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16 Semantic Completeness of the AFR-Method

Finally we are ready to establish semantic completeness of the AFR-method.
Based on the compositional semantics O we define the following minimal pred-
icates.

Definition 16.1 (Strongest l-condition for synchronous communica-
tion) We associate with a location l of a transition diagram P the strongest
l-condition with respect to a given precondition ϕ:

SP l(ϕ, P ) def= {σ | there exist σ′, θ such that σ′ |= ϕ and (σ′, σ, θ) ∈ Ol(P )}.

Let P ≡ P1 ‖ · · · ‖ Pn be a closed system, and {ϕ}P{ψ} be a valid correct-
ness formula.

We encode the above semantics O by introducing for each component Pi of
P a history variable hi, denoting a finite sequence of communication records
〈(C1, v), . . . , (Ck, vk)〉, and by transforming an input-output transition l

a→ l′

into a transition with action a′ def= b;C!e → f ◦ g, where g(σ) def= (σ : hi 7→
σ(hi) · (C, e(σ))) in the case a ≡ b;C!e → f , and into a transition with action
a′ ≡ b;C?x → f ◦ g, where g(σ) def= (σ : hi 7→ σ(hi) · (C, σ(x))) in the case
a ≡ b;C?x→ f (here ‘·’ denotes the append operation). Observe that evaluation
of a′ in σ with |= b(σ) results in evaluating the f◦g-part of a′ in state (σ : x→ v),
for arbitrary values v, according to Definition 15.1. This models that x has
received its value in the b;C?x-part of a′, i.e., prior to executing f ◦ g. Let
P ′ ≡ P ′

1‖ . . . ‖P ′
n denote the augmented transition diagram thus obtained (which

is also closed).
The semantics of P ′

i records its own sequence of communications θi, accord-
ing to its O-semantics, in auxiliary variable hi, as stated below.

Lemma 16.2 For (σ, σ′, θi) ∈ Oli(P
′
i ),

(σ(hi) = 〈〉 ∧ (〈s;σ〉 θi→ 〈li;σ′〉)) ⇒ σ′(hi) = θi.

Proof
By induction on the length of the computation history θi.

Since O is correctly defined from an operational point of view, as proved in
Theorem 15.7, we conclude that hi records the correct communication history
of process Pi.

After we have encoded the local communication histories θi into the history
variables hi by transforming Pi to P ′

i , we would like to associate with each loca-
tion li of P ′

i the predicate SP li(ϕ, P
′
i ). However, since ϕ may involve variables

of the other components, this choice of predicates is not allowed. To overcome
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this problem we introduce new logical variables z̄i, so-called freeze variables,
corresponding to the variables x̄i of Pi, and define

ϕi
def= ϕ ◦ k ∧ z̄i = x̄i ∧ hi = 〈〉,

where k(σ) def= (σ : x̄ 7→ σ(z̄)), z̄ = z̄1, . . . , z̄n and x̄ = x̄1, . . . , x̄n.
So ϕi replaces in ϕ all the program variables x̄ of P by their corresponding

freeze variables z̄ and identifies the freeze variables z̄i with the corresponding
local variables x̄i of Pi (we define for sequences of variables ū = (u1, . . . , um)
and v̄ = (v1, . . . , vm), |= ū = v̄(σ) iff σ(ui) = σ(vi), 1 ≤ i ≤ m). Additionally
ϕi initialises the history variable hi to the empty sequence (denoted by 〈〉).

Let ū be a set of program variables disjoint from x̄ such that ϕ only involves
the variables x̄ and ū. It is not so difficult to check that SPli (ϕi, P

′
i ) only involves

the newly introduced freeze variables z̄, the program variables of P ′
i , and the

variables ū. Thus we derive that SPli (ϕi, P
′
i ) does not involve the variables of

the remaining components. This justifies the association of SP li(ϕi, P
′
i ) with

location li of P ′
i .

Next we introduce the global invariant I(h1, . . . , hn).

Definition 16.3 (Global invariant) Let I(h1, . . . , hn) be the predicate such
that

σ |= I(h1, . . . , hn) iff there exists θ such that
σ(hi) = θi for every i ∈ {1, . . . , n},

where θi denotes the projection of θ along the channels of Pi.

