
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

17 Compositionality

17.1 Compositionality: the Concept

The technical property which is required of program correctness methods for
supporting the verify-while-develop paradigm is called “compositionality”, whose
definition is recalled below:

“That a program meets its specification should be verified on the
basis of specifications of its constituent components only, without
additional need for information about the interior construction of
those components.”

To make this verification strategy possible, programs and their components
are specified using predicates over their observable behaviour, only. Such spec-
ifications are called assertional. Consequently, assertional specifications of the
constituent components of a program never depend on any additional knowledge
about the underlying execution mechanism of those components. Consequently,
compositional verification should be based on an assertional specification lan-
guage.

What does a compositional proof method consist of?
It consists of:

1. Basic techniques for proving that a program P , which is not decomposed
any further, satisfies ϕ.

2. Compositional proof techniques to handle the case that P is composed of
parts P1, . . . , Pn, i.e., P = oplang(P1, . . . , Pn), n ≥ 1, with oplang some
operator of the programming language.

For the latter kind of program operators we develop compositional proof
rules, i.e., logical inference rules of the form:

“From P1 satisfies ϕ1 and . . .Pn satisfies ϕn infer P satisfies ϕ.”
[Zwi89]

In order to do so we need to be more specific about assertional specifica-
tions through predicates. They should not refer to the interior construction of
components. Therefore, the available information for specifying a component
consists only of:

• a description of the desired observable behaviour of the component Pi (as
given by the assertional specification ϕi), and

• a description of the interface obs(Pi) of that component Pi.

1

This leads to the introduction of restrictions upon the specifications ϕi of
Pi, whose purpose it is to guarantee that ϕi is invariant under independent
execution of Pj , j 6= i. These restrictions concern the sets of observables allowed
to occur within ϕi, and impose that those observables, which are involved in
independent executions of Pj , j 6= i, are disjoint from the observables of ϕi.

These considerations lead to the following definition of a compositional proof
rule for a program operator oplang(P1, . . . , Pn):

for i = 1, . . . , n, Pi satisfies ϕi and obs(Pi) ⊆ Oi,
opspec(ϕ1, . . . , ϕn, ϕ; obs(P1), . . . , obs(Pn))

oplang(P1, . . . , Pn) satisfies ϕ,

where obs(Pi) refers to the interface of Pi, i.e., Pi’s set of observables, O1, . . . ,
On denotes given sets of observables, ϕ1, . . . , ϕn, and ϕ expresses assertional
specifications, and opspec(ϕ1, . . . , ϕn, ϕ; obs(P1), . . . , obs(Pn)) expresses points
(i) and (ii) above1.

Various proof methods are considered, each giving separate interpretations
to ϕ, “P satisfies ϕ”, obs(Pi) ⊆ Oi, oplang , and opspec . For each of these
methods it is essential that the basic technique to deal with programs which are
not decomposed further (although adaptation rules may be applied) are formu-
lated and, in particular, that appropriate (meta-)predicates opspec(ϕ1, . . . , ϕn,
ϕ; obs(P1), . . . , obs(Pn)) for the compositional proof rules contained in the
respective proof method are identified.

17.2 A Compositional Proof Method

As an illustration of this strategy, we introduce compositionally-inductive as-
sertion networks for reasoning about the sequential components Pi of a parallel
system P ≡ P1‖ . . . ‖Pn. Then we introduce compositional proof rules for deduc-
ing properties of the whole system. The basic idea of a compositionally-inductive
assertion network is the definition of the verification conditions of Pi in terms of
a single logical history variable h which records the sequence of communications
generated by that component.

Here one distinguished history variable h is assumed to exist, h ∈ VAR. A
state σ ∈ Σ thus assigns as the meaning to h a sequence of communications,
i.e., σ(h) ∈ (CHAN × VAL)∗ denotes a sequence of communication records,
which are pairs consisting of a channel name and a value. The idea behind
this is that history variable h represents the sequence of communications of the
given concurrent system. For every basic synchronous transition diagram P
we require for every state transformation f and boolean condition b of P that
VAR(f) ⊆ (VAR\{h}) and VAR(b) ⊆ (VAR\{h}). This requirement formalises
the condition that the history variable h does not occur in any program.

The parallel combination of these compositionally-inductive assertion net-
works is defined in terms of a simple semantic characterisation of the variables
and channels involved in a predicate. The notion of channels involved in a pred-
icate is defined in terms of a natural generalisation of the projection operation
on histories to predicates.

