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16 Semantic Completeness of the AFR-Method

Finally we are ready to establish semantic completeness of the AFR-method.
Based on the compositional semantics O we define the following minimal pred-
icates.

Definition 16.1 (Strongest [-condition for synchronous communica-
tion) We associate with a location [ of a transition diagram P the strongest
l-condition with respect to a given precondition ¢:

SP(p, P) = {o|there exist o/, such that ¢’ = ¢ and (¢/,0,60) € O;(P)}. O

Let P=P; | --- || P, be a closed system, and {¢}P{1} be a valid correct-
ness formula.

We encode the above semantics O by introducing for each component P; of
P a history variable h;, denoting a finite sequence of communication records
((C1,v),...,(Ck,vt)), and by transforming an input-output transition I % I’
into a transition with action o’ = b;Cle — f o g, where g(o) = (o : h; —
o(h;) - (C,e(0))) in the case a = b;Cle — f, and into a transition with action
a = b;C?r — fog, where g(o) = (¢ : hy — o(hi) - (C,o(x))) in the case
a = b; C?x — f (here ‘-’ denotes the append operation). Observe that evaluation
of @’ in o with |= b(c) results in evaluating the fog-part of @’ in state (o :  — v),
for arbitrary values v, according to Definition 15.1. This models that = has
received its value in the b; C?x-part of a/, i.e., prior to executing f og. Let
P’ = P|||...||P), denote the augmented transition diagram thus obtained (which
is also closed).

The semantics of P/ records its own sequence of communications 6;, accord-
ing to its O-semantics, in auxiliary variable h;, as stated below.

Lemma 16.2 For (0,0,0;) € O, (P]),
(o) = () A ({50 2 (1507)) = o' (he) =

Proof
By induction on the length of the computation history ;.
|

Since O is correctly defined from an operational point of view, as proved in
Theorem 15.7, we conclude that h; records the correct communication history
of process P;.

After we have encoded the local communication histories #; into the history
variables h; by transforming P; to P/, we would like to associate with each loca-
tion I; of P/ the predicate SPy,(p, P]). However, since ¢ may involve variables
of the other components, this choice of predicates is not allowed. To overcome



this problem we introduce new logical variables Z?, so-called freeze variables,
corresponding to the variables * of P;, and define

def

i = gpok’/\ii :ji/\hi = <>,
where k(o) = (0 : % — 0(2)),2=2',...,2" and T = &',...,Z".

So ; replaces in ¢ all the program variables & of P by their corresponding
freeze variables z and identifies the freeze variables z° with the corresponding
local variables z¢ of P; (we define for sequences of variables @ = (uy,...,un)
and 0 = (v1,...,Un), Ea=10(0) iff o(u;) = o(v;), 1 <i < m). Additionally
; initialises the history variable h; to the empty sequence (denoted by ()).

Let @ be a set of program variables disjoint from Z such that ¢ only involves
the variables Z and @. It is not so difficult to check that SPy, (¢;, P{) only involves
the newly introduced freeze variables z, the program variables of P/, and the
variables @. Thus we derive that SP;(p;, P{) does not involve the variables of
the remaining components. This justifies the association of SPy,(¢;, P}) with
location [; of P}.

Next we introduce the global invariant I(hq,...,hy).

Definition 16.3 (Global invariant) Let I(hq,...,h,) be the predicate such
that
o | I(hy,...,hy,) iff there exists 6 such that
o(h;) = 0; for every i € {1,...,n},

where 6; denotes the projection of § along the channels of P;.
|

The global invariant I(hq,...,h,) thus ensures the compatibility of the his-
tories hy,..., hy, i.e., that every value recorded as received is also recorded as
being sent.

We have the following compositional characterisation of the strongest post-
condition operator defined above. This characterisation holds for both open and
closed networks.

Theorem 16.4

Let P=P; || -+ || Pn, for some n > 2, be a synchronous diagram. We express
the diagram P modified with updates to the history variables hq,...,h, by
P =P || P Letl = (l1,...,1l,), with [; a location of P!. We then have

= I(ha,. . ha) A\ SPL (i, P)) < SPi(J\ @i, P').

(Here the index ¢ is implicitly assumed to range over {1,...,n}.)

Proof

Let o =1 AN, SPy, (i, P)). By the definition of SP it follows that there exist
states o; and histories ;, such that (0y,0,6;) € O, (P) and o; = ¢;. Since @;
stipulates that o;(h;) = (), we have by Lemma 16.2 that 6; = o(h;). Let ¢’ be
such that o/, o; agree w.r.t. the variables of P/, for 1 < i < n, and o', o agree
w.r.t. the remaining (logical) variables, and hence also agree with oy,..., 0,

w.r.t. these variables. It follows that ¢’ = A, ¢; and (0’,0},6;) € Oy, (P)),



where o} is obtained from o by assigning to all the variables not belonging to P/
their corresponding value in ¢’. Since o |= I and 0; = o(h;) we have that there
exists a history 6 such that 6; equals the projection of 6 along the channels of
P!. By the compositionality of O we then derive that (¢/,0,60) € O;(P’). In
other words: o € SP(\; i, P').

