
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

19 Proof Method and Application

19.1 A-C-inductive assertion networks

We adapt Floyd’s method to the additional requirements of A-C formulae and
define for B ≡ (L, T, s, t) an A-C-inductive assertion network Q(A,C) : L →
P(Σ), i.e., we associate with each location l of B a predicate Ql as follows:

Definition 19.1 (A-C-inductive assertion networks) Q is an A-C-inductive
assertion network w.r.t. A and C for B ≡ (L, T, s, t) if:

• |= Qs → C.

• In case of an internal transition l a→ l′ ∈ T , a ≡ b→ f , we require

|= Ql ∧ b ∧A→ Ql′ ◦ f.

• In case of an output transition l a→ l′ ∈ T , a ≡ b;D!e→ f , we require, for
v = e(σ),

|= Ql ∧A ∧ b→ ((A→ Ql′) ∧ C) ◦ (f ◦ g),

where g(σ) def= (σ : h 7→ σ(h) · (D, v)).

• In case of an input transition l a→ l′ ∈ T , with a ≡ b;D?x→ f , we require,
for an arbitrary value v ∈ VAL,

|= Ql ∧A ∧ b→ ((A→ Ql′) ∧ C) ◦ (f ◦ g),

where g(σ) def= (σ : x, h 7→ v, σ(h) · (D, v)).

Remark 19.2 In the last two clauses of this definition we require only (A →
Ql′) to hold after the transition, since the idea behind A-C reasoning is to use
the assumption A whenever possible.

We abbreviate the existence of an A-C-inductive assertion network Q w.r.t.
A and C for B by Q(A,C) ` B. We have the following rule for deriving A-C
specifications of basic transition diagrams.

Rule 19.1 (Basic diagram rule) For B ≡ 〈L, T, s, t〉:

Q(A,C) ` B
〈A,C〉 : {Qs} B {Qt}

.

1

Example 19.3 (Even number generator) We demonstrate the application
of the method by verifying the first specification of Example 18.1, i.e., for the
program P of Figure 1 of Session 18 one has

|= 〈true, #D = #A = #B ≥ 1 → last(D) = last(A) + last(B)〉 :
{#D = #A = #B = 0} P {false}.

We have the following assertion network for P :

Qs
def= #D = #A = #B = 0,

Ql1
def= #D = #A = #B,

Ql2
def= #B = #D = (#A− 1) ∧ last(A) = x,

Ql3
def= #A = #B = (#D + 1) ∧ last(A) = x ∧ last(B) = y, and

Qt
def= false.

We have to check five implications to prove that the assertion network above is
an A-C-inductive assertion network w.r.t. assumption Ass ≡ true and commit-
ment C ≡ (#D = #A = #B ≥ 1 → last(D) = last(A) + last(B)).

• |= Qs → C and |= Qs → Ql1 follow from the definition above.

• |= Ql1 → (Ql2 ∧ C) ◦ g, where g(σ) def= (σ : x, h 7→ v, σ(h) · (A, v)) for
arbitrary v, holds since only a communication via A took place and,
consequently, the value received is the last value received via A. Since
#A 6= #B = #D holds, we have also satisfied C. (Note that, since the
assumption is identically true, it suffices to check that Ql2 ◦ g holds.)

• |= Ql2 → (Ql3 ∧ C) ◦ g, where g(σ) def= (σ : x, h 7→ v, σ(h) · (B, v)) for
arbitrary v, holds analogously.

• The most interesting verification condition is related to the output tran-
sition of P :

|= Ql3 → (Ql1 ∧ C) ◦ g,
where g(σ) def= (σ : h 7→ σ(h) · (D,σ(x) + σ(y))).
We have one communication via channel D and, hence, Ql1 is satisfied.
Furthermore, last(D) = x + y = last(A) + last(B), and, hence, C holds
after the transition.

The application of the basic diagram rule establishes the correctness formula
above.

Example 19.4 (Continuation of the previous example) The assumption
that the environment always provides odd numbers via channels A and B is
formalised by

Ass1
def= (#A > 0 → odd(last(A))) ∧ (#B > 0 → odd(last(B))).

