been unsound, as the valid triple

$$\models \{true\} (x, y := 1/0, 0) \{y = 2\}$$

demonstrates. Certainly x is an auxiliary variable of (x, y) := (1/0, 0). However, removing the auxiliary variable component from that assignment does not result in a valid triple, since $\not\models \{true\} \ y := 0 \ \{y = 2\}$. This observation is made in [McC89].

Assume that a proof using Owicki & Gries' proof method, that is satisfying points 1 through 5 of Definition 9.5, has been given for $\{\varphi\} P \{\psi\}$. Then we want to be convinced that this is a valid procedure, i.e., that this proof method is sound, and that $\models \{\varphi\} P \{\psi\}$ holds.

Theorem 10.3 (Soundness)

The proof method of Owicki & Gries as formulated in Definition 9.5 is sound.

Proof

We will prove that $\models \{\varphi\}P\{\psi\}$ holds. Let P' be obtained from $P \equiv P_1 \parallel \ldots \parallel P_n$ as described in point 1 of Definition 95, with \bar{z} a list of the newly introduced auxiliary variables. Furthermore let \mathcal{Q}_l be associated with $l \in L_i$ for $i = 1, \ldots, n$ such that points 2, 3, 4 and 5 of Definition 9.5 are satisfied.

We need to prove that $\models \{\varphi\}P_1 \parallel \ldots \parallel P_n\{\psi\}$ holds, where φ and ψ in particular satisfy the following clause of Definition 3.17:

5 There exists a function h whose write variables belong to \bar{z} such that $\models \varphi \to \bigwedge_{i=1}^{n} \mathcal{Q}_{s_i} \circ h$ and $\models \bigwedge_{i=1}^{n} \mathcal{Q}_{t_i} \to \psi$ hold.

It suffices to prove $\models \{\bigwedge_{i=1}^{n} \mathcal{Q}_{s_i}\} P'_1 \| \dots \| P'_n \{\psi\}$ using the soundness of Floyd's inductive assertion method. The soundness of the initialisation rule then gives us

$$\models \{\bigwedge_{i=1}^n \mathcal{Q}_{s_i} \circ h\} P_1' \| \dots \| P_n' \{\psi\},\$$

and so $\models \{\varphi\}P'_1 \parallel \ldots \parallel P'_n \{\psi\}$ follows using 5. Using the soundness of the auxil-

iary variables rule we conclude that $\models \{\varphi\}P_1 \parallel \dots \parallel P_n\{\psi\}$. We still have to prove $\models \{\bigwedge_{i=1}^n \mathcal{Q}_{s_i}\}P'_1 \parallel \dots \parallel P'_n\{\psi\}$. By associating $\bigwedge_{i=1}^n \mathcal{Q}_{l_i}$ with global label $\langle l_1, \dots, l_n \rangle \in L_1 \times \dots \times L_n$ it follows from the discussion in Sesion 8, that

(i) local correctness of $\{Q_l | l \in L_i\}$ w.r.t. P'_i , i.e., $\{Q_l | l \in L_i\}$ is an inductive assertion network for P'_i , $i = 1, \ldots, n$, and

(ii) the interference freedom test, i.e., Q_l for $l \in L_i$ is invariant under transitions of P'_j , $j \neq i$,

both imply that $Q_1 \times \ldots \times Q_n$ is an inductive assertion network for $P'_1 \| \ldots \| P'_n$. Moreover point 5 above holds. Hence one can apply Floyd's inductive assertion method, and by the soundness of that method (Theorem 4.1)

$$\models \{\bigwedge_{i=1}^{n} \mathcal{Q}_{s_i}\} P_1' \| \dots \| P_n' \{\psi\}$$

follows.

References

[McC89] E.R. McCurly. Auxiliary variables in partial correctness programming logics. *Information Processing Letters*, 33:131–133, 1989.