1The clause Pi ⊆ Oi is added here to cover restrictions on the components, e.g., the case
in shared-variable concurrency where a process is required to have exclusive write-access to
a variable. Its general purpose is to be able to impose further restrictions on P1, . . . , Pn,
although these are not considered here.

2

In order to model an input statement C?x which involves the assignment of
an arbitrary value to x, we need the introduction of quantifiers.

For a predicate ϕ we define σ |= ∀x.ϕ iff for every semantic expression
e : Σ → VAL, we have (σ : x 7→ e(σ)) |= ϕ, and similarly σ |= ∃x.ϕ by
σ |= ¬∀x.¬ϕ.

Definition 17.1 (Compositionally-inductive assertion network) The lo-
cal assertion network Q for a sequential synchronous transition diagram P ≡ (L,
T, s, t) is called compositionally inductive if:

• For l a→ l′ a local transition of P , i.e., a ≡ b→ f for some boolean b and
state transformation f , one has

|= Ql ∧ b→ Ql′ ◦ f.

• For l a→ l′ an output transition of P , i.e., a ≡ b;C!e→ f , for some boolean
b, channel C and state transformation f , one has

|= Ql ∧ b→ Ql′ ◦ (f ◦ g),

where g(σ) def= (σ : h 7→ σ(h) · (C, e(σ))).

• For l a→ l′ an input transition of P , i.e., a ≡ b;C?x→ f , for some boolean
b, channel C and state transformation f , one has

|= Ql ∧ b→ ∀x.Ql′ ◦ (f ◦ g),

where g(σ) def= (σ : h 7→ σ(h) · (C, σ(x))).

We denote by P ` Q that Q is a compositionally-inductive assertion network
for P .

Definition 17.2 A partial correctness statement is of the form {ϕ} P {ψ},
where ϕ and ψ are predicates, also called the precondition and postcondition,
which involve, amongst others, logical variable h, and P denotes either a syn-
chronous transition diagram or a parallel system.

Formally, validity of a partial correctness statement {ϕ} P {ψ}, notation:
|= {ϕ} P {ψ}, is defined now with respect to the semantics O.

Definition 17.3 (Validity of partial correctness formulae) We define |=
{ϕ} P {ψ}, with P = (L, T, s, t) a sequential synchronous transition diagram,
by:

for every (σ, σ′, θ) ∈ Ot(P) such that (σ : h 7→ 〈〉) |= ϕ, we have

(σ′ : h 7→ θ) |= ψ.

Similarly, we define |= {ϕ} P {ψ}, for P a parallel system, in terms of O(P) by:

for every (σ, σ′, θ) ∈ O(P) such that (σ : h 7→ 〈〉) |= ϕ, we have

(σ′ : h 7→ θ) |= ψ.

3

In this way the validity of a partial correctness statement {ϕ} P {ψ} is
defined with respect to computations of P which start in a state in which the
history variable h is initialised to the empty sequence, reflecting the fact that we
only consider top-level synchronous networks. We can impose this restriction
because we do not consider the sequential composition of parallel systems (that
is, we consider only top-level parallelism).

Rule 17.1 (Basic diagram rule) For P ≡ (L, T, s, t) a sequential synchronous
transition diagram, we have the following basic diagram rule:

P ` Q
{Qs} P {Qt}

Moreover, for synchronous transition diagrams we have the following initial-
isation rule.

Rule 17.2 (Initialisation rule)

{ϕ ∧ (h = 〈〉)}P{ψ}
{ϕ}P{ψ}

where σ |= h = 〈〉 ⇔ σ(h) = 〈〉.

The choice of a single history variable h enforces restrictions on the parallel
composition rule which serve the same purpose as the condition on disjointness
of the (program) variables. In order to define a rule for parallel composition
we introduce the following operation on predicates, known as chaotic closure
[Zwi89].

We formulate these conditions in terms of a predicate also involving, apart
from program variables, channel names. We introduce the chaotic closure ϕ ↑ C̄
of ϕ w.r.t. C̄, where C̄ expresses a set of channel names, to indicate that the
value of ϕ, as far as h is concerned, only depends on the projection of the global
history h on the channels C̄. Formally, we have the following definition.

Definition 17.4 (Semantic characterisation of channel dependency)
Let ϕ be a predicate and C̄ a set of channels. We denote by the chaotic closure
ϕ ↑ C̄ the predicate

σ |= ϕ ↑ C̄ ⇔ there exists σ′ |= ϕ s.t. σ(x) = σ′(x), for x ∈ VAR \ {h},
and σ(h)↓C̄ = σ′(h)↓C̄.

