Verifikation nebenlaufiger Programme
Wintersemester 2004 /05

Ulrich Hannemann Jan Bredereke

2 Specification and Correctness Statements

2.1 Specifications, Logical Variables and Program Vari-
ables

A specification for a program P is given by a pair of predicates < ¢, >. The
predicate ¢ is called the precondition for P, and v is called the postcondition
for P.

Intuitively speaking a program P is correct w.r.t. a specification < ¢, > if|
for all initial states g such that = ¢(0g), and for all final states o € M [P] oy,
one has that = (o). Observe, since fail, L ¢ X, that this definition only
applies to final states o € 3, i.e., to the case that P terminates for gg. So it
can be alternatively formulated by:

For all 0p,0 € %, if, for initial state oy, P terminates in final state
o, then = ¢(0g) implies | (o).

Thus, for example, a specification for a program for extracting roots of real
numbers up to a given accuracy may be < ¢, >, where:

¢ : ¥ — Bool,p(o) = ttif o(y;) > 0,

% — Bool,y(0) = ttif [o(y2)? — o(y1)] <1077

and X is instantiated as the set of mappings assigning reals to variables. In
general we will make in the rest of this chapter and the following ones informal
use of an assertion language to denote predicates. As an example, ¢ and
are denoted by the assertions y; > 0 and |y — y1| < 1077. Note that in
our specification we freely use functions and relations specific to the domain of
application, in this case the real numbers.

In this example, y; is the input variable and the initial value of ¥ is irrele-
vant. On the other hand on termination ¥ is the output variable and is expected
to hold an approximation to the square root of y;. The input predicate in this
case restricts the range of inputs, for which the program is supposed to perform
correctly, to nonnegative numbers. Given that a program P is correct w.r.t.
< p,1 >, as above, then the interpretation of this fact (saying that P computes
the square root of y1) depends on the assumption that y; is not modified any-
where in the program. This assumption can be verified by examining the text
of the program and ensuring that no assignment to y; is made.

Observe that program P’ given by:

P @ (y15y2) = (070) V@

is also correct with respect to the specification above. But certainly this program
cannot be interpreted as computing in program variable yo the square root of the
initial value of program variable yi!

In this example we conveniently had y; available at the last state in order to
compare y3 to it. In other cases we may assign new values to the input variables
during the computation. In order to be able to relate the final state to the initial
state and also to eliminate the need for independently verifying that input values
are not modified, it is possible to use specifications parameterised by so-called
logical variables. These variables are not allowed to occur in any program but
are still considered to be part of the state. Thus we assume that the set of
variables is partitioned into a set of program variables, namely those variables
which are allowed to occur in programs, and a set of logical variables. Formally,
VAR = Pvar U Lvar, where Pvar denotes the set of program variables, Lvar
denotes the set of logical variables, and PvarN Lvar = (). Since logical variables
do not occur in any program, their values (1) are not subject to change under
transitions, and, hence, (2) are not changed upon termination w.r.t. their values
in the initial state. Thus they serve to remember the values of input variables
in the initial state.

Consider again a program for computing the square root of a nonnegative
real number. This time we assume that the program has a single program
variable y that satisfies y > 0 on entry to the program, and is expected on
termination to contain as output the square root of the input.

An appropriate parameterised specification in this case is given by

< (v, y),¥(v,y) >

where:
pv,y)y=vAv>0,

Y(v,y) |y —v| <1077

Here v is assumed to be a logical variable. As was said above, logical variables
do not occur in any program. But since we do not deal with any syntactic notion
of program, we must still formulate a semantic criterion expressing this fact.

We express this semantic criterion in terms of the concept of the variables
involved in a state transformation and a predicate, respectively.

Formally a function f : ¥ — X involves the variables T if

e Vo,0' € 3. 0(Z) =0'(Z) = f(o)(@) = f(o')(ZT)
e Vo € X,y € Pvar\ Z. f(o)(y) = o(y).

The first condition expresses that if two states o and o’ agree with respect to
the variables Z, then so do their images under f. The second condition expresses
that any other variable is not changed by f.

A predicate ¢ : 2 — Bool involves at most the variables Z if

e Vo,0' € X. 0(Z) =0’ (%) = ¢(0) = ¢(o).

This condition expresses that the outcome of ¢ depends at most on the variables
.

For we will use the notations f(Z) and ¢(Z) to indicate that f and ¢
involve the variables . Note that for any function f which involves we also

have that f involves g, for any Z C g (and a similar remark applies to predicates).
Moreover we have that if f involves the variables and g then f involves Z N g
(and similarly for predicates). This we can prove as follows: Let o and o’ be
such that o(ZNYy) =o' (ZNY). Let z=gy\ T and ¢’ = (0 : Z — ¢'(2)). So we
have that o(z) = ¢’ (Z) and 0”(§) = ¢’(g). Since f involve the variables Z and
g it then follows that f(o)(u) = f(o”)(u) = f(o’)(u), for v € ZNF. In other
words, f(o)(ZNy) = f(c')(@NF). Next let u g€ TNY, that is, u € T or u & 7.
Since f involves the variables Z and § it thus follows that f(o)(u) = o(u).
A similar argument applies to predicates. Although this proves that sets of
involved variables of f and ¢ are closed under finite intersection, it does not
necessarily imply that they are closed under infinite intersection.

