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15 Compositional Semantics of Synchronous Tran-
sition Diagrams

We want to apply a similar methodology for proving completeness in a compo-
sitional way as presented in Session 11. However, here the problem arises that
we cannot even define the initial-final state behaviour of a location of a compo-
nent of a parallel diagram in isolation, since input-output transitions are defined
only in terms of the context of a parallel composition. Therefore we first define
a labelled transition relation which also provides a semantics for input-output
transitions, when considered in isolation, by defining their communication ca-
pabilities.

Definition 15.1 Let P ≡ (L, T, s, t) be a sequential synchronous transition
diagram. We define

〈l;σ〉 〈〉−→ 〈l′;σ′〉

for σ |= b and σ′ = f(σ), in case of an internal transition l
a→ l′ ∈ T , with

a ≡ b → f , and where “〈〉” expresses the empty sequence of communications.
In the case of an output transition l

a→ l′ ∈ T , a ≡ b;C!e → f , we have

〈l;σ〉 〈(C,v)〉−→ 〈l′;σ′〉

if σ |= b(σ), where v = e(σ) and σ′ = f(σ).
In the case of an input transition l

a→ l′ ∈ T , with a ≡ b;C?x → f , we define

〈l;σ〉 〈(C,v)〉−→ 〈l′;σ′〉

if |= b(σ), where σ′ = f(σ : x 7→ v), for v an arbitrary value in VAL.
Furthermore, we have the following rules for computing the reflexive and

transitive closure:
〈l;σ〉 〈〉−→ 〈l;σ〉

and
〈l;σ〉 θ−→ 〈l′;σ′〉 〈l′;σ′〉 θ′

−→ 〈l′′;σ′′〉

〈l;σ〉 θ·θ′

−→ 〈l′′;σ′′〉
.

Here θ and θ′ denote sequences of communications, where a communication is
represented by a pair of the form (C, v), called communication record, with C
a channel and v a value. (The operation of concatenation is denoted by ‘·’; we
will frequently use, e.g., θ · (C, v) to abbreviate θ · 〈(C, v)〉.)
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One of the main points in the above definition is that an input transition
is modelled by guessing locally the value received (in case the corresponding
boolean guard is true) and assigning it to the specified local variable, after which
the corresponding local state transformation is executed. The information about
the communication, i.e., the guessed value and the channel involved, is attached
to the transition itself in the form of a communication record. As we will see
below, this information can be used in a parallel context to select the ‘right’
guesses, i.e., those guesses which correspond with the actual value sent.

Using the above transition relation we can now define the semantics of a
sequential synchronous transition diagram, in which the value received in an
input transition is selected by local guessing.

Definition 15.2 Let P be a sequential synchronous transition diagram, and l
occur in P . We define

Ol(P ) def= {(σ, σ′, θ) | 〈s;σ〉 θ−→ 〈l;σ′〉}.

Note that we can now define the initial-final state semantics of P as Ot(P ), also
simply expressed as O(P ).

For a sequence of communications θ and a set of channels cset ⊆ CHAN ,
we define the projection of θ onto cset, expressed by θ↓cset, as the sequence
obtained from θ by deleting all records with channels not in cset.

Definition 15.3 (Projection of a sequence of communications to a set
of channels) One can define θ↓cset, the projection of θ onto a set of channels
cset, by induction on the length of θ:

〈〉↓cset def= 〈〉,

(〈(C, µ)〉 · θ′)↓cset def=
{

〈(C, µ)〉 · θ′↓cset, if C ∈ cset,
θ′↓cset, otherwise.

Also we need to define the set of channels occurring in a trace θ.

Definition 15.4 (Channels occurring in a trace) The set of channels oc-
curring in a sequence of communications, or trace θ, notation Chan(θ), is defined
by

• Chan(〈〉) def= ∅

• Chan(θ · (C, µ)) def= Chan(θ) ∪ {C}.

In the following definition we extend the above semantics to a parallel com-
position of sequential synchronous diagrams.

Definition 15.5 (Compositional semantics of synchronous diagrams)
Let P ≡ P1 ‖ . . . ‖ Pn and l = 〈l1, . . . , ln〉, li occurring in Pi. We define

Ol(P ) def= {(σ, σ′, θ) | (σ, σ′
i, θi) ∈ Oli(Pi), i = 1, . . . , n},
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where

σ′(x) def=
{

σ′
i(x), if x ∈ var(Pi), for some i = 1, . . . , n,
σ(x), if x /∈ var(Pi), for all i = 1, . . . , n,

and θi denotes the projection θ↓Chan(Pi) of θ along the channels of Pi. Simi-
larly as above, the initial-final state semantics of a system of synchronous dia-
grams P1‖ . . . ‖Pn is given by Ot(P1‖ . . . ‖Pn), which is also expressed by O(P1‖
. . . ‖Pn).