That is, if σ |= ϕ then σ′ |= ϕ ↑ C̄ holds for all σ′ which are obtained from σ
by interleaving σ(h) with arbitrary communication records (D, ν) with D 6∈ C̄,
thus justifying the name chaotic closure.

Note that ϕ ↑ C̄ = ϕ indicates that, as far as the dependency of the value
of ϕ upon the value of h is concerned, the value of ϕ only depends on the
projection of the global history h on the channels C̄. More formally, ϕ ↑ C̄ = ϕ
indicates that for every σ and σ′, such that σ and σ′ are the same, except that
σ(h)↓C̄ = σ′(h)↓C̄ holds for the values which they assign to the history variable
h, we have

σ |= ϕ if and only if σ′ |= ϕ.

If ϕ ↑ C̄ = ϕ then we also say that ‘ϕ only involves the channels of C̄’. Chan(ϕ)
is defined as the minimal set of channels C̄ such that ϕ ↑ C̄ = ϕ.

4

Example 17.5 In this example we explain the definition of the chaotic closure
operator, and the notion that ‘ϕ only involves the channels of C̄’.

1. Which channels are involved in (h ↓ {C}) = 〈C, 0〉? In ((h ↓ {C}) =
〈C, 0〉) ↑ {C} we interleave the value of h with arbitrary communication
records over channels different from C. However, the projection operator
↓{C} applied to the resulting communication sequence projects all com-
munications not involving channel C. That is, the values of (h↓{C} =
〈C, 0〉) ↑ {C} and (h ↓ {C} = 〈C, 0〉) are the same. This implies that
((h↓{C}) = 〈C, 0〉) only involves channel C.

2. Which channels are involved in (h = 〈C, 0〉)? In (h = 〈C, 0〉) ↑ {C} we
interleave the value of h, as above, with arbitrary communication records
over channels different from C. This influences the value of (h = 〈C, 0〉),
because these arbitrary interleavings are visible through the occurrence of
h in (h = 〈C, 0〉). Hence, (h = 〈C, 0〉) ↑ {C} and (h = 〈C, 0〉) are different.
Therefore, (h = 〈C, 0〉) does not involve {C}.

3. Considering h = 〈C, 0〉, again, we ask ourselves which channels are in-
volved in h = 〈C, 0〉. In (h = 〈C, 0〉) ↑ (CHAN \ {C}) we interleave h
with arbitrary communication records involving C, only. This leads to
values, which are different from those of h = 〈C, 0〉 without those inter-
leavings. That is, only by considering the chaotic closure of h = 〈C, 0〉
with respect to the full set of available channels CHAN, i.e., only by
not interleaving h with any communication records at all, do we obtain
(h = 〈C, 0〉) ↑ CHAN = (h = 〈C, 0〉). This implies that h = 〈C, 0〉 in-
volves (the whole of) CHAN, which is a consequence of the unprojected
occurrence of h in h = 〈C, 0〉.

Similarly, as in Session 2, we restrict ourselves in the applications of the
proof methods discussed in the remainder of this chapter to predicates ϕ for
which there exist finite sets of channels which they involve. For such predicates
ϕ one can prove that Chan(ϕ) exists and is finite.

We can now formulate the following rule for parallel composition.

Rule 17.3 Let P ≡ P1 ‖ P2 in the rule

{ϕ1} P1 {ψ1}, {ϕ2} P2 {ψ2}
{ϕ1 ∧ ϕ2} P {ψ1 ∧ ψ2}

,

provided ψi does not involve the variables of Pj and ψi ↑ Chan(Pi) = ψi, i 6= j.
(Recall that Chan(Pi) indicates the channels of Pi.)

The following example shows that the restriction on channels is necessary.

Example 17.6 Consider a network C!0 ‖ D!0 (abstracting from the locations
of the components). Locally, we can prove

{h = 〈〉} C!0 {h = 〈(C, 0)〉} and {h = 〈〉} D!0 {h = 〈(D, 0)〉}.

Applying the above rule (without checking whether its restrictions hold) leads
to

{h = 〈〉} C!0 ‖ D!0 {false},

5

which gives rise to incorrect results when we further compose the open system
C!0 ‖ D!0. However, we observe that this specification of C!0 ‖ D!0 does hold
(and can be derived by the AFR-method) when we view C!0 ‖ D!0 as a closed
system (i.e., under the semantics M). In the example above we derive that, e.g.,
postcondition h = 〈(C, 0)〉 involves all channels, and, hence, the conditions upon
the postconditions ψi in the above rule for parallel composition are violated.

We conclude the exposition of the proof method with the following conse-
quence and initialisation rules.

