
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

13 Synchronous Transition Diagrams

13.1 Syntax and Semantics of Synchronous Transition Di-
agrams

We consider synchronous transition diagrams P1‖ . . . ‖Pn in which the compo-
nents P1, . . . , Pn, called processes, do not share variables. These diagrams are
inspired by Tony Hoare’s language proposal Communicating Sequential Pro-
cesses [Hoa78]. The processes which constitute those diagrams communicate
by means of synchronous message passing along unidirectional channels which
connect at most two different processes. These components are called sequen-
tial synchronous (transition) diagrams and are defined below. The term syn-
chronous diagram is reserved for their parallel composition P1‖ . . . ‖Pn, which
includes sequential synchronous diagrams for n = 1 as a special case. Unless
stated otherwise, primitive boolean and state functions are considered to be
total. Let CHAN be a set of channel names, with typical elements C,D For
C ∈ CHAN, e a semantic expression, i.e., e : Σ → VAL, where VAL denotes the
given underlying domain of values, and x a variable, execution of output state-
ment C!e has to wait for execution of a corresponding input statement C?x,
and, similarly, execution of an input statement has to wait for execution of a
corresponding output statement. If there exists a computation of P1‖ . . . ‖Pn in
which both an input statement C?x and an output statement C!e are simulta-
neously executed, this implies that communication can take place and the value
of e is assigned to x. Then one speaks of a semantically-matching communica-
tion pair. When formulating our proof method, we also need the concept of a
syntactically-matching communication pair. This is a pair consisting of occur-
rences of an output statement C!e and an input statement C?x which refer to
the same communication channel (in this case C), irrespective of whether these
communicate or not. We often refer to an input or output statement as an
io-statement or communication statement. Labels on edges in Pi can have the
following form:

1. A boolean condition b followed by a state transformation f :

��
��

-��
��

l l′
b→ f

Transitions of this form are called internal transitions.

2. A guarded io-statement followed by a state transformation. There are two
possibilities:

1

a) ��
��

-��
��

l l′
b;C!e→ f

��
��

b) -��
��

l l′
b;C?x→ f

We call these transitions communication or input-output transitions. We
extend the definitions of semantically- and syntactically-matching com-
munication pairs to pairs of such transitions of which the communication
statements satisfy the conditions listed above.

We assume that each sequential synchronous diagram P is associated with a
set of program variables such that every condition, state transformation, expres-
sion, and input statement occurring in P involves only those program variables.
We call sequential synchronous diagrams P1, . . . , Pn disjoint if their associated
sets of program variables are mutually disjoint, and every channel occurring
in P1, . . . , Pn is unidirectional and connects two different processes. Below we
define the closed product P1 ‖ . . . ‖ Pn of such diagrams, in which only the com-
munication capabilities of those io-statements are resolved, concerning channels
connecting two processes which both occur amongst P1, . . . , Pn.

Definition 13.1 (Closed product of synchronous sequential transition
diagrams) Given disjoint sequential synchronous transition diagrams P1, . . . , Pn,
with Pi ≡ (Li, Ti, si, ti), we define the closed product P of P1 ‖ . . . ‖ Pn as the
following transition diagram (L, T, s, t):

• L ≡ L1 × . . .× Ln is the set of locations of P ,

• l
a→ l′ is a transition in T iff

1. l = 〈l1, . . . , li, . . . , ln〉 and l′ = 〈l1, . . . , l′i, . . . , ln〉, with li
a→ l′i an

internal transition of Ti, or

2. l = 〈l1, . . . , li, . . . , lj , . . . , ln〉 and l′ = 〈l1, . . . , l′i, . . . , l′j , . . . , ln〉, i 6= j,

with (li
ai→ l′i) ∈ Ti, (lj

aj→ l′j) ∈ Tj , ai ≡ b;C!e → f , aj ≡ b′;C?x →
g, and a ≡ b ∧ b′ → f ◦ g ◦ (x := e); this is called a communication
step. The assignment x := e, where e : Σ 7→ VAL, for some domain of
values VAL, denotes the following state-transformation (x := e)(σ) def=
(σ : x 7→ e(σ)),

• s ≡ 〈s1, . . . , sn〉,

• t ≡ 〈t1, . . . , tn〉.

