
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

14 Proof Methods for Partial Correctness of Syn-
chronous Transition Diagrams

In order to prove partial correctness of synchronous diagram P1 ‖ . . . ‖ Pn w.r.t.
< ϕ,ψ > find local predicates Ql (associated with the local locations l of Pi

and which do not involve any of the variables of the other components) and
prove:

1. the local verification conditions of Pi w.r.t. {Ql | l is a location of Pi},

2. for every pair of syntactically-matching input-output transitions li
ai→ l′i

of Pi and lj
aj→ l′j of Pj , with ai ≡ b;C!e→ f and aj ≡ b′;C?x→ g:

|= Qli ∧Qlj ∧ b ∧ b′ → (Ql′i
∧Ql′j

) ◦ h,

where h def= f ◦ g ◦ (x := e),

3. |= ϕ → Qs1 ∧ . . . ∧ Qsn
, with si the initial location of Pi, and |= Qt1 ∧

. . . ∧Qtn
→ ψ, with ti the final location of Pi.

In the following example we show that there is a serious problem: the method
sketched above is not complete.

Example 14.1 (Incompleteness of the method above) Consider again
P1‖P2 in Figure 1 from Session 13, where l0 ≡ s, lt ≡ t, l′0 ≡ s′, and l′t ≡ t′.
With every local location we associate an assertion as shown in Figure 1.
Clearly P1 ‖ P2 is partially correct w.r.t. specification < true, x = 2 >. This
cannot be proved, however, with the method described above. To show this,
assume we have associated with all locations in the program predicates that
satisfy the requirements of the method. Since predicates for P1 may only refer to
program variables of P1, and there are no program variables in P1, the predicates
Ql0 , Ql1 , and Qlt do not contain free program variables and, as shown below,
are identical to true. Similarly, Ql′0

(x), Ql′1
(x), and Ql′t

(x) may only refer to
program variable x.

From point (iii) of the method we obtain

|= true→ Ql0 ∧Ql′0
(x), and (1)

|= Qlt ∧Ql′t
(x) → x = 2. (2)

According to point (ii), the cooperation test, the verification conditions for
all syntactically-matching pairs should be valid. Thus one has validity of the
following conditions:

|= Ql0 ∧Ql′0
(x) → Ql1 ∧Ql′1

(1), (3)
|= Ql0 ∧Ql′1

(x) → Ql1 ∧Ql′t
(1), (4)

|= Ql1 ∧Ql′0
(x) → Qlt ∧Ql′1

(2), and (5)
|= Ql1 ∧Ql′1

(x) → Qlt ∧Ql′t
(2). (6)

1

��
��

?

��
��

?

��
��

Ql0 l0

l1

lt

C!1

Ql1

C!2

Qlt

P1

‖

��
��

?

��
��

?

��
��

l′0

l′1

l′t

C?x

Ql′0
(x)

C?x

Ql′1
(x)

Ql′t
(x)

P2

Figure 1: Adding assertions to program P1‖P2 from Figure 1 of Session 13.

From (1) we obtain |= Ql0∧Ql′0
(x), and by (3) this leads to |= Ql1 and |= Ql′1

(1).
Then by (6) we obtain that |= Qlt holds. Since |= Ql0 holds and |= Ql′1

(1) is
also true, (4) implies that |= Ql′t

(1) holds. Hence, |= Qlt ∧ Ql′t
(1) is true, that

is, if x = 1 then |= Qlt ∧Ql′t
(x) holds. Thus |= x = 1 → Qlt ∧Ql′t

(x) holds. But
then (2) would imply, by transitivity of implication, that |= x = 1 → x = 2.
This is a contradiction.

Two solutions are given for this problem:

1. Use shared auxiliary variables to relate local locations in different pro-
cesses by expressing that certain combinations of locations will not occur
during execution. (Observe that this is similar to the use of auxiliary
variables in the method of Owicki & Gries.) In the case of Example 14.1
we can use a shared auxiliary variable k, which counts the number of C-
communications, and the corresponding assertions, as illustrated in Figure
2, where l0 ≡ s, lt ≡ t, l′0 ≡ s′, and l′t ≡ t′.

Then the semantically matching pairs cooperate:

|= (Ql0 ∧Ql′0
)(x, k) → (Ql1 ∧Ql′1

)(1, 1) and
|= (Ql1 ∧Ql′1

)(x, k) → (Qlt ∧Ql′t
)(2, 2).

