Verifikation nebenlaufiger Programme
Wintersemester 2004 /05

Ulrich Hannemann Jan Bredereke

11 The Proof Method of Owicki & Gries

11.1 Completeness of the Method of Owicki & Gries

To establish the fact that = {@}P1]| ... || P.{¢} implies that {@}P1]| ... | P.{¢}
can be derived using the method of Owicki & Gries, one needs to define an
appropriate assertion network.

The predicates of this network consist of strongest [-conditions of P; w.r.t.
precondition ¢ at label [, which are defined using a compositional semantics
based on process-indexed sequences of states.

In order to define these concepts formally, we go through the following stages
in a formal setting. We first formalise a simple, noncompositional, notion of
initial-final-state behaviour O [P] of a transition system P in a sequential set-
ting, specialise this notion to the initial-final-state behaviour O; [P] at label [
of P, and define strongest postconditions SP(y, P) and strongest [-conditions
SP,(p, P) w.r.t. this simple semantics. Due to the noncompositionality of this
semantics w.r.t. concurrency these predicates are not interference free.

To obtain compositionality, we formally introduce reactive sequences [{BKPR91]
in order to give a compositional characterisation R; [P] of O, [P]. Using the
compositional semantics R; [P] for shared-variable concurrency, a new notion
of strongest postcondition, expressed by SP/ (¢, P) is defined. More precisely,
first we consider the set of pairs (o,6) with 6 denoting a sequence of process-
indexed states and o the final state of the computation thus characterised, such
that the projection 8[P](o) of (o,8) on P results in a sequence of state pairs de-
scribing transitions of P, i.e., such that §[P](0) € R; [P]. Next the SP/(¢, P)
semantics is obtained by restricting this set to pairs (o,) of which the first
state of 6 satisfies ¢ in case 0 is nonempty, and o |= ¢ , if 6 is empty.

Finally we prove that this choice of assertions satisfies the requirements
imposed by the method of Owicki & Gries.

Strongest postcondition operators: sequential case

Definition 11.1 One defines the initial-final-state behaviour of transition sys-
tem P by:
OP] = {(0,0) | {s;0) = (t:0)},

where —* denotes the reflexive transitive closure of the computation-step rela-
tion — between configurations defined in Session 4, where s and ¢ are the entry
and exit labels of a diagram representing P. |

Note that for all programs P one has that

O[P] ={(o,0")| 0" € M[P] o and 0,0’ € Z}.

For an always terminating program P one even has
M[P]o ={d"| (0,0") € O[P] }.

Next we define the initial-final-state behaviour at a location [of a transition
diagram P. Observe that we have to switch from transition systems to transition
diagrams because labels can only be identified by their names in transition
diagrams.

Definition 11.2 Given a location [of P, define:
O [P] = {(0,0") | (s;0) =" (l;0")}. g

Note that O [P] = O:[P].

To relate these semantic notions to predicates, we introduce the notions of
strongest postcondition and strongest l-condition, respectively, of a transition
diagram P w.r.t. a precondition ¢ and a label [€ P.

Definition 11.3 (Strongest postcondition) Given a transition system P and
a precondition (, the strongest postcondition of P with respect to ¢, expressed
by SP(p, P), is defined as:

SP(p, P) = {0’ | there exists o such that (c,0') € O[P] and o = ¢}. O
We have the following basic property of strongest postcondition semantics.

Lemma 11.4 (Characterising property of SP) For any transition system
P and predicate ¢ one has

=A{e} P {SP(p, P)}
and whenever |= {¢} P {¢} then = SP(p, P) — 9.

Definition 11.5 Given a transition diagram P, a location [of P, and a pre-
condition ¢, the strongest [-condition of P w.r.t. ¢, expressed by SP;(¢, P), is
defined as:

SP(p,P) = {0 | there exists ¢ such that (0,0") € O;[P] and ¢ |= p}. O

Observe that SP,(p, P) = SP(yp, P). That SP, is not compositional w.r.t. ||
can be seen as follows. Let P = Py||...||P,. By Lemma 11.4, = {¢} P {SP(p, P)}
and = {¢} P {¢} imply = SP(p, P) — 1. To derive {¢} P {SP(p, P)} we
consider inductive assertion networks for {¢} P; {SP(y, P;)}, P; being a com-
ponent of P, = 1,...n. However, in general A, SP(p,P;) does not imply
SP(p,P).

This is the lesson of Example 8.2, since for P; as defined in Figure 3 of
Session 8, one has that SP(y = 0,P;) is equivalent to y = 1, whereas for
P = Py||P,, SP(y = 0,P) is equivalent to y = 2. Hence = A, SP(p, P;) —
SP(e, Pr| ... [|Pp).

Reactive sequences

Next we investigate a definition of strongest /-condition in terms of a composi-
tional semantics R; based on reactive sequences. The additional information to
make S P, compositional will be encoded by auxiliary variables.

For the formal definition of reactive sequences we introduce the following
alternative representation of a transition step.

