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12 Towards Total Correctness

12.1 Proving Convergence for Shared-Variable Concur-
rency

As mentioned before, diagram P1 ‖ . . . ‖ Pn is ϕ-convergent if it does not admit
infinite ϕ-computations. In this section, we extend the method for proving con-
vergence of sequential transition diagrams from the last chapter to the parallel
composition of such diagrams operating upon shared variables. We shall do this
along the same lines as we have done in generalising Floyd’s inductive assertion
method for proving partial correctness of sequential diagrams to the Owicki
& Gries method for proving partial correctness of concurrent shared-variable
diagrams, as worked out in the previous sessions.

12.1.1 A Global Method

Since the semantics of a concurrent transition diagram is given by construct-
ing an equivalent sequential transition diagram (up to observations based on
interleaving), one immediately gets a global method for proving convergence
by adapting Floyd’s wellfoundedness method (Definition 5.1) to the resulting
diagram.

Definition 12.1 (Global method for proving convergence) Let L be the
set of global locations l ∈ L of P ≡ P1 ‖ . . . ‖ Pn. To prove that P is ϕ-
convergent:

1. Find an assertion network Q for the global locations of P , and prove that
it is inductive, and that |= ϕ → Qs holds, where s denotes the initial
location of P .

2. Choose a wellfounded set (W,≺) and a network of partially-defined rank-
ing functions ρ for the global locations of P such that

ρl : Σ →W for every l ∈ L.

3. Prove local consistency, of Ql and ρl, i.e., that, for every l ∈ L, Ql implies
that ρl is defined, i.e., for every σ ∈ Σ,

σ |= Ql implies ρl(σ) ∈W

holds.

4. Prove that for l, l′ ∈ L, every transition l
a→ l′ of P , with a = b → f ,

decreases the ranking function, i.e.,

|= Ql ∧ b→ ρl � (ρl′ ◦ f).
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Soundness and semantic completeness of this global method for proving con-
vergence follow from the corresponding proofs for the sequential method and
from the definition of the semantics of the parallel composition of diagrams.

Therefore, we wish to improve on that by examining a more localised ap-
proach. Our task is again to find a way to formulate the verification conditions
for the whole program in terms of verification conditions for its composing pro-
cesses.

12.1.2 A Local Method

Looking at the problem from another angle, we assume that for each process Pi

there exists a local assertion network and a network of local ranking functions
to a wellfounded set (Wi, ≺i). Our task is to find verification conditions for
(global) convergence in terms of these local quantities. Since we have the global
method already at our disposal, we look at whether we can derive a global proof
for convergence from these local conditions. Now there are two networks to be
constructed: one consisting of assertions, and one of ranking functions.

The global assertion network can be derived in the same way as we have
done for proving partial correctness: for a global location l = 〈l1, . . . ln〉, define

Ql
def= Ql1 ∧ . . . ∧Qln .

The following two conditions, namely, local correctness and the interference
freedom test:

|= Ql ∧ b→ Ql′ ◦ f, (1)

|= Ql ∧Ql′′ ∧ b→ Ql′′ ◦ f, (2)

for any transition l
a→ l′ of Pi, with a = b→ f and location l′′ of Pj , for j 6= i,

ensure that the network is inductive by Theorem 10.3.

Definition 12.2 (Componentwise order) Let W
def= W1 × . . . × Wn and

(Wi,≺i) be wellfounded sets, i = 1, . . . n. For
(w1, . . . , wn), (w′

1, . . . , w
′
n) ∈W , define the componentwise order as follows:

(w1, . . . , wn) ≺ (w′
1, . . . , w

′
n) iff ∃i.wi ≺i w

′
i and ∀j 6= i.wj �j w

′
j .

We leave it as an exercise to prove that (W, ≺) is also a wellfounded set.
For global location l = 〈l1, . . . , ln〉, we define

ρl
def= (ρl1 , . . . , ρln).

To prove that this function indeed decreases along the transitions of P , the
following two additional conditions on local correctness and the interference-
freedom test for the ranking functions suffice:

|= Ql ∧ b→ ρl �i (ρl′ ◦ f), (3)
|= Ql ∧Ql′′ ∧ b→ ρl′′ �j (ρl′′ ◦ f), (4)

for any transition l a→ l′ of Pi, with a = b→ f , and location l′′ of Pj , for j 6= i.

Example 12.3 As a first step, we show that the following simple program
P1‖P2 is convergent.
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P1 :

����
l1

����
s1 -

x ≤ 0 ����
t1

x > 0 → x := x− 1

?


� -

����
t2

����
s2

?