Now the other, not semantically-matching, communication pairs pass the
cooperation test because the conjunction of their preconditions evaluates
to false:

|= (Ql0 ∧Ql′1
)(x, k) → (Ql1 ∧Ql′t

)(1, 2)

since |= k = 0 ∧ k = 1 ∧ x = 1 → false, and

|= (Ql1 ∧Ql′0
)(x, k) → (Qlt ∧Ql′1

)(2, 1)

2

��
��

?

��
��

?

��
��

Ql0
def= k = 0 l0

l1

lt

C!1 → k := 1

Ql1
def= k = 1

C!2 → k := 2

Qlt
def= k = 2

P1

‖

��
��

?

��
��

?

��
��

l′0

l′1

l′t

C?x

Ql′0

def= k = 0

C?x

Ql′1

def= k = 1 ∧ x = 1

Ql′t

def= k = 2 ∧ x = 2

P2

Figure 2: Adding shared auxiliary variables plus corresponding assertions to
program P1‖P2.

since |= k = 1 ∧ k = 0 → false.

This approach leads to the method of Levin & Gries [LG81]. A system-
atic development of this method calls for defining a product of synchronous
transition diagrams whose state spaces are no longer disjoint, since aux-
iliary variables now may be shared. Consequently, in addition to the
cooperation test, this method again introduces the interference freedom
test.

2. Use of the interference freedom test is avoided in the AFR-method [AFdR80]
where only local auxiliary variables are used. In that method every process
has its own set of local programming and local auxiliary variables, and as-
sertions associated with a process should only refer to these local variables.
Therefore, parallel composition remains formulated as in Definition 13.1.

In case of Example 14.1, the use of two auxiliary local counters k1 and k2 leads
to program P ′

1 ‖ P ′
2 plus associated assertions as illustrated in Figure 3, where

l0 ≡ s, lt ≡ t, l′0 ≡ s′, and l′t ≡ t′.

This, however, does not solve the problem that the conjunction of precon-
ditions for a not semantically-matching pair, e.g., Ql0 ∧ Ql′1

≡ k1 = 0 ∧ k2 =
1∧x = 1, does not evaluate to false. Therefore, a global invariant I (also called
communication invariant) is introduced to relate the values of the local auxil-
iary variables in the various processes. This invariant can be used to express
which combinations of values for the local auxiliary variables occur during exe-
cution, and thus to indicate which combination of locations, and corresponding
communications, occur during execution.

In our example above we use the global invariant I def= k1 = k2 to express that
both processes have performed the same number of C-communications at any

3

��
��

?

��
��

?

��
��

Ql0
def= k1 = 0 l0

l1

lt

C!1 → k1 := 1

Ql1
def= k1 = 1

C!2 → k1 := 2

Qlt
def= k1 = 2

P1

‖

��
��

?

��
��

?

��
��

l′0

l′1

l′t

C?x→ k2 := 1

Ql′0

def= k2 = 0

C?x→ k2 := 2

Ql′1

def= k2 = 1 ∧ x = 1

Ql′t

def= k2 = 2 ∧ x = 2

P2

Figure 3: Adding local auxiliary variables plus corresponding assertions to
P1‖P2.

point during an execution. Of course we have to show that I is indeed invariant
and that it holds prior to executing P ′

1 ‖ P ′
2. Since the auxiliary variables are

only added to communication steps, I is trivially invariant under local steps. In
order to prove that I is invariant under all communication steps, one adds I as
follows to the cooperation test.

For every communication step leading from l1 and l′1 to l2 and l′2, prove:

|= (Ql1 ∧Ql′1
∧ I) → (Ql2 ∧Ql′2

∧ I) ◦ h,

where h is the state transformation corresponding to the communication.
In the case of our example this leads to four verification conditions.
For the semantically-matching communication pairs, we have to check

|= (Ql0 ∧Ql′0
∧ I)(x, k1, k2) → (Ql1 ∧Ql′1

∧ I)(1, 1, 1),

which holds because |= (k1 = 0∧ k2 = 0∧ k1 = k2) → (1 = 1∧ 1 = 1∧ 1 = 1) is
true, and

|= (Ql1 ∧Ql′1
∧ I)(x, k1, k2) → (Qlt ∧Ql′t

∧ I)(2, 2, 2),

which holds because

|= (k1 = 1 ∧ k2 = 1 ∧ x = 1 ∧ k1 = k2) → (2 = 2 ∧ 2 = 2 ∧ 2 = 2 ∧ 2 = 2)

is true.
The semantically-not-matching pairs pass the cooperation test as follows:

|= (Ql0 ∧Ql′1
∧ I) → (Ql1 ∧Ql′t

∧ I)(1, 1, 2)

since |= (k1 = 0 ∧ k2 = 1 ∧ x = 1 ∧ k1 = k2) → false, and

|= (Ql1 ∧Ql′0
∧ I) → (Qlt ∧Ql′1

∧ I)(2, 2, 1)