Alternatively, one could have defined the parallel operator by giving the def-
inition of P1‖P2, proved its associativity and commutativity, and then observed
that the meaning of (. . . ((P1‖P2)‖P3) . . . Pn) amounts to the one given above.

Below we will refer to the compositional semantics defined above only as O.
We observe that in the above definition the requirement that the local histories
θi can be obtained as the projection of one global history θ guarantees that an
input on a channel indeed can be synchronised with a corresponding output.
The following example illustrates this point.

Example 15.6 Consider the following parallel diagram:

P1 : ��
��

s1 -
C!1 ��

��
l -

C!2 ��
��

t1 ‖ P2 : ��
��

s2 -
C?x ��

��
l′ -

C?x ��
��

t2

Now the process P2 generates histories of the form 〈(C, v), (C,w)〉, where
v and w are arbitrary values. On the other hand P1 generates the history
〈(C, 1), (C, 2)〉. The requirement of the existence of a global history such that
both the local histories of P1 and P2 can be obtained from it by projection along
channel C thus restricts the choice of possible histories of P2 to the ‘right’ one:
〈(C, 1), (C, 2)〉.

Consider next the diagram

P1 : ��
��

s1 -
C!1 ��

��
l -

D!2 ��
��

t1 ‖ P2 : ��
��

s2 -
D?x ��

��
l′ -

C?x ��
��

t2

This diagram obviously deadlocks. This is also reflected by the fact that
there exists no global history θ such that θ projected along the channels C and
D equals each of the local histories of P1 and P2 (the local history of P1 starts
with a communication statement along C followed by one along D, whereas the
local history of P2 reverses the order of these communications).

The semantics Ol(P ) also applies to the parallel composition P1‖ . . . ‖Pn of
sequential synchronous diagrams P1, . . . , Pn in case the channels along which
these processes communicate are not restricted to connecting processes from
only the set P1, . . . , Pn. In this case P1‖ . . . ‖Pn is called an open network. In
the other case, in which every channel occurring in P1, . . . , Pn connects exactly
two different processes from P1, . . . , Pn, P1‖ . . . ‖Pn is called closed.

It is important to realise that the above compositional semantics is consistent
with our basic assumption that any communication involves only one sender and
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one receiver, under the condition that the channels are both uni-directional and
one-to-one.

In fact, this semantics allows the generalisation of the one-to-one condition
to channels with one sender and multiple receivers, while preserving unidirec-
tionality. Consider, e.g., the network C?x ‖ C?y ‖ C!0, in which C connects
two consumers with one producer. The above compositional semantics would
generate for this network a global history which in fact models a multi-party
communication interaction, i.e., the input produced is received by both con-
sumers.

However, the condition of unidirectionality of the channels is necessary for
this semantics to be consistent. Consider, e.g., the following network:

P1 : ��
��

s1 -
C?x ��

��
l -

C!0 ��
��

t1 ‖ P2 : ��
��

s2 -
C?y ��

��
l′ -

C!0 ��
��

t2

This network satisfies the one-to-one condition, since it connects exactly two
processes, but violates unidirectionality of C. Both processes P1 and P2 act as
producer and consumer with respect to C. It is easy to see that Ot(P1 ‖ P2)
is nonempty, for t = 〈t1, t2〉. This is due to the fact that the communication
history does not indicate the direction of the communications, and consequently
does not capture the different rôles of C?x and C!0. However, according to
our definition of closed product this diagram clearly deadlocks. Consequently
the compositional semantics defined above is not correct with respect to the
definition of closed product.

The following theorem states the correctness of the compositional semantics
of a synchronous diagram P ≡ P1 ‖ · · · ‖ Pn, which does not contain any
external channels, with respect to the initial-final state semantics M [[P ]] . Here
P denotes the closed product P1 ‖ · · · ‖ Pn. Its external channels are those
channels which occur in some component Pi and which do not occur in the
other components. The internal channels of such a system are those channels
which connect two processes of that system.

Theorem 15.7 (Correctness of the compositional semantics)
Let P1 ‖ · · · ‖ Pn be a synchronous diagram which does not contain external
channels. We have that

σ′ ∈M [[P ]] σ iff there exists a sequence of communications θ
such that (σ, σ′, θ) ∈ Ot(P ),

where P denotes the closed product P1 ‖ · · · ‖ Pn and t denotes the exit location
of P .

Proof
Let, for a location l of P , Ml [[P ]]σ denote all the resulting states of partial
computations of P (viewed as a sequential transition diagram as formulated in
Definition 13.1) which reach location l (note: M [[P ]] σ = Mt [[P ]] σ).