Using this assumption and the following assertion network:

Qs
def= #D = #A = #B = 0,

Ql1
def= #D = #A = #B,

Ql2
def= #B = #D = (#A− 1) ∧ last(A) = x ∧ odd(last(A)),

Ql3
def= #A = #B = (#D + 1) ∧ last(A) = x ∧ last(B) = y∧

odd(last(A)) ∧ odd(last(B)), and
Qt

def= false,

2

one can prove similarly, as above,

|= 〈Ass1, C1〉 : {#D = #A = #B = 0}P{false},

where C1
def= (#D = #A = #B ≥ 1 → even(last(D))). Here we observe the use

of assumption Ass1 for proving the verification conditions. Consider, e.g., the
transition (l2, B?y, l3). The associated verification condition is

|= Ql2 ∧Ass1 → ((Ass1 → Ql3) ∧ C1) ◦ g,

where g(σ) def= (σ : h 7→ σ(h) · (B, σ(y))).
While we can conclude that y = last(B) holds as before, the claim of Ql3

that odd(last(B)) holds, i.e., that y is an odd number, is not provable without
the information of assumption Ass1 that also for this last communication via
channel B one can assume that odd(last(B)) holds.

19.2 Some general rules

For a valid formula 〈A,C〉 : {ϕ} P {ψ} we can always weaken the commit-
ment or the postcondition without invalidating the formula. Symmetrically we
can assure the same commitment/postcondition whenever we impose stricter re-
strictions on P ’s environment, i.e., the assumption and the precondition. This
justifies the consequence rule below.

Rule 19.2 (Consequence rule)

〈A,C〉 : {ϕ} P {ψ}
A′ → A, ϕ′ → ϕ,
C → C ′, ψ → ψ′

〈A′, C ′〉 : {ϕ′} P {ψ′}

Another observation on valid assumption-commitment formulae is that we
cannot change the communication history that was generated before the process
at hand was invoked.

Rule 19.3 (Prefix invariance) Let cset ⊆ CHAN be a set of channels, and
t ∈ Lvar .

〈A,C〉 : {ϕ} P {ψ}
〈A,C ∧ t � h↓cset〉 : {ϕ ∧ t = h↓cset} P {ψ ∧ t � h↓cset} .

An immediate consequence of the definition of the validity of A-C formulae
is the fact that for any valid formulae not only the commitment holds after any
communication action but also the assumption holds for all proper prefixes up
to that point, i.e., the latter is an additional commitment.

Rule 19.4 (Assumption closure) Let cset satisfy Chan(A) ⊆ cset ⊆ CHAN
and t ∈ Lvar .

〈A,C〉 : {ϕ} P {ψ}
〈A,C ∧ ∀t.(t0 � t ≺ h↓cset→ A{t/h})〉 :

{ϕ ∧ t0 = h↓cset} P {ψ ∧ ∀t.(t0 � t � h↓cset→ A{t/h})}

3

Here A{t/h} denotes substitution, i.e., A{t/h} def= A◦f , with f : Σ 7→ Σ, f(σ)(x)
def= σ(x) for x 6= h, and f(σ)(h) def= σ(t). Observe that this rule is consistent with
Definition 18.4 in that also A{t0/h} is required to hold in the C and ψ parts of
its conclusion.

Additionally we have a conjunction rule and an initialisation rule.

Rule 19.5 (Initialisation)

〈A,C〉 : {ϕ} P {ψ}
〈A,C〉 : {ϕ ◦ f} P {ψ}

where f is a function such that its write variables constitute a set of (logical)
variables that do not occur in P , A, C, or ψ.

19.3 Composition rules

The rule for sequential composition of processes is standard.

Rule 19.6 (Sequential composition)

〈A,C〉 : {ϕ} P1 {ξ}, 〈A,C〉 : {ξ} P2 {ψ}
〈A,C〉 : {ϕ} P1;P2 {ψ}

.

Next we discuss the proof obligations for assumptions and commitments in
the parallel composition rule.

Rule 19.7 (Parallel Composition)

〈A1, C1〉 : {ϕ1} P1 {ψ1},
〈A2, C2〉 : {ϕ2} P2 {ψ2},
A ∧ C1 → A2, A ∧ C2 → A1

〈A,C1 ∧ C2〉 : {ϕ1 ∧ ϕ2} P1‖P2 {ψ1 ∧ ψ2}

provided

(i) var(A1, C1, ψ1) ∩ var(P2) = ∅, var(A2, C2, ψ2) ∩ var(P1) = ∅, and

(ii) Chan(A1, C1, ψ1) ∩ Chan(P2) ⊆ Chan(P1),
Chan(A2, C2, ψ2) ∩ Chan(P1) ⊆ Chan(P2).