4

since |= (k1 = 1 ∧ k2 = 0 ∧ k1 = k2) → false.
It remains to establish that I holds initially. In the case of our example this

is trivial: just choose k1 = 0 ∧ k2 = 0, then |= k1 = 0 ∧ k2 = 0 → Ql0 ∧ Ql′0
∧ I

holds. Since |= Qlt ∧ Qlt → x = 2, we obtain that P ′
1 ‖ P ′

2 is partially correct
w.r.t. < k1 = 0 ∧ k2 = 0 ∧ k1 = k2, x = 2 >.

Next we discuss how to derive from this result that {true} P1‖P2 {x = 2}
holds, using the initialisation and auxiliary variables rules from Session 9.

As in Example 8.12, we observe that the value of x during any execution
is not affected by the auxiliary variables k1 and k2, since these variables do
not occur in the conditions and the assignments to x. Hence the postcondition
x = 2 does not depend on the initial values of k1 and k2, and is established
by the initialisation rule for any arbitrary initial value of k1 and k2, as long as
k1 = k2 holds. This justifies choosing 0 as the value for k1 and for k2 in the
precondition, and leads to: P ′

1 ‖ P ′
2 is partially correct w.r.t. < true, x = 2 >,

since |= true ↔ 0 = 0 ∧ 0 = 0 ∧ 0 = 0, by soundness of the initialisation rule.
Similarly to Lemma 10.2, we observe that for any execution of P ′

1 ‖ P ′
2 there

exists a corresponding execution of P1 ‖ P2 with the same value for x in the
final state. Hence |= {true}P1 ‖ P2{x = 2} holds by soundness of the auxiliary
variables rule.

This leads to the following formulation of the AFR-method.

Definition 14.2 (Proof method of Apt, Francez & de Roever) The proof
method of Apt, Francez & de Roever (AFR-method) is formulated as follows.

Given synchronous transition diagram P ≡ P1 ‖ . . . ‖ Pn with locations
L ≡ L1 × . . .× Ln.

Prove as follows that P is partially correct w.r.t. specification < ϕ,ψ >:

1. Augment Pi by introducing auxiliary variables; every input-output tran-
sition α→ f is extended as follows: α→ f ◦g, where g is a state transfor-
mation such that its write variables are amongst the auxiliary variables z̄i,
which should not occur in P , ϕ and ψ; furthermore the auxiliary variables
z̄i associated with the components Pi are required to be mutually dis-
joint for i = 1, . . . , n. This leads to an augmented synchronous transition
diagram P ′ ≡ P ′

1 ‖ . . . ‖ P ′
n.

2. Associate a predicate Ql with every location l of P ′
i , where Ql does not

involve any of the variables of P ′
j , j 6= i.

3. Prove local correctness of every P ′
i : for every internal transition l

a→ l′ of
P ′

i , assuming a ≡ b→ f , we have to prove

|= Ql ∧ b→ Ql′ ◦ f.

4. Choose a predicate I(z̄), called global invariant, involving only the aux-
iliary variables z̄ ≡

⋃
i z̄

i. Then prove the cooperation test, verify for

every pair of transitions l1
a→ l2 of P ′

i and l′1
a′

→ l′2 of P ′
j , with j 6= i,

a ≡ b;C!e→ f and a′ ≡ b′;C?x→ g, that

|= I ∧Ql1 ∧Ql′1
∧ b ∧ b′ → (I ∧Ql2 ∧Ql′2

) ◦ h,

where h def= f ◦ g ◦ (x := e).

5

5. Prove that

• |= ϕ→ (I ∧
∧

iQsi
) ◦ f , for some state transformation f whose write

variables belong to the set of auxiliary variables z̄ (si denotes the
initial location of P ′

i), and

• |= I ∧
∧

iQti
→ ψ, where ti denotes the final location of P ′

i .

References

[AFdR80] K.R. Apt, N. Francez, and W. P. de Roever. A proof system for com-
municating sequential processes. ACM Transactions on Programming
Languages and Systems, 2:359–385, 1980.

[LG81] G.M. Levin and D. Gries. A proof technique for Communicating
Sequential Processes. Acta Informatica, 15:281–302, 1981.

6