The global invariant I(h1, . . . , hn) thus ensures the compatibility of the his-
tories h1, . . . , hn, i.e., that every value recorded as received is also recorded as
being sent.

We have the following compositional characterisation of the strongest post-
condition operator defined above. This characterisation holds for both open and
closed networks.

Theorem 16.4
Let P ≡ P1 ‖ · · · ‖ Pn, for some n ≥ 2, be a synchronous diagram. We express
the diagram P modified with updates to the history variables h1, . . . , hn by
P ′ ≡ P ′

1 ‖ · · · ‖ P ′
n. Let l ≡ 〈l1, . . . , ln〉, with li a location of P ′

i . We then have

|= I(h1, . . . , hn) ∧
∧
i

SP li(ϕi, P
′
i ) ↔ SP l(

∧
i

ϕi, P
′).

(Here the index i is implicitly assumed to range over {1, . . . , n}.)

Proof
Let σ |= I ∧

∧
i SP li(ϕi, P

′
i ). By the definition of SP it follows that there exist

states σi and histories θi, such that (σi, σ, θi) ∈ Oli(P
′
i ) and σi |= ϕi. Since ϕi

stipulates that σi(hi) = 〈〉, we have by Lemma 16.2 that θi = σ(hi). Let σ′ be
such that σ′, σi agree w.r.t. the variables of P ′

i , for 1 ≤ i ≤ n, and σ′, σ agree
w.r.t. the remaining (logical) variables, and hence also agree with σ1, . . . , σn

w.r.t. these variables. It follows that σ′ |=
∧

i ϕi and (σ′, σ′
i, θi) ∈ Oli(P

′
i ),
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where σ′
i is obtained from σ by assigning to all the variables not belonging to P ′

i

their corresponding value in σ′. Since σ |= I and θi = σ(hi) we have that there
exists a history θ such that θi equals the projection of θ along the channels of
P ′

i . By the compositionality of O we then derive that (σ′, σ, θ) ∈ Ol(P ′). In
other words: σ ∈ SP l(

∧
i ϕi, P

′).
To prove the other direction, let σ |= SP l(

∧
i ϕi, P

′). So for some state σ′

such that σ′ |=
∧

i ϕi we have that (σ′, σ, θ) ∈ Ol(P ′), for some θ. By the
compositionality of O we derive that (σ′, σi, θi) ∈ Oli(P

′
i ), where θi denotes the

projection of θ along the channels of P ′
i and σi is obtained from σ by assigning

to all the variables not belonging to P ′
i their corresponding value in σ′. Thus

by definition of SP and the fact that σ and σi by definition agree w.r.t. the
variables of P ′

i and the remaining variables of ϕi, we have that σ |= SP li(ϕi, P
′
i ).

Moreover since σ′(hi) = 〈〉, for 1 ≤ i ≤ n, we have by construction of P ′
i that

σ(hi) = σi(hi) = θi, 1 ≤ i ≤ n, i.e., σ |= I.

Local correctness of a component is straightforward, the proof is left as an
exercise:

Lemma 16.5 (Local correctness) For each internal transition l
a→ l′ of a

transition system P ′
i , with a ≡ b→ f , we have

|= SP l(ϕi, P
′
i ) ∧ b→ SP l′(ϕi, P

′
i ) ◦ f.

Lemma 16.6 (Cooperation test) Let l1
a→ l2 occur in P ′

i and l′1
a′

→ l′2 in P ′
j ,

with a ≡ b;C!e → f and a′ ≡ b′;C?x → g. Furthermore, let I(h1, . . . , hn) be
the compatibility predicate defined above. We then have

|= I ∧ SP l1(ϕi, P
′
i ) ∧ SP l′1

(ϕj , P
′
j) ∧ b ∧ b′

→ (I ∧ SP l2(ϕi, P
′
i ) ∧ SP l′2

(ϕj , P
′
j)) ◦ f ′,

where f ′ def= (f ◦ g ◦ (x := e)).

Proof
In fact we prove the following implications:

|= I → I ◦ f ′, |= SP l1(ϕi, P
′
i ) ∧ b→ SP l2(ϕi, P

′
i ) ◦ f ′

and
|= SP l′1

(ϕj , P
′
j) ∧ b′ → SP l′2

(ϕj , P
′
j) ◦ f ′.

