
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

21 A Proof System for GCL+ Programs

To describe partial correctness of a program S, we use correctness formulae of
the form {p}S{q}, where p, q are assertions, p is called a precondition and q a
postcondition. We often refer to a formula {p}S{q} as a Hoare triple or correct-
ness formula. Informally, such a triple expresses that if p holds in the initial
state of S, i.e., for the values of the variables at the start of the execution of
S, then q holds for any final state of S, that is, if a computation of S termi-
nates then q holds for the values of the variables at termination; for instance,
{x = 5}x := x+1 {x = 6} is valid according to the definition below. As observed
previously, e.g., in Session 2, apart from program variables, one in general needs
logical variables, collected in the set Lvar, in order to characterise programs by
means of pre- and postconditions. Therefore, let VAR def= Lvar ∪ Pvar and let
Σ def= VAR → VAL in the definition of T [[S]] .

Definition 21.1 (Validity of a correctness formula) For a program S and
assertions p and q, a correctness formula {p}S{q} is valid, if |= {p}T [[S]] {q}.
This is expressed by |= {p}S{q}.

Observe that such a formula expresses partial correctness, since validity of
{p}T [[S]] {q} expresses partial correctness for the underlying transition system
T [[S]] of S.

In the previous session we defined the semantics O [[S]] . One can also charac-
terise correctness of Hoare formulae in terms of this simple relational semantics:

Lemma 21.2 |= {p}S{q} iff for all σ, if σ |= p and (σ, τ) ∈ O [[S]] , then τ |= q.

Proof
For arbitrary transition systems P , the definition of {p}P{q}, from Session 2,
amounts to the following, when choosing T [[S]] for P :

|= {p}T [[S]] {q} iff for all σ, if σ |= p and (σ, τ) ∈ O [[T [[S]]]] , then τ |= q.
Together with Definition 20.4, stating that O [[S]] = O [[T [[S]]]] , the lemma
follows immediately.

Next we formulate a proof system PSseq in which all valid Hoare triples
can be formally derived. In such a proof system we can derive formulae of the
form {p} S {q} by means of axioms, which allow the derivation of Hoare triples
without any assumption, and rules of the form

. . . , {pi} Si {qi}, . . . , pj → qk, . . .
{p} S {q} ,

1

by which the formula below the line, called the conclusion of the rule, can be
derived if we have derived all the formulae above the line, which constitute the
premises of the rule.

The basic axioms are as follows.

Axiom 21.1 (Skip) {p} skip {p}.

Axiom 21.2 (Assignment) {q[ē/x̄]} x̄ := ē {q}.

Here q[ē/x̄] denotes the substitution of each free occurrence of variable xi by
expression ei within q.

Example 21.3 Since (x = 5 ∧ y = 3)[x + y/x] ≡ x + y = 5 ∧ y = 3, the
assignment axiom yields {x + y = 5 ∧ y = 3} x := x + y {x = 5 ∧ y = 3}.

Axiom 21.3 (Guard) {b → q} b {q}.

Axiom 21.4 (Guarded assignment) {b → q[ē/x̄]} 〈b → x̄ := ē〉 {q}.

Observe that the above set of axioms is not minimal: Axioms 21.1, 21.2, and
21.3 can all be derived from Axiom 21.4.

First we give a general rule which can be applied to any statement. With
this rule the precondition of an already derived Hoare triple can be strengthened
and the postcondition can be weakened.

Rule 21.5 (Consequence)

p → p0, {p0} S {q0}, q0 → q

{p} S {q}
.

Example 21.4 From Example 21.3 above we have {x + y = 5 ∧ y = 3} x :=
x + y {x = 5 ∧ y = 3}. Assuming that we can derive the valid implication
(x = 2 ∧ y = 3) → (x + y = 5 ∧ y = 3), the consequence rule leads to

{x = 2 ∧ y = 3} x := x + y {x = 5 ∧ y = 3}.

Rule 21.6 (Sequential composition)

{p} S1 {r}, {r} S2 {q}
{p} S1;S2 {q}

.

Example 21.5 By the assignment axiom and the consequence rule one can
derive {x = 2} y := 3 {x = 2 ∧ y = 3}, and {x = 2 ∧ y = 3} x := x + y {x =
5 ∧ y = 3}. Hence, the sequential composition rule leads to

{x = 2} y := 3; x := x + y {x = 5 ∧ y = 3}.

Rule 21.7 (Choice)

{p} Si {q}, for all i ∈ {1, . . . , n}
{p}if beni=1Si fi {q}

.

2

Rule 21.8 (Guarded command)

{p ∧ bi} Si {q}, for all i ∈ {1, . . . , n}
{p} if beni=1 bi → Si fi {q}

.

Example 21.6 Since we can derive {y = 0 ∧ x = 0} y := 1 {x = 0 ∧ y = 1},
the rule for guarded command leads to

{y = 0} if x = 0 → y := 1 fi {x = 0 ∧ y = 1}.

For the iteration construct we have the following rules:

Rule 21.9 (Exit-loop)

{p}SB{p}, {p}SE{q}
{p}do SB be SE ; exit od{q}

.

Rule 21.10 (Do-loop)

{p ∧ bi} Si {p}
{p} do beni=1 bi → Si od {p ∧ ¬bG}

.

