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18 Assumption-Commitment-based Reasoning

Existing compositional methods can be classified as follows:

• Either a process or system is characterised regardless of any assumption
about the behaviour of its parallel environment.

• Or a process or system is characterised only in so far as its environment
satisfies certain assumptions (i.e., when these assumptions are violated
nothing about the behaviour of that process is claimed).

The first class can be seen as a special instance of the latter by choosing
the predicate true as the assumption about the environment (thus expressing
that no assumptions are made about the environment). Now for synchronous
distributed message passing the resulting compositional proof method, which is
based on assumptions about the environment, is the assumption-commitment
paradigm. It was discovered by Jayadev Misra and Mani Chandy in 1981
[MC81].

Formally, an assumption-commitment correctness formula (or A-C formula
for short) has the form:

〈A,C〉 : {ϕ} P {ψ},

where P denotes a program and A,ϕ, ψ,C denote predicates. For an A-C for-
mula we require that A and C are predicates whose values do not depend on
the values of any program variables.

Informally, a valid A-C formula has the following meaning:

If ϕ holds in the initial state, including the communication history, in which P
starts its execution, then

(i) C holds initially, and C holds after every communication provided A holds
after all preceding communications, and

(ii) if P terminates and A holds after all previous communications (including
the last one) then ψ holds in the final state including the final communi-
cation history.

Here A expresses an assumption describing the expected behaviour of the
environment of P , C expresses a commitment which is guaranteed by process P
itself as long as the environment does not violate assumption A, and ϕ and ψ
express pre- and postconditions upon the state of P . In general, assumption and
commitment reflect the communication interface between parallel components
and do not refer to the local program variables of a process, whereas pre- and
postconditions facilitate reasoning about sequential composition and iteration
as in Hoare logic, and do refer to these variables. All predicates can refer to
logical variables.
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Figure 1: Structure of adder P .

Example 18.1 As an illustration of A-C-based reasoning we give a formal spec-
ification of an adder module P using distributed communication.

We have the following A-C correctness formula for P in an arbitrary envi-
ronment

〈true, #D = #A = #B ≥ 1 → last(D) = last(A) + last(B)〉 :
{#D = #A = #B = 0} P {false}.

(Here, for chan ∈ CHAN, #chan denotes the number of communications via
channel chan, and last(chan) refers to the latest value sent via channel chan.)

Note that the antecedent #D = #A = #B ≥ 1 of the implication in the
commitment expresses that control of P is at l1 (see Fig. 1). Now, in order
for x and y to be properly initialised, and the value of x+ y to have been sent
along channel D, the loop (l1, l2, l3, l1) should have been executed at least once,
under the assumption that, initially, the number of recorded communications is
zero, as expressed by the precondition #D = #A = #B = 0. Since P does not
terminate, its postcondition is false.

We want to use program P as the even number generator, but obviously we
cannot unconditionally guarantee that all values sent via channel D are even.
By introducing as a restriction on the environment that it always provides odd
numbers along channels A and B, we obtain for P the following A-C correctness
formula:

〈Ass1, (#A ≥ 1) ∧ (#B ≥ 1) ∧ (#D ≥ 1) → even(last(D))〉 :
{#D = #A = #B = 0} P {false},

where

Ass1
def= (#A > 0 → odd(last(A))) ∧ (#B > 0 → odd(last(B)))

(odd(v) or even (v) states that v denotes an odd or even value), respectively.
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The new element in the A-C method is that it allows for the specification
(and verification) of the ongoing interaction between a process and its envi-
ronment, and therefore also applies to infinite computations and open systems.
Consequently, one can also specify reactive systems [HP85] using this method.
The A-C method captures the behaviour of these systems on the level of cor-
rectness formulae because assumption and commitment are required to hold
for both finished (i.e., terminated) and unfinished (nonterminated) computa-
tions. That is, we shall introduce a prefix-closed semantics and require the
assumption-commitment relationship to hold for all prefixes of a computation
as described in the semantics. More precisely, this requirement not only involves
the initial-final state semantics of processes, but also checking correctness of the
assumption-commitment relationship after exchange of every intermediate mes-
sage. In order to capture all intermediate stages of a computation, we define the
semantics of a process in terms of a set of four-tuples consisting of the initial
state, the current state, a termination flag, and a communication history. This
representation of the semantics of a process by such four-tuples satisfies the
property that for all prefixes of a communication history, whose termination
flag indicates that the computation is finished, there exist four-tuples in the
semantics with the same initial state and a termination flag indicating that the
computation in question is unfinished.