(o:07)

!
0,0
—

Definition 11.6 (Reactive sequences) [U iff (l;0) — (I’;0'). The
following axiom and rule allow us to compute the reflexive, transitive closure of
(g,0")

o,0 . . .
—'" and generate so-called reactive sequences, i.e., sequences of pairs of states:

€

| —1

and
l g ll l/ E; l//
l wlf/ 1

Here w and w’ denote reactive sequences, € the empty sequence, and the oper-
ation of concatenation is denoted by “”. |

A reactive sequence models a computation of a transition diagram which
takes into account possible interleavings by (other) parallel processes. These
possible interleavings are made room for by “gaps”, that is, subsequent pairs
are such that the final state of the preceding pair differs from the initial state
of the following pair, allowing for the insertion of interleaved pairs.

Now one can define the following compositional characterisation of O; [P].

Definition 11.7 R; [P] = {w | s = [}. O

Note that O;[P] is obtained from R, [P] by taking the initial state of
the first pair and the final state of the last pair of connected sequences. Here
connectedness means the absence of gaps in sequences, i.e., the final state of a
preceding pair is the initial state of the next pair. _

Next we need a definition of the interleaving operator || between sequences
over some alphabet A.

Definition 11.8 (Interleaving) Let a = ay...ax, and b = b; ... by, be finite
sequences over some alphabet A, with k" > k—1, and I’ > [—1, and witha = ¢
ifk =k—1and b=c¢€if '’ =1—1. Then the operation of interleaving || the
finite sequences a and b is defined as follows:

. {a},if b=,
allp = { {b}, ifa =,
{ak . (ak+1 Lo Qg ||b)} U {bl . (a||bl+1 c.. bl/)}, otherwise,

. def .
where for a; € A and s = $1...8m, a; - {s|s satisfies p} = {a; - s| s satisfies p},
def
and a; - $ = a;51 ... Sm-]

The interleaving operator can be extended to sets of sequences by defining
their pointwise extension S|T" < {s||t|s € S,t € T}, and is commutative and
associative, as, e.g., proved in [BK84].

Next we observe that R; [P] is compositional w.r.t. parallel composition.

Theorem 11.9 (Compositionality of interleaving)
Let I = (Il1,...,l,) be alocation of P = Pi||...||P,, then

Ri[P] =Ry, [PA]] - 1Re,, [Pa]

where ﬂ denotes the operation of interleaving.
|

This theorem follows immediately from the definition of R. Observe that
R [P] extends and generalises the information given by O;[P]. This is an
example of a general principle that compositional semantics are obtained from
noncompositional ones by adding missing information in order to reconstruct the
functional dependency between the semantics of a construct and the semantics
of its components.

Strongest postcondition operators: concurrent case

Next we define a strongest postcondition semantics based on the compositional
semantics R. To this end we introduce histories which record the sequence of
state changes together with the active components responsible for these changes.
Formally:

Definition 11.10 (Computation history) Given a set of process indices (i €
)I, a history 6 is a sequence of indexed states (i,0) indicating that process P;
makes a computation step in state o. |

Remark 11.11 Given a sequence s and an element v, s-v denotes the sequence
resulting from appending v to s. |

We also need the following projection operator which, given some set of
sequential components and a final state, transforms a history into a reactive
sequence consisting of all the computation steps involving one of the given com-
ponents.

Definition 11.12 (Projection operator) We introduce the projection oper-
ator 0[I](c) to denote the sequence of pairs of states which correspond to tran-
sitions of processes with indices from the set I:

0[I)(0") - (o' 0), ificl,
GH (o), otherwise. (1)

When the index set I contains the indices occurring in 0, then 6[I](o) is
connected. In that case the pair (o, §) represents a connected reactive sequence
with additional information about the identity of the active components. Let

0 = (ig,00) ...+ (ik,0%) - ... (i1,01). Then process P; , 0 < m <, transforms
state o,, into o,,41, where o;41 = 0.

Given a parallel program P = P; || --- || P, we will identify below the set of
indices {1,...,n} with the program P itself and the index ¢ with its component

P;; correspondingly, one has notation 0[P](o) for 8[{1,...,n}](c) and 0[P;](o)
for O[{i}] (o).

We are now able to introduce the strongest postcondition semantics based
on the compositional semantics R.

Definition 11.13 (Strongest [-condition for shared-variable concur-
rency) We associate with a location [of a transition system P the strongest
l-condition of P based on the semantics R:

SP/(p,P) = {{(0,6) | 0[P](c) € R [P] and ¢’ = ¢, with o’ = Init(c,6)},

where
(2)

. aer [the initial state of 6, if 6 is non-empty,
Init(c,0) = { o, otherwise.

Note that if we restrict ourselves to histories referring only to the components
of P, we have that

SP,(p, P) = {o | there exists history 6 referring only to the
components of P s.t. (0,8) € SP/(p, P)}.