2

Communication between ai ≡ b;C!e → f and aj ≡ b′;C?x → g is mod-
elled in three stages. First the boolean function b ∧ b′ is evaluated; when the
result is tt, x := e is executed, and finally f and g are applied in any order,
because they operate on disjoint state spaces. Note that the closed parallel com-
position of sequential synchronous diagrams therefore gives rise to a transition
diagram as defined in Session 1, and so the definitions from Session 1 apply for
defining the semantics M of the parallel composition of synchronous transition
diagrams, their specifications, partial correctness, ϕ-convergence, ϕ-success and
total correctness.

We emphasise here that the closed product is a simple transition diagram in
which no io-statements occur. As such communications with the outside world
are no longer offered. For example, the closed product of C!0 ‖ D?x does not
contain any transitions, and models that this system when it is executed on its
own will deadlock. In a compositional semantics, however, we will need an open
interpretation of synchronous transition diagrams. For example, we want to be
able to compose C!0 ‖ D?x in parallel with a diagram which offers corresponding
inputs and outputs. Therefore an open interpretation of the communications in
C!0 ‖ D?x is required in which the communication capabilities of C!0 and D?x
are postponed, i.e., are not yet resolved. This open interpretation of networks
requires the channels to be uni-directional and also one-to-one.

13.2 Proof Methods for Partial Correctness

Partial correctness of a synchronous diagram P ≡ P1 ‖ . . . ‖ Pn w.r.t. a specifi-
cation < ϕ,ψ > can be proved by constructing an inductive assertion network
{Ql | l ∈ L} for P (here L denotes the set of locations of P) such that |= ϕ→ Qs

and |= Qt → ψ hold. Analogous to concurrent programs with shared variables
this leads to a number of verification conditions which are exponential in the
number of parallel processes. Similarly, we try to improve upon this by attach-
ing predicates to local locations. We associate a predicate Qli with every local
location li in Pi such that Qli does not involve any of the variables of the other
components Pj , j 6= i. Then with every global location l ≡ 〈l1, . . . , ln〉 in P the
predicate Ql

def= Ql1 ∧ . . . ∧Qln is associated.
This assertion network is shown to be inductive by proving the verification

conditions along each verification path. That is, for every transition l
a→ l′ of

P , with a ≡ b→ f , we should prove

|= Ql ∧ b→ Ql′ ◦ f.

Thus, with l = 〈l1, . . . , ln〉 and l′ = 〈l′1, . . . , l′n〉, we have to prove

|= (Ql1 ∧ . . . ∧Qln ∧ b) → (Ql′1
∧ . . . ∧Ql′n) ◦ f.

Observe that this verification condition can be of two kinds:

1. It stems from an internal transition of Pi. Then Qlj = Ql′j
, for j 6= i, and

thus we have to prove:

• |= (Qli ∧ b) → Ql′i
◦ f , i.e., local correctness.

• |= (Qlj ∧Qli ∧b) → Qlj ◦f , for j 6= i, i.e., interference freedom. How-
ever, since Qlj does not involve the variables of Pi, this implication
is trivially satisfied.

3

2. It stems from a communication step between Pi and Pj ; so there exist
transitions li

ai→ l′i and lj
aj→ l′j of Pi and Pj , with ai ≡ b;C!e → f and

aj ≡ b′;C?x→ g such that a ≡ b∧ b′ → f ◦ g ◦ (x := e). Let h denote the
transformation f ◦ g ◦ (x := e). Then, for k 6= i, k 6= j, we have Qlk = Ql′k
and a does not change the variables of Pk. Thus |= Qlk → Ql′k

◦ h. It
remains to prove

|= Qli ∧Qlj ∧ b ∧ b′ → (Ql′i
∧Ql′j

) ◦ h.

Definition 13.2 (First try to formulate an inductive assertion method
for synchronous communication) In order to prove partial correctness of
synchronous diagram P1 ‖ . . . ‖ Pn w.r.t. < ϕ,ψ > find local predicates Ql

(associated with the local locations l of Pi and which do not involve any of the
variables of the other components) and prove:

1. the local verification conditions of Pi w.r.t. {Ql | l is a location of Pi},

2. for every pair of syntactically-matching input-output transitions li
ai→ l′i

of Pi and lj
aj→ l′j of Pj , with ai ≡ b;C!e→ f and aj ≡ b′;C?x→ g:

|= Qli ∧Qlj ∧ b ∧ b′ → (Ql′i
∧Ql′j

) ◦ h,

where h def= f ◦ g ◦ (x := e),

3. |= ϕ → Qs1 ∧ . . . ∧ Qsn
, with si the initial location of Pi, and |= Qt1 ∧

. . . ∧Qtn
→ ψ, with ti the final location of Pi.