In order to prove the validity of I → I ◦ f ′, let σ |= I and f ′(σ) = σ′.
By the construction of P ′

i and P ′
j it follows that σ′(hi) = σ(hi) · (C, v) and

σ′(hj) = σ(hj) · (C, v), where v = e(σ). Moreover σ′(hk) = σ(hk), for k 6= i, j.
Thus by definition of I it follows immediately that σ′ |= I.

Next we prove that |= SP l1(ϕi, P
′
i )∧b→ SP l2(ϕi, P

′
i )◦f ′. Let σ |= SP l1(ϕi,

P ′
i ) ∧ b. So there exist σ′ and θ such that σ′ |= ϕi and (σ′, σ, θ) ∈ Ol1(P

′
i ). By

definition of O it follows immediately that (σ′, f(σ), θ · (C, v)) ∈ Ol2(P
′
i ), where

v = e(σ). By definition of SP we thus derive that f(σ) |= SP l2(ϕi, P
′
i ). Since

SP l2(ϕi, P
′
i ) only involves the variables of P ′

i and the freeze variables z̄, we thus
may conclude that f ′(σ) |= SP l2(ϕi, P

′
i ), that is, σ |= SP l2(ϕi, P

′
i ) ◦ f ′.
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In order to prove the validity of the last implication, let σ |= SP l′1
(ϕj , P

′
j).

So there exist σ′ and θ such that σ′ |= ϕj and (σ′, σ, θ) ∈ Ol′1
(P ′

j). By definition
of O it follows that (σ′, g(σ : x 7→ v), θ · (C, v)) ∈ Ol′2

(P ′
j), for any value v. So

in particular we have that (σ′, g(σ : x 7→ v), θ · (C, v)) ∈ Ol′2
(P ′

j), for v = e(σ),
from which we derive by definition of SP that g ◦ x := e(σ) |= SP l′2

(ϕi, P
′
j).

Since SP l′2
(ϕj , P

′
j) only involves the variables of P ′

j we thus may conclude that
f ′(σ) |= SP l′2

(ϕj , P
′
j), that is, σ |= SP l′2

(ϕj , P
′
j) ◦ f ′.

We conclude the completeness proof with the remaining clauses.

Lemma 16.7 (Initialisation) We have

|= ϕ→ (I ∧
∧
i

SPsi
(ϕi, P

′
i ) ◦ f),

where f assigns to history variable hi the empty sequence 〈〉 and assigns to
every freeze variable z the value of its corresponding (program) variable x.

Proof
Let σ |= ϕ. It follows that f(σ) |= ϕi (note that hi is assumed not to occur
in ϕ). Furthermore we have that (f(σ), f(σ), 〈〉) ∈ Osi(P

′
i ), so we have that

f(σ) |=
∧

i SPsi(ϕi, P
′
i ). Since f(σ)(hi) equals the empty sequence 〈〉 it trivially

follows that f(σ) |= I.

Lemma 16.8 (Finalisation) We have

|= I ∧
∧
i

SP ti(ϕi, P
′
i ) → ψ.

Proof
Let σ |= I ∧

∧
i SP ti

(ϕi, P
′
i ). By Theorem 16.4 we derive that σ |= SP t(

∧
i ϕi,

P ′), where t denotes the final label of P ′. By definition of SP we thus have for
some state σ′ and sequence of communications θ that σ′ |=

∧
i ϕi and (σ′, σ, θ) ∈

Ot(P ). Since P ′
1‖ . . . ‖P ′

n contains no external channels, by the correctness of
O (Theorem 15.7) we obtain that σ ∈ M [[P ′]]σ′. Furthermore observe that
since

∧
i ϕi implies ϕ, σ′ |= ϕ. Now the validity of {ϕ}P{ψ} implies that of

{ϕ}P ′{ψ}, since the auxiliary variables hi do not occur in ϕ,ψ. So we conclude
that σ |= ψ.

As a consequence we have proved the following theorem.

Theorem 16.9 (Semantic Completeness)
The proof method of Apt, Francez & de Roever is semantically complete.
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