Semantic completeness of the method of Owicki & Gries

In order to view the strongest [-condition of P as defined above as a state pred-
icate (i.e., a predicate upon (program) states), we include histories of indexed
states in the domain of values D. A pair (o,60) is then interpreted as a state
which assigns the history € to a distinguished history variable h, with all the
other variables being assigned a value by o.

Remark 11.14 For the sake of readability we express the application of a state-
transformation f to a pair (o,6) by f(o,0). O

Now we can prove completeness by associating with a location [of a com-
ponent P; of a parallel system P = P||...||P, the predicate SP/(p, P;), where
we implicitly restrict ourselves to histories referring only to components of P.
In order to prove local correctness and interference freedom we augment the
transition system as follows (we assume that the variable h does not already
occur in P): Every transition [% I’ in P;, with a = b — f, is transformed in
a transition with action b — f o g, where ¢ is the (total) state transformation
such that g(o,0) & (0,0 (i,0)), i.e., g only involves h. The resulting transition
system is expressed by P’ = P| || ... || P,. Note that we therefore associate
with each location [of P/ the predicate SP;(y, P;), that is, the predicates of P/
are defined in terms of P;. In the following we show that the resulting assertion
networks for P’ are locally correct and free from interference.

Lemma 11.15 (Local correctness) Let P be a transition system in which
the variable h does not already occur. For every transition I % I’ of P’ (the
transition system P augmented with updates to the history variable h, as de-
scribed above), we have

assuming a = b — f.

Proof
Let f(o0,0) = (0’,0"). Note that 6’ = 0 - (i,0), where ¢ denotes the index of the
active component of P’, since f includes an update to the history variable as
described above. Now, let (o, 0) = SP;(p, P) Ab. Thus 0[P](c) € R, [P]. Since
o = b we derive that ¢'[P](c’) = 0[P](0) - {0,0") € Ry [P]. Thus we conclude
(o",0") = SP} (p, P), or, equivalently, (c,0) = SP} (¢, P)o f.

|

Lemma 11.16 (Interference freedom) Let P and @ be two transition sys-

tems in which the variable h does not occur. Let | - I’ be a transition of P’
(the transition system P augmented with updates to the history variable h, as
described above) and I” be a location of @, then:

= SP (0, Q) A SPi(p, P) Nb— SPi(9,Q) o f,
assuming a = b — f.

Proof
Actually we have already that

': SP;”(()OvQ) - SP;”(Q&Q) Of-

Let (0,0) = SP.(p, Q). By definition of SP’ we have that 0[Q](c) € Ry [Q] .
Moreover, we have that f(c,0) = (¢/,60'), where 8’ =60 - (i,0), with ¢ the index
of the active component of P’; and thus 0'[Q](¢’) = 0[Q](c). From this we

conclude (0", 0') = SPy(p,Q), i.c., (0,0) = SPh(, Q) o f.
|

Next we establish the remaining clauses of the method of Owicki & Gries.

Lemma 11.17 (Initialisation) Let P = P || ... || P, such that the variable
h does not occur in P, and s; denote the initial location of P;. For any ¢ which
does not refer to the variable h we have

n
Ee— \SPL(0.P)of,
i=1
where f(0,0) = (0,€). (Here “A” is assumed to bind stronger than “o”, which
binds in turn stronger than “—”.)

Lemma 11.18 (Finalisation) Let P = P, || ... || P,, let the variable h not
occur in P, and t; denote the final location of P;. Furthermore suppose that

E {¢}P{v}, where h does neither occur in ¢ nor in ¢. We have, restricting to
histories which contain only references to components of P,

= /\ SP} (0, P) = 9.
i=1

Proof

Let (0,0) = A\, SP;, (¢, P;), and 6 only refer to the components of P. It follows
that 0[P;](0) € Ry, [P;] for every ¢ € {1,...,n}. Thus we obtain by the com-
positionality of R that 0[P](c) € R:[P], where t denotes the final location of
P, ie., t = (t,...,tn). Next we observe that 8[P](c) is a connected reactive
sequence, since # is assumed to contain only references to components of P.
Thus it follows that o € M [P] ¢’, where ¢’ is the initial state of 8[P](c). Note
furthermore that o’ |= ¢, so we conclude by |= {p}P{y}, that o = ¢ (and so,
since h does not occur in ¥, (o, 0) =).

|
Therefore we conclude:
Theorem 11.19 (Semantic completeness)
The proof method of Owicki & Gries is semantically complete.
|

It is interesting to observe that in the above completeness proof the com-
positionality of R is only used in the ‘finalisation’ lemma, namely in order to
establish [= A\, SP{ (¢, P;) — SP;, (¢, P).

References

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous
communication. Information and Control, 60(1/3):109-137, 1984.

[dBKPRY1] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The
failure of failures: towards a paradigm for asynchronous communi-
cation. In Baeten and Groote, editors, CONCUR ’91, volume 527
of LNCS. Springer-Verlag, 1991.