We first prove, for any location l of P , that the existence of a history θ
such that (σ, σ′, θ) ∈ Ol(P ) implies σ′ ∈ Ml [[P ]] σ. Let l = 〈l1, . . . , ln〉. By the
Definitions 15.1 and 15.5 we have that (σ, σ′, θ) ∈ Ol(P ) iff 〈si;σ〉

θi−→ 〈li;σ′
i〉,

for i = 1, . . . , n, where si denotes the initial location of Pi, θi denotes the
projection of θ along the channels of Pi, and σ′

i is obtained from σ′ by assigning
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to the variables not belonging to process Pi their corresponding values in σ. If
θ 6= 〈〉 let the last communication of θ involve the channel C, with Pk and Pj

the processes connected by C. Let θ = θ′ · (C, v) and, for i = 1, . . . , n, θ′
i denote

the projection of θ′ along the channels of Pi.
We proceed by induction on the sum of the lengths of the local computations

〈si;σ〉
θi−→ 〈li;σ′

i〉.

For the starting location s = 〈s1, . . . , sn〉 all local computations have a length
of 0, (σ, σ, 〈〉) ∈ Os(P ) and σ ∈Ms [[P ]] σ.

We consider the different possibilities for the last transition that has globally
taken place, separately – either it has been a local step of one process Pr or it
has been the communication step along C.

Suppose first that there is an r, 1 ≤ r ≤ n such that the local computation

of Pr ends with an internal transition, i.e., 〈sr;σ〉
θr−→ 〈l′′r ; τ〉 〈〉−→ 〈lr;σ′

r〉, for
some location l′′r of Pr and state τ .

Let σ′′ be obtained from σ′ by assigning to all the variables of Pr their
corresponding values in τ , i.e.,

σ′′(x) def=
{

τ(x) if x ∈ var(Pr),
σ′(x) if x 6∈ var(Pr).

Moreover, let σ′′
i , for i = 1, . . . , n, be obtained from σ′′ by assigning to the

variables not belonging to process Pi their corresponding values in σ. We observe
that σ′′

r = τ and σ′′
i = σ′

i, for i 6= r. Let l′′i
def= li, for i 6= r and let l′′

def=

〈l′′1 , . . . , l′′n〉. For i = 1, . . . , n, there exist computations 〈si;σ〉
θi−→ 〈l′′i ;σ′′

i 〉,
hence (σ, σ′′, θ) ∈ Ol′′(P ).

Since we have that the sum of the lengths of the following local computations
〈si;σ〉

θi−→ 〈l′′i ;σ′′
i 〉, i = 1, . . . , n, is one smaller than the sum of the lengths of

the computations leading to l, we can apply the induction hypothesis: σ′′ ∈
Ml′′ [[P ]] σ, from which we derive by the internal transition 〈l′′r ;σ′′

r 〉
〈〉−→ 〈lr;σ′

r〉
and Definition 13.1 that σ′ ∈Ml [[P ]] σ.

Suppose now that both the local computations of Pk and Pj end with a
communication. Since both θk and θj are projections of θ along the channels of
Pk and Pj , respectively, we have that

• for some state τk and location l′′k of Pk, 〈sk;σ〉 θ′
k−→ 〈l′′k ; τk〉 and

〈l′′k ; τk〉
〈(C,v)〉−→ 〈lk;σ′

k〉, with θk = θ′
k · (C, v), and, similarly,

• for some state τj and location l′′j of Pj , 〈sj ;σ〉
θ′

j−→ 〈l′′j ; τj〉 and

〈l′′j ; τj〉
〈(C,v)〉−→ 〈lj ;σ′

j〉, with θj = θ′
j · (C, v).

Let σ′′ be obtained similarly as above from σ′ by assigning to all the variables
of Pk and Pj their corresponding values in τk and τj , respectively.

Moreover, let σ′′
i , for i = 1, . . . , n, be obtained from σ′′ by assigning to

the variables not belonging to process Pi their corresponding values in σ. We
observe that σ′′

k = τk, σ′′
j = τj and σ′′

i = σ′
i, for i 6= k, i 6= j.

Let l′′i
def= li, for i 6= k, i 6= j and let l′′

def= 〈l′′1 , . . . , l′′n〉. There exist computa-

tions 〈si;σ〉
θ′

i−→ 〈l′′i ;σ′′
i 〉, for all i = 1, . . . , n. Consequently, (σ, σ′′, θ′) ∈ Ol′′(P ).
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Since the sum of the lengths of these local computations is smaller than the
sum of the lengths of the computations leading to location l, we can apply
the induction hypothesis: σ′′ ∈ Ml′′ [[P ]]σ, from which we derive by Defini-

tion 13.1 and the transitions 〈l′′k ;σ′′
k 〉

〈(C,v)〉−→ 〈lk;σ′
k〉 and 〈l′′j ;σ′′

j 〉
〈(C,v)〉−→ 〈lj ;σ′

j〉
that σ′ ∈Ml [[P ]] σ.

Conversely, that σ′ ∈Ml [[P ]] σ implies (σ, σ′, θ) ∈ Ol(P ) for some θ, can be
proved by a straightforward induction on the length of the computation of P
(viewed as a sequential transition diagram). This proof itself can be left as an
exercise.
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