Technically, we introduce the new concept of A-C-inductive assertion net-
works for reasoning about the sequential parts, i.e., the transition diagrams,
of a concurrent system. By means of compositional proof rules such asser-
tion networks can be used for deducing properties of the whole system. Our
main technical instrument for obtaining a compositional method is again the
introduction of a single logical history variable which records the sequence of
communications generated by each component.

We slightly modify the definition of our basic program components, the
sequential synchronous transition diagrams.

Definition 18.2 A sequential synchronous transition diagram is a quadruple
(L, T, s, t), where L is a finite set of locations l, T is a finite set of transitions
(l, a, l′) with a an instruction, and s and t are the entry and exit locations,
respectively, with exit location t having no outgoing edge, and entry location s
having no incoming edge.

Note that requiring s to have no incoming edge is no substantial restriction
since we can always introduce a new entry location s′ and a new transition
(s′, id, s). This condition simplifies the formulation of our proof method. Com-
posite systems are either basic sequential synchronous transition diagrams B,
sequentially composed composite systems P1;P2, or the parallel composition
P1‖P2 of two composite systems. We call a composite transition diagram also
a program or (if it is a component of a parallel composition) a process.

18.1 Semantics

The definition of a compositional semantics for composite transition diagrams
reflects the fact that we consider both finished and unfinished computations in
the A-C formalism in contrast to, e.g., the previous section. Yet the semantics
O [[P ]] for basic transition diagrams is based on the same labelled transition
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relation as in Definition 15.1 which is used to define the semantics Ol(P ) as
in Session 15. For basic transition diagrams B we extend these definitions by
adding a termination flag τ ∈ {>,⊥}, where termination for a basic transition
diagram – this is indicated by setting τ to > – is characterised by the fact that
its exit location t is reached.

A computation of a process is characterised by its initial state σ, its end
state σ′, its communication sequence θ and a termination flag τ where τ = >
indicates a terminated computation and τ = ⊥ indicates a nonterminated (or
“unfinished”) one. We compose two computations sequentially if the first com-
putation is a terminated one. Parallel composition of computations is defined
by requiring that the projection of the resulting communication sequences on
the channels which belong to their associated processes are local communication
sequences of these processes.

Definition 18.3 The compositional semantics O [[P ]] of a program P is defined
as follows. For B ≡ (L, T, s, t),

• O [[B]] def=
⋃

l∈L{(σ, σ′, θ,⊥)|(σ, σ′, θ) ∈ Ol(B)}
∪ {(σ, σ′, θ,>)|(σ, σ′, θ) ∈ Ot(B)},

• O [[P1;P2]]
def= {(σ, σ1, θ,⊥)|(σ, σ1, θ,⊥) ∈ O [[P1]] }

∪ {(σ, σ2, θ, τ)|∃σ1, θ1, θ2.(σ, σ1, θ1,>) ∈ O [[P1]]
∧ (σ1, σ2, θ2, τ) ∈ O [[P2]] ∧ θ = θ1 · θ2},

• O [[P1‖P2]]
def= {(σ, σ′, θ, τ)|for i = 1, 2, (σ, σ′i, θ↓Pi, τi) ∈ O [[Pi]]

∧ θ = θ↓Chan(P1‖P2)
∧ (τ = > ↔ (τ1 = > ∧ τ2 = >)),
where

σ′(x) =

σ
′
1(x), if x ∈ var(P1),
σ′2(x), if x ∈ var(P2),
σ(x), otherwise}.