Rule 17.4 For P a sequential synchronous transition diagram or a parallel
system we have the usual consequence rule:

ϕ→ ϕ′, {ϕ′} P {ψ′}, ψ′ → ψ

{ϕ} P {ψ}
.

Rule 17.5 For P a parallel system we have the initialisation rule:

{ϕ} P {ψ}
{ϕ ◦ f} P {ψ}

,

where f is a state function such that its write variables are not involved in P
or ψ.

We denote derivability of a partial correctness statement {ϕ} P {ψ}, using the
rules above, we denote by ` {ϕ} P {ψ}.

17.3 Application

Example 17.7 We consider the parallel system P ≡ P1‖P2‖P3 and prove that

` {true} P {x = 1 ∧ y = 2 ∧ z = 0}.

P1:

����s1 -
A!0 ����l11 -

B!1 ����t1
P2:

����s2 -
B?x ����l12 -

C!(x+ 1) ����t2

P3:

����s3
����l13A?z C?y

-

" ����l23- !
C?y A?z

?

6

����t3

6

As the assertion network we use for P1 the following set of predicates which
is compositionally inductive:

Qs1

def= h↓{A,B} = 〈〉
Ql11

def= h↓{A,B} = 〈(A, 0)〉
Qt1

def= h↓{A,B} = 〈(A, 0), (B, 1)〉.

Similarly we have for P2:

Qs2

def= h↓{B,C} = 〈〉
Ql12

def= h↓{B,C} = 〈(B, x)〉
Qt2

def= h↓{B,C} = 〈(B, x), (C, x+ 1)〉.

And for P3:

Qs3

def= h↓{A,C} = 〈〉
Ql13

def= h↓{A,C} = 〈(A, z)〉
Ql23

def= h↓{A,C} = 〈(C, y)〉
Qt3

def= (h↓{A,C} = 〈(A, z), (C, y)〉 ∨ h↓{A,C} = 〈(C, y), (A, z)〉).

Applying Rule 17.1 we derive

` {h↓{A,B} = 〈〉} P1 {h↓{A,B} = 〈(A, 0), (B, 1)〉}
` {h↓{B,C} = 〈〉} P2 {h↓{B,C} = 〈(B, x), (C, x+ 1)〉}
` {h↓{A,C} = 〈〉} P3 {(h↓{A,C} = 〈(A, z), (C, y)〉

∨h↓{A,C} = 〈(C, y), (A, z)〉)}.

Observe that the restrictions on the parallel composition rule 17.3 are satisfied,
and we derive

` {h↓{A,B} = 〈〉 ∧ h↓{B,C} = 〈〉}
P1‖P2

{h↓{A,B} = 〈(A, 0), (B, 1)〉 ∧ h↓{B,C} = 〈(B, x), (C, x+ 1)〉}.

Since
|= h↓{A,B,C} = 〈〉 → h↓{A,B} = 〈〉 ∧ h↓{B,C} = 〈〉

and

|= (h↓{A,B} = 〈(A, 0), (B, 1)〉 ∧ h↓{B,C} = 〈(B, x), (C, x+ 1)〉) →
h↓{A,C} = 〈(A, 0), (C, 2)〉 ∧ x = 1,

we obtain by the consequence rule

` {h↓{A,B,C} = 〈〉} P1‖P2 {h↓{A,C} = 〈(A, 0), (C, 2)〉 ∧ x = 1}.

Again we apply the parallel composition rule to (P1‖P2) and P3 and derive

` {h↓{A,B,C} = 〈〉 ∧ h↓{A,C} = 〈〉}
(P1‖P2)‖P3

{ h↓{A,C} = 〈(A, 0), (C, 2)〉 ∧ x = 1∧
(h↓{A,C} = 〈(A, z), (C, y)〉 ∨ h↓{A,C} = 〈(C, y), (A, z)〉)}.

7

Now
|= (h↓{A,B,C} = 〈〉) → (h↓{A,B,C} = 〈〉 ∧ h↓{A,C} = 〈〉),

and the postcondition above implies

x = 1 ∧ y = 2 ∧ z = 0.

By the consequence rule we derive, therefore,

` {h↓{A,B,C} = 〈〉} P1‖P2‖P3 {x = 1 ∧ y = 2 ∧ z = 0},

and the initialisation rule leads to

` {true} P1‖P2‖P3 {x = 1 ∧ y = 2 ∧ z = 0}.

References

[Zwi89] J. Zwiers. Compositionality and Partial Correctness, volume 321 of
LNCS. Springer-Verlag, 1989.

8