Consider the parallel composition P1‖P2, and assume we have assumption-
commitment pairs (A1, C1) satisfied by P1 and (A2, C2) satisfied by P2. Which
conditions have to be verified to obtain a pair (A,C) satisfied by P1‖P2? Con-
sider first assumption A2 of P2:

• If A2 contains assumptions about joint channels of P1 and P2 which con-
nect these two processes, these assumptions should be justified by the
commitment C1 of P1.

• If A2 contains assumptions about external channels of P2, i.e., channels
that are not connected with P1, these assumptions should be justified by
the new network assumption A for P1 ‖ P2.

4

Imposing both these conditions leads to requiring validity of the following veri-
fication condition:

A ∧ C1 → A2.

Validity of A ∧ C2 → A1 is argued similarly.
The soundness of a parallel composition rule with these implications depends

heavily on the definition of validity of the formula 〈Ai, Ci〉 : {ϕi} Pi {ψi}, for
i = 1, 2. Observe that if in this definition one had chosen a simple implication
between Ai and Ci to hold instead of 〈Ai, Ci〉 : {ϕi}Pi{ψi}, then the above rule
would have led to circular reasoning, since then A1 → C1 → A2 → C2 → A1

might have been implied. Because of this reason the rule would have be-
come unsound. To see this, choose A ≡ true and A1 ≡ A2 ≡ C1 ≡ C2 ≡
false. Then in this changed interpretation, the above rule would have implied
〈true, false〉{ϕ} P {false}, which contradicts the intuitive meaning of A-C
formulae given earlier.

To avoid such problems, in defining the validity of 〈Ai, Ci〉 : {ϕi} Pi {ψi},
we have required that if ϕi holds in the initial state then:

1. Ci holds initially, and

2. Ci holds after every communication provided Ai holds after all preceding
communications.

Hence, false cannot be used as the commitment in a valid A-C formula with
assumption true, i.e., the definition of the validity of A-C correctness formulae
incorporates an induction step. The associated inductive argument is part of
the soundness proof of the parallel composition rule, and no longer needs to be
given, when applying this rule.

Derivability of an A-C formula 〈A,C〉 : {ϕ} P {ψ} in this A-C proof method
is expressed by

` 〈A,C〉 : {ϕ} P {ψ}.

19.4 Application of the above proof method

We illustrate the assumption-commitment paradigm by continuing Example 19.3,
and construct the environment for process P as in Figure 1 of Session 18.

Example 19.5 Since we want to use P as an even number generator, we have
to provide a program Q1 that sends odd values via channels A and B as required
in the assumption Ass1 in Example 19.4. This program sends odd numbers via
channel A and can serve as part of the environment of P . We can give a local
proof of

` 〈true,#A ≥ 1 → odd(last(A))〉 : {#A = 0} Q1 {false}.

If we modify the program Q1 of Figure 1 such that the output statement A!x is
replaced by B!y, and call the resulting process Q2, then Q1‖Q2 constitutes an
environment in which P will generate only even numbers.

Because

` 〈true,#B ≥ 1 → odd(last(B))〉 : {#B = 0} Q2 {false},

5

Q1 : ����
s

?
x := 1

����
l1

?

A!x

����
l2

����
t

$

%

�

x := x + 2

Figure 1: Odd numbers generator.

by an application of the parallel composition rule we deduce that

` 〈true, ((#A ≥ 1 → odd(last(A))) ∧ (#B ≥ 1 → odd(last(B))))〉 :
{#A = #B = 0} Q1‖Q2 {false},

since |= true ∧ (#A ≥ 1 → odd(last(A))) → true and |= true ∧ (#B ≥ 1 →
odd(last(B))) → true.

We see that the commitment of Q1‖Q2 is exactly the assumption Ass1 of Ex-
ample 19.4, and since

|= true ∧ ((#A ≥ 1 → odd(last(A))) ∧ (#B ≥ 1 → odd(last(B)))) → Ass1

and
|= true ∧#D = #A = #B ≥ 1 → even(last(D)) → true

hold, we can apply the parallel composition rule again to obtain (after some
simplifications using the consequence rule):

` 〈true,#D = #A = #B ≥ 1 → even(last(D))〉 :
{#A = #B = #D = 0} Q1‖Q2‖P {false}.