P2 :

x := 0‖

Let the value of x be a natural number. Define all the assertions to be simply
true and the ranking-function network as follows:

ρs1(x)
def= (x, 1) ρs2(x)

def= 1
ρl1(x)

def= (x, 2) ρt2(x)
def= 0

ρt1(x)
def= (0, 0),

where the wellfounded set for the first ranking-function network is the lexico-
graphical ordering of IN × IN over (IN, <), and for the second ranking-function
network is (IN, <) itself. Local correctness and interference freedom are both
trivially satisfied.

Definition 12.4 (A local method for proving convergence) Consider P ≡
P1‖ . . . ‖Pn. To prove that P converges (i.e., terminates or deadlocks) w.r.t.
precondition ϕ, we define the following local method for proving convergence of
the parallel composition of transition diagrams Pi:

1. Augment P by introducing auxiliary variables; every action b → f can
be extended as follows: b → f ◦ g, where g(z̄) is a state transformation
involving only the auxiliary variables z̄ not occurring in P or ϕ. This leads
to an augmented transition system P ′ ≡ P ′

1 ‖ . . . ‖ P ′
n.

2. Associate a predicate Ql with every location l of P ′
i . Choose a wellfounded

set (Wi, ≺i) and a network of partial ranking functions ρ def= {ρl | l ∈
P ′

i}. Prove that the assertion and ranking functions are locally consistent,
namely, predicate Ql implies that ranking function ρl is defined:

|= Ql(σ) ⇒ ρl(σ) ∈Wi, for σ ∈ Σ.

3. Prove local correctness of every P ′
i . This involves proving two properties:

that the local assertion network of P ′
i is inductive, and that the ranking

functions decrease along every local transition. That is, for every transi-
tion l a→ l′ of P ′

i , with a = b→ f , we have to prove:

• |= Ql ∧ b→ Ql′ ◦ f
• |= Ql ∧ b→ ρl �i (ρl′ ◦ f)

}
(LC).

4. Prove interference freedom of both the local assertion networks and the
local networks of ranking functions, where the latter amounts to showing
that the ranking functions in one process do not increase due to transitions
in other processes. That is, for every transition l a→ l′ of P ′

i , with a = b→
f , and location l′′ of P ′

j , for j 6= i, prove that:

• |= Ql ∧Ql′′ ∧ b→ Ql′′ ◦ f
• |= Ql ∧Ql′′ ∧ b→ ρl′′ �j (ρl′′ ◦ f)

}
(IFT).
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5. Prove that:

• |= ϕ → (
∧

iQsi
) ◦ f for some state transformation f whose write

variables belong to the set of auxiliary variables z̄. Here si denotes
the initial location of P ′

i .

Soundness of the local method for proving convergence follows in a straight-
forward manner from the soundness of the global method.

Theorem 12.5 (Soundness)
The local method for proving convergence given in Definition 12.4 is sound.

Semantic completeness of the method for proving convergence is shown in
[dRdBH+01]. Assume P ≡ P1 ‖ . . . ‖ Pn is ϕ-convergent, then our task is
to find a proof using the proposed local verification method. However, the
(compositional) completeness proof of the Owicki & Gries method for proving
partial correctness, as described in Session 11, cannot be extended with appro-
priate ranking functions to a completeness proof of the local method for proving
convergence. This is because the (local) predicates used in the compositional
completeness proof describe the behaviour of a process with respect to any en-
vironment. However, convergence of a process clearly depends on a particular
environment. Therefore one has to construct an alternative completeness proof
for proving partial correctness which is based on so-called reachability predicates,
which do take the particular given environment of a process into account.

This proof is omitted here.

12.2 Proving Deadlock Freedom

A transition is said to be enabled if its boolean condition is satisfied. A process
is said to be blocked at a certain location if it has not terminated and none
of its transitions are enabled there. When blocked, a process waits until some
other process causes one of its transitions (i.e., of the former process) to become
enabled. For concurrent programs, it is not harmful to allow some of its pro-
cesses to be blocked from time to time, and actually such blocking is essential
to the correct functioning of some algorithms – this is called synchronisation.
However, if adequate care is not exercised, it might happen that at a certain
point all the processes of a system become blocked. Then no process can make
a move anymore, and the system is said to be deadlocked. When we looked
at proving partial correctness and convergence, we considered deadlocked be-
haviour as acceptable. However, in general, deadlock is clearly undesirable, for
almost all the concurrent programs that we are aware of are either supposed to
terminate normally or run forever, that is, they should never end up in deadlock.
In this section a method for verifying deadlock freedom is investigated, that is,
for proving that deadlock does not occur. Sometimes deadlock freedom is also
called absence of blocking, or success.