Observe that in the above we proved inductiveness of the global assertion net-
work

{Ql|l ∈ L1 × . . .× Ln},

and, hence, by soundness of the inductive assertion method (Theorem 4.1), also
soundness of the method of Definition 13.2.

The second requirement in Definition 13.2 corresponds to the cooperation
test from the proof system of Apt, Francez & de Roever [AFdR80] for CSP.
Their methodology consists essentially of two phases. In the first phase, cov-
ered by the first requirement, the local steps of the processes are proved correct
and nothing is verified for the communication actions. This is called proving
local correctness. In the second phase the communication actions are verified.
This raises a problem, since we have no syntactic means at our disposal to deter-
mine which syntactically-matching pairs actually do communicate (recall that a
syntactically-matching pair of communication transitions is a pair of occurrences
of transitions with labels b1;C!e→ f1 and b2;C?x→ f2, irrespective of whether
these transitions communicate or not). For we only need to prove something
about actually occurring communication steps. Hence we shall resort to asser-
tional means to express which pairs are semantically matching, i.e., do actually
communicate, and which pairs do not. The difference between syntactically-
and semantically-matching pairs is illustrated in the following example.

4

��
��

-��
��

-��
��

s l1 t
C!1 C!2

t1 t2
‖ ��

��
-��

��
-��

��
C?x C?x

t3 t4s′ l′1 t′

Figure 1: Illustrating the difference between syntactically- and semantically-
matching pairs.

Example 13.3 Consider Figure 1 where t1, t2, t3 and t4 are names of the
transitions. There are four syntactically-matching pairs: (t1, t3), (t1, t4), (t2, t3)
and (t2, t4), whereas only two of them match semantically, namely, (t1, t3) and
(t2, t4).

Observe that the cooperation test gives a verification condition for every
syntactically-matching pair of communication transitions, although some of
them may not match semantically.

Next we illustrate a case where logical variables are needed to express local
assertions.

Example 13.4 (The need for logical variables) Consider R ≡ R1 ‖ R2 as
in Figure 2.

��
��

-��
��

R1 : s1 t1
C?x

and ��
��

R2 : -��
��

s2 t2
C!y

Figure 2: A simple synchronous diagram.

We would like to prove |= {true} R1‖R2 {x = y}. Due to the restriction
that the assertion network {Qs1 , Qt1} should not involve the variables of R2,
i.e., y, one cannot choose Qt1 as x = y. However, this choice is not forced upon
us, according to Definition 13.2. All one needs is to find predicates Qt1 and Qt2

such that |= Qt1 ∧ Qt2 → x = y. These can be found using logical variables,
i.e., variables not occurring in any program text and therefore not involved in
any process; they are introduced in Session 2. Let y0 be a logical variable, then
our local assertions can be chosen as in Figure 3 below.

��
��

?

��
��

Qs1

def= true s1

t1

C?x

Qt1
def= x = y0

‖

��
��

?

��
��

s2

t2

C!y

Qs2

def= y = y0

Qt2
def= y = y0

Figure 3: Program R1‖R2 plus associated assertion network.

5

Note that {Qs1 , Qt1} does not involve any program variable of R2, and
neither does {Qs2 , Qt2} involve any program variable of R1. Next, we prove
that |= {true} R1‖R2 {x = y} holds:

• There are no local verification conditions to be checked.

• There is only one cooperation test, namely

|= (true ∧ y = y0) (x, y) → (x = y0 ∧ y = y0)(y, y),

which holds, because |= y = y0 → y = y0.

• Point (iii) of Definition 13.2 raises a problem since 6|= true→ true∧y = y0.
Note that we do have that |= x = y0 ∧ y = y0 → x = y holds. However, y0
being a logical variable allows application of the initialisation Rule 9.1 of
Session 9, since any set of logical variables satisfies Definition 9.1 (because
it is a set of auxiliary variables for any program P). Consequently, by the
initialisation rule {y = y0} R1‖R2 {x = y} implies

{y = y0 ◦ f} R1‖R2 {x = y}

for f(σ) def= (σ : y0 7→ σ(y)), which implies {true} R1‖R2 {x = y}.

References

[AFdR80] K.R. Apt, N. Francez, and W. P. de Roever. A proof system for com-
municating sequential processes. ACM Transactions on Programming
Languages and Systems, 2:359–385, 1980.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. CACM,
21(8):666–677, 1978.

6