That is, with Q1 and Q2 as the input generating environment, P acts as an
even number generator, as desired.

Next we illustrate the case of mutually dependent processes when the output
of P is an input for Q and vice versa.

Example 19.6 We have a process Env as the environment for P , getting input
via D and sending values via A and B. The output of process Env depends on
its inputs via channel D, except for the first values sent via A and B. We now
assume that all inputs via D are even values by defining assumption Ass2

def=
#D ≥ 1 → even(last(D)).

6

Env : ����
s

?
x := 0

����
l1

?
A!(x + 1)

����
l2

?
B!(x + 1)

����
l3

����
t

$

%

�

D?x

Figure 2: Another odd numbers generator.

Under this assumption all outputs via A and B are odd numbers, as ex-
pressed by commitment

C2
def= (#A ≥ 1 → (odd(last(A)) ∧ (A, 1) � h↓{A})) ∧

(#B ≥ 1 → (odd(last(B)) ∧ (B, 1) � h↓{B})).

For process Env we prove

` 〈Ass2, C2〉 : {#A = #B = #D = 0} Env {false}.

We are still interested in the property that all values transmitted via channel
D are even values. The program Env‖P satisfies this property as can be seen
as follows:

P has to wait for input via A and B. First, Env sends 1 via both A and B.
Then P adds these values and sends back 2 via D. Now Env receives an even
value and sends odd values back, P receives these odd values and sends their
(even) sum back, etc.

This intuitive explanation why the program Env‖P behaves correctly con-
tains explicitly an induction argument. Our formal proof of the property men-
tioned does not require such an inductive argument explicitly. Our only proof
obligations are

|= true ∧ C2 → Ass1

and
|= true ∧ (#D = #A = #B ≥ 1 → even(last(D))) → Ass2.

Applying the parallel composition rule (and some simplifications) then leads to

` 〈true, (#D = #A = #B ≥ 1 → even(last(D)))〉 :
{#A = #B = #D = 0} Env‖P {false}. (1)

7

The assumption-commitment paradigm allows for compositional reasoning.
In particular, while verifying one component of a parallel program, some other
components may not have been implemented yet – we only use their specifica-
tions. Note that the parallel composition rule only refers to the specification of
P and Env and not to their implementation, and is therefore compositional.

Example 19.7 Consider the process R in Figure 3, which is just a slight modifi-
cation of process Env above. Process R can replace process Env as environment

R : ����
s

?
x := 0

����
l1

?
A!(|x − 1|)

����
l2

?
B!(x + 1)

����
l3

����
t

$

%

�

D?x

Figure 3: And yet another odd numbers generator.

for P since one can also prove that

〈Ass2, C2〉 : {#A = #B = #D = 0} R {false}

is a valid correctness formula, and hence P‖R will also satisfy

|= 〈true, (#D = #A = #B ≥ 1 → even(last(D)))〉 :
{#A = #B = #C = 0} P‖R {false}. (2)

Example 19.8 Whereas all previous formulae refer only to the last value sent
via a channel, process R allows another use of program P : in environment R,
P will send 2i as the i-th value over D (here we abbreviate the i-th value sent
along channel D by D[i]).

We get as the specification for the adder P

〈Ass3, C3 〉 : {#A = #B = #D = 0} P {false}

with C3
def= #D ≥ 1 → D[i] = 2i, and

Ass3
def= (#A ≥ 1 → A[i] = 2(i−1) − 1) ∧ (#B ≥ 1 → B[i] = 2(i−1) + 1).

Since P is still the same program, what are the restrictions on the environ-
ment to guarantee that output behaviour?

8

P just adds the values previously received via A and B. If we assume that
we receive as A[i] the value 2(i−1) − 1 and as B[i] the value 2(i−1) + 1 then we
have that

D[i] = A[i] +B[i] = (2(i−1) − 1) + (2(i−1) + 1) = 2 ∗ 2(i−1) = 2i

as desired.
Now similarly as in the odd-even case, P and R mutually depend on each

other’s output. What we have to prove now for R is:

` 〈C3, Ass3〉 : {#A = #B = #D = 0} R {false},

which is done again by verifying an appropriate A-C-inductive assertion net-
work.

9