Suppose the program under consideration is P1 ‖ · · · ‖ Pn, its precondition
is ϕ, and for each process Pi there exists a local assertion network Qi which
satisfies steps 1 through 4 of the Owicki & Gries method plus the first clause of
step 5. Process Pi can only be blocked in state σ at local location l from which
there are m transitions with boolean conditions c1, · · · , cm respectively, if

bl
def= Ql ∧ ¬(c1 ∨ · · · ∨ cm)
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holds in σ. The complete program P1 ‖ · · · ‖ Pn is blocked, if some of its pro-
cesses have terminated, while the remaining processes (at least one) are blocked.
Let Li be the set of locations of Pi and ti be its exit location. Introducing the
predicate

Bi
def=

∨
l∈Li\{ti}

bl,

deadlock can only occur in a state σ if

|= (
n∧

i=1

(Qti ∨Bi) ∧ (
n∨

i=1

Bi))(σ)

holds. This is quite obvious, since for any process Pi, either it has terminated
or is blocked when deadlock occurs, so Qti

(σ) or Bi(σ) holds, respectively.
Moreover, at least one of the processes Pj is blocked, therefore Bj(σ) holds. To
this end, it is easy to see that the following deadlock-freedom condition (DFC)
due to Owicki & Gries [OG76]:

|= (
n∧

i=1

(Qti
∨Bi) ∧ (

n∨
i=1

Bi)) = false (5)

ensures that deadlock will not occur.

Example 12.6 We prove that the following program is deadlock free.

P1 :

����
t1

����
s1

‖

P2 :

����
l2

����
s2 ����

t2

true

?


� -

true

Process P1 can never execute any transition (not even a transition to termi-
nate), so it is always blocked. Process P2 executes its loop infinitely, therefore,
the complete program is deadlock free. We choose the assertion networks as
below:

Qs1

def= true, Qs2

def= true,

Qt1
def= true, Ql2

def= true,

Qt2
def= false.

It is easy to see that they are inductive. The deadlock-freedom condition DFC
in this case requires us to prove

|= (Qt1 ∨B1) ∧ (Qt2 ∨B2) ∧ (B1 ∨B2) = false

and this is trivial as the second conjunct evaluates to false.

For establishing semantic completeness of this method, we again need to em-
ploy auxiliary variables in defining the necessary predicates. Auxiliary variables
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do not change the control flow of the program, and therefore do not alter the
possibility regarding deadlock.

In summary, the method for proving deadlock freedom is very similar to the
method for proving partial correctness (Definition 9.5); the only difference is
that now instead of proving |= Qt1 ∧ . . . ∧ Qtn → ψ, we prove the deadlock-
freedom condition.

Definition 12.7 (Proof method of Owicki & Gries for deadlock free-
dom) In order to prove that a concurrent program is deadlock free relative to
some precondition ϕ, prove steps 1 to 5 of the Owicki & Gries method given
in Definition 9.5 except that the second clause of point 5 is replaced by the
deadlock-freedom condition:

|= (
n∧

i=1

(Qti
∨Bi) ∧ (

n∨
i=1

Bi)) = false. (6)

Theorem 12.8 (Soundness and semantic completeness)
The method for proving deadlock freedom relative to a precondition ϕ as defined
above is both sound and semantically complete.

Proof
Soundness has already been argued in this section, so we only present the com-
pleteness result in some detail.

As just pointed out, auxiliary variables do not change the possibility regard-
ing deadlock. Hence, to prove that P1 ‖ . . . ‖ Pn is deadlock free, we only have
to prove the same result for the program P ′

1 ‖ . . . ‖ P ′
n augmented with history

variables. We choose again the same assertion network as in the (compositional)
completeness proof of partial correctness, i.e., with every location l of Pi we as-
sociate the predicate SP ′

l(ϕ, Pi). We prove the claim by showing that if the
DFC does not hold, then P ′

1 ‖ . . . ‖ P ′
n is not deadlock free.

So, suppose there exist a state and history pair 〈σ, θ〉 such that

|= (
n∧

i=1

(SP ′
ti

(ϕ, Pi) ∨Bi) ∧ (
n∨

i=1

Bi))(〈σ, θ〉)

holds, then for every 1 ≤ i ≤ n, (SP ′
ti

(ϕ, Pi) ∨ Bi)(〈σ, θ〉) holds. This means
that there exists a location l of P ′ such that each process Pi is either terminated
or deadlocked; moreover, from this configuration no transitions are enabled. By
the fact that

∨n
i=1Bi(〈σ, θ〉) holds, at least one process has not terminated.

Hence program P ′
1 ‖ . . . ‖ P ′

n is deadlocked at 〈l; (σ, θ)〉.
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