To prove the other direction, let o |= SP;(A,; @i, P'). So for some state o’
such that o’ = A, ¢; we have that (¢/,0,6) € O)(P’), for some §. By the
compositionality of O we derive that (¢/,0;,0;) € Oy, (P!), where ; denotes the
projection of 6 along the channels of P/ and o; is obtained from o by assigning
to all the variables not belonging to P/ their corresponding value in ¢’. Thus
by definition of SP and the fact that o and o; by definition agree w.r.t. the
variables of P/ and the remaining variables of ¢;, we have that o |= SPy, (¢;, P}).
Moreover since o’ (h;) = (), for 1 < i < n, we have by construction of P/ that
U(h,) = O'i(hi) = (91', 1 S 1 S n, i.e., g ': 1.

|

Local correctness of a component is straightforward, the proof is left as an
exercise:

Lemma 16.5 (Local correctness) For each internal transition I % I’ of a
transition system P/, with a = b — f, we have

': SP[((,DI‘,PZ»/) ANb— SPy((pi,Pi/) o f

Lemma 16.6 (Cooperation test) Let [; — I occur in P/ and [} LA ly in P,
with a = b;Cle — f and o' = V';C?x — ¢. Furthermore, let I(hq,...,h,) be
the compatibility predicate defined above. We then have

'ZI/\SPh((pivPi/)/\SPl’l(@ﬁP]{)/\b/\b/
- (I/\SPlz(SD%VPiI)/\SPI’Q((PJWPJ{))Of/7

where f' = (fogo (z:=e¢)).

Proof
In fact we prove the following implications:

F1I—1Iof' |=SPy(pi P)) Nb— SP,(pi, P)o f'

and
= SPy (¢j, Pj) NV — SPy (9, P) o f'.

In order to prove the validity of I — I o f/, let o0 = I and f'(0) = o'
By the construction of P; and Pj it follows that o'(h;) = o(h;) - (C,v) and
o'(hj) = o(h;) - (C,v), where v = e(o). Moreover o’(hi) = o(h), for k # i, j.
Thus by definition of I it follows immediately that o’ = I.

Next we prove that = SPy, (p;, P/)ANb — SP1, (@i, P)o f'. Let o |= SPy, (s,
P!) Ab. So there exist o’ and 6 such that o’ |= ¢; and (0/,0,0) € O, (P}). By
definition of O it follows immediately that (¢’, f(0),0- (C,v)) € O, (P}), where
v = e(0). By definition of SP we thus derive that f(o) = SPy,(¢:, P}). Since
SPy, (i, P!) only involves the variables of P/ and the freeze variables Z, we thus
may conclude that f'(o) = SPy, (s, P)), that is, o |= SPy,(p;, P/) o f'.



In order to prove the validity of the last implication, let o = SPy (¢;, P;).
So there exist o’ and 6 such that o’ |= ¢; and (o', 0,0) € Oy, (P}). By definition
of O it follows that (¢o/,g(c : # +— v),0 - (C,v)) € Oy (P}), for any value v. So
in particular we have that (o', g(0 : x — v),0 - (C,v)) € Oy (P}), for v = e(0),
from which we derive by definition of SP that g oz := e(0) | SPy (i, P}).

Since SPy, (5, PJ’) only involves the variables of P; we thus may conclude that

/(o)  SPy (¢, P)), that is, o = SPy, (95, P}) o f".
|

We conclude the completeness proof with the remaining clauses.

Lemma 16.7 (Initialisation) We have

where f assigns to history variable h; the empty sequence () and assigns to
every freeze variable z the value of its corresponding (program) variable x.

Proof
Let 0 = . It follows that f(o) & ¢; (note that h; is assumed not to occur
in ¢). Furthermore we have that (f(o), f(0),()) € Os,(P/), so we have that
f(o) = N\; SPs,(wi, P)). Since f(o)(h;) equals the empty sequence () it trivially
follows that f(o) = I.

|

Lemma 16.8 (Finalisation) We have
= IAN\SPL (i P — o

Proof

Let o =1 AN\, SPy,(¢s, P}). By Theorem 16.4 we derive that o = SP(\,; ¢i,
P’), where t denotes the final label of P’. By definition of SP we thus have for
some state ¢’ and sequence of communications @ that o’ |= \; ; and (¢’,0,0) €
O¢(P). Since P{||...||P), contains no external channels, by the correctness of
O (Theorem 15.7) we obtain that o € M [P’]o’. Furthermore observe that
since \; p; implies ¢, 0’ = . Now the validity of {¢}P{¢} implies that of
{@}P' {1}, since the auxiliary variables h; do not occur in ¢, . So we conclude

that o = 1.
|

As a consequence we have proved the following theorem.

Theorem 16.9 (Semantic Completeness)
The proof method of Apt, Francez & de Roever is semantically complete. [