Note that, due to the condition θ = θ↓Chan(P1‖P2) in the definition of
O [[P1‖P2]] , θ does not contain communications along channels not occurring in
P1‖P2.

It is easy to see that the semantic operation of parallel composition defined
above is commutative and associative.

Observe that in the above definition the requirement that a local history
of a basic transition diagram can be obtained as the projection of one global
history θ guarantees that an input on a channel is indeed synchronised with
the corresponding output. Observe also that for basic transition diagrams only
terminated computations are marked with >. Finally observe that only when
both P1 and P2 have reached their exit locations, is the resulting computation
of P1‖P2 marked as terminated.

Note that the O [[P ]] semantics also contains nonterminated computations.
These are needed because the validity (or truth) of an A-C correctness formula
for a transition diagram P requires O [[P ]] to contain all prefixes of communica-
tion sequences of P . A process P satisfies (A,C) provided that P ’s environment
must violate A before P can violate C, i.e., at any stage of an on-going com-
putation P ’s actions should satisfy C as long as A has been satisfied before by
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P ’s environment. This is mathematically expressed by requiring (A,C) to be
satisfied by all prefixes of a computation (precisely, by the prefixes of commu-
nication sequences) of P . This we obtain for a basic transition diagram P by
defining O [[P ]] as the union of all unfinished and terminated computations, and
for a composed transition diagram P by observing that the definitions of “;”
and “‖” given above preserve prefix closure. Note that we consider (σ, σ′, θ,⊥)
as the prefix of (σ, σ′, θ,>).

18.2 Validity

Recall that an A-C correctness formula has the form

〈A,C〉 : {ϕ} P {ψ},

where A and C are trace predicates and ϕ and ψ ordinary predicates. A trace
predicate A is a predicate which involves no program variables x̄ ⊆ Pvar; its
satisfaction depends only on the communication sequence which is recorded in
the value of h and on its logical variables. For a trace predicate A we have that
for all σ and σ′,

σ |= A ⇔ σ′ |= A iff σ(x) = σ′(x), for x ∈ Lvar ∪ {h}.

Formally, validity of A-C formulae is defined as below.

Definition 18.4 (Validity)

|= 〈A,C〉 : {ϕ} P {ψ} if
∀(σ, σ′, θ, τ) ∈ O [[P ]] .
σ |= ϕ⇒

((∀θ′ ≺ θ.(σ : h 7→ σ(h) · θ′) |= A) ⇒ (σ : h 7→ σ(h) · θ) |= C) ∧
((τ = > ∧ (∀θ′ � θ.(σ : h 7→ σ(h) · θ′) |= A)) ⇒ (σ′ : h 7→ σ(h) · θ) |= ψ).

We need to explain why this formal definition covers the informal one given
above.

The sub-formula

((∀θ′ ≺ θ.(σ : h 7→ σ(h) · θ′) |= A) ⇒ (σ : h 7→ σ(h) · θ) |= C)

for θ = 〈〉 implies that σ |= C. This means that |= 〈A,C〉 : {ϕ} P {ψ} implies
that if the precondition ϕ holds also the commitment C must hold initially.

Secondly, Definition 18.4 expresses that if ϕ holds in the initial state σ
(with communication history σ(h)) in which P starts its execution then C must
hold after every communication, say, resulting in local communication history
θ, provided A holds in σ(h) · θ′ for all prefixes θ′ of θ. This differs from clause
(i) of the intuitive meaning of validity of an A-C formula in that A should also
hold for σ(h) (obtained by taking the empty sequence 〈〉 as prefix of θ).

In case σ(h) = 〈〉 one can without loss of generality require that σ |= A
holds, since this choice is left open in clause (i).

The case σ(h) 6= 〈〉 corresponds to sequential composition with a previous
composite transition diagram P1. By soundness and completeness of our proof
method, one can safely assume that σ |= A holds).

Clause (ii) of the intuitive meaning of |= 〈A,C〉 : {ϕ} P {ψ} is covered by
Definition 18.4 on similar grounds.
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