Consequently we restrict ourselves to functions f and predicates ¢ for which
there exists a finite set of variables which are involved in f and ¢. Since any
intersection with a finite set can be reduced to a finite intersection, the smallest
sets of variables involved in f and ¢ are well-defined. From now on we will call
these smallest sets the sets of variables involved in f and ¢, denoted by var(f)
and var(p) respectively.

Note that var(f) will contain both the so-called read and write variables of
f, that is, those variables which are read by f and those variables which can be
changed by f. The read-only variables of a state transformation f, denoted by
read(f), are those variables & C var(f) which are unchanged by f. Formally,

Vo € ¥. f(o)(z) = o(Z).

The write variables of f, denoted by write(f), can then be formally defined
as the remaining variables of var(f).

For every program P we require that every state transformation f and
boolean condition ¢ of P satisfies that var(f) C Pvar and var(c) C Pvar.
This requirement then formalises the condition that logical variables do not oc-
cur in any program. We will use the phrase ‘the variable z occurs in the state
transformation f (condition ¢)’ for € var(f) (x € var(c)). By var(P), for
a program P, we denote the variables occurring in its state transformations
and boolean conditions. For programs we then use the phrase ‘the variable x
occurs in P’ for x € var(P). Observe that this notion of occurrence of a vari-
able in a transition system (or diagram) P is different from that in a syntactic
representation of P.

Example 2.1 First consider the state transformation f expressed by (z,y) :=
(x +3,y+ 7). Clearly f involves {z,y}.

Secondly, consider id : ¥ — X, id(c) = o, describing the usual meaning of
skip. The set of program variables involved in id is the empty set, since for all
y € Puvar one has that:

Vo € 3. id(o)(y) = o(y).

Now the objective for introducing such definitions is to approximate at a se-
mantic level the syntactic notion of (program) variables occurring in the syn-
tactic definition of some construct. This example therefore demonstrates why
the notion “f involves Z” does not fully characterise that syntactic concept.
This becomes clear when considering some syntactic representation of the pro-
gram P manipulating, e.g., the program variables {x,y,z}. Within such a

syntactic representation of P skip can be characterised by the assignment
(x,y,2) :== (z,y,%), in which the variables z,y and z occur. The meaning of
skip continues to be id, involving the empty set of variables. |

2.2 Correctness Statements

Given a precondition ¢, a computation whose initial state satisfies ¢ is called a
p-computation.

The main verification questions we would ask about a program P and a
specification < ¢, > are the following:

e Partial Correctness. A program P is partially correct with respect to a
specification < ¢, > if every terminating ¢-computation also terminates
in a state satisfying 1, i.e., for all ¢ and ¢’ in X,

if = (o) and ¢’ € M [P] o then |=¢(o’).
As notation for this property, the triple = {¢} P {¢} will be used.

e Success. A program P is successful under ¢ (p-successful) if there are
no failing p-computations. That is, for all o in 3,

= ¢(o) implies fail ¢ M [P]o.

e Convergence. A program P is convergent under ¢ (p-convergent) if
there are no divergent p-computations. That is, for all o in 3,

E ¢(o) implies L ¢ M[P]o.

e Total Correctness. A program P is totally correct w.r.t. a specification
< p, ¥ > if every gp-computation terminates in a state satisfying 1. This
is equivalent to P being both @-successful, p-convergent and partially
correct w.r.t. < ¢, >, i.e., the following properties hold for all ¢ and ¢’
in X

e = ¢(o) implies { L, fail} N M [P] o =0,
o = (o) and 0’ € M[P]o imply E ¢(d’).
Notation: = [¢] P [¢].

Even though it seems that total correctness is the natural concept to be
proved for sequential programs, it is established in separate steps that prove first
partial correctness, and then success and convergence. Since different methods
are used to establish each of these properties, their introduction as independent
concepts is justified.

Note that partial correctness relative to < ¢, 1 > allows divergent and failing
p-computations, but no ¢-computations which terminate in a state falsifying .

Partial correctness and success of a program are instances of so-called safety
properties. The term “safety”, refers to the fact that during execution of a
program “no bad things happen”, e.g., the property that fail never occurs as an
intermediate state in any of its computations (an indication of the fact that a
successor state is always defined) is a safety property. That is, a safety property
of a program refers to the fact that this program maintains some invariant
property which excludes such “bad” things from happening.

Convergence of a program is an instance of a so-called liveness property.
The term “liveness”, refers to the fact that “good things eventually happen”, e.g.,
in every computation of a given program a certain location (such as, e.g., its
end location, or exit label) is eventually reached, or a given program terminates
provided some kind of so-called fairness property is satisfied. Fairness properties
are also examples of liveness properties.