Example 21.7 (Greatest common divisor) Consider

do x < y → y := y − xbex > y → x := x− y od.

We would like to derive

{x = n ∧ y = m}
do x < y → y := y − xbex > y → x := x− y od

{x = y = gcd(n, m)}.

How this is done, using the above axiom system, is shown below.
By Axiom 21.2 one derives

{gcd(x, y − x) = gcd(n, m)} y := y − x {gcd(x, y) = gcd(n, m)},

and by the consequence rule

{x < y ∧ gcd(x, y − x) = gcd(n, m)} y := y − x {gcd(x, y) = gcd(n, m)}.

Since

|= (x < y ∧ gcd(x, y − x) = gcd(n, m)) ↔ (x < y ∧ gcd(x, y) = gcd(n, m)),

this yields, again by the consequence rule,

{x < y ∧ gcd(x, y) = gcd(n, m)} y := y − x {gcd(x, y) = gcd(n, m)}.

Similarly one derives

{x > y ∧ gcd(x, y) = gcd(n, m)} x := x− y {gcd(x, y) = gcd(n, m)}.

3

Then Rule 21.10 leads to

{gcd(x, y) = gcd(n, m)}
do x < y → y := y − xbex > y → x := x− y od

{gcd(x, y) = gcd(n, m) ∧ x = y}.

By the consequence rule we derive

{x = n ∧ y = m}
do x < y → y := y − xbex > y → x := x− y od

{x = y = gcd(n, m)}.
(1)

Example 21.8 (Integer division: proof system approach) One of the
simplest algorithms for division of a non-negative integer x by a positive integer
y is based on repeated subtraction, and is represented in GCL as follows:

Div1 ≡
q, r := 0, x;
do

y ≤ r → q, r := q + 1, r − y
od.

The desired postcondition of this program is given by x = q ∗ y + r ∧ 0 ≤ r < y.
We show how one can prove the above algorithm correct, using the proof system
of this section. By Axiom 21.2 we derive

{x = (q + 1) ∗ y + r − y ∧ y ≤ r}q, r := q + 1, r − y{x = q ∗ y + r ∧ 0 ≤ r}.

By the consequence rule and some properties of IN we derive

{(x = q ∗ y + r ∧ 0 ≤ r) ∧ y ≤ r}q, r := q + 1, r − y{x = q ∗ y + r ∧ 0 ≤ r}

and hence by the do-loop rule

{x = q ∗ y + r ∧ 0 ≤ r}
do y ≤ r → q, r := q + 1, r − y od
{(x = q ∗ y + r ∧ 0 ≤ r) ∧ r < y}.

Again we apply the assignment Axiom 21.2 to derive

{x = 0 ∗ y + x ∧ 0 ≤ x} q, r := 0, x{x = q ∗ y + r ∧ 0 ≤ r}.

We see that the above precondition is equivalent to 0 ≤ x, so after another
application of the consequence rule 21.5 we finally derive by the sequential
composition rule 21.6

{0 ≤ x}
q, r := 0, x;
do

y ≤ r → q, r := q + 1, r − y
od
{(x = q ∗ y + r ∧ 0 ≤ r) ∧ r < y}.

4

Observe that the derived postcondition is equivalent to the desired postcondi-
tion. Hence we obtain

{0 ≤ x} Div1 {x = q ∗ y + r ∧ 0 ≤ r < y}.

Note that the rules in PSseq only use the pre- and postconditions of the
Hoare triples above the line. The structure of the programs in these triples is
not relevant and hence in the rule for a compound construct the components
can be considered as black boxes. With such a proof system we can verify the
design steps during the process of top-down program development.

Usually, soundness of a proof system is demonstrated by proving that its
axioms are valid and that its rules preserve validity, i.e., if the hypotheses of a
rule are valid then so is its conclusion. An induction argument on the length
of the derivation of a correctness formula then suffices to prove validity of any
formula derived in that system.

In our set-up a slightly different strategy is followed because validity of a
Hoare-style correctness formula for S is by definition equivalent to validity of
the corresponding correctness formula for T [[S]] , and for the latter a sound and
complete characterisation has been already given. Hence, soundness and relative
completeness of our Hoare logic will be proved as a corollary of the following
key result of this chapter, which states that correctness of a program in Hoare
logic corresponds with the existence of an inductive assertion network for its
associated transition diagram, and vice versa.

In order to prove this result, we need to establish the structural properties of
assertion networks for transition diagrams corresponding to GCL+ statements,
e.g., that an assertion networkQ for T [[S1;S2]] can be obtained as a composition
Q1;Q2 (defined below) of assertion networks for T [[Si]] , i = 1, 2. When exam-
ining the composition operations for transition systems one sees that essentially
the component networks are “glued” together by unifying the appropriate entry
and exit locations. The composition operations for assertion networks assume
that the assertions for these unified locations are the same for all the component
assertion networks. As a consequence, the composition operations for assertion
networks are partial functions.

Notice that in the present syntactic set-up, an assertion network for T [[S]] def=
(L, T, s, t) is a functionQ associating an assertionQ(l) with every location l ∈ L.
This is justified as every predicate needed can be expressed as an assertion from
first-order logic over IN (see Chapter 5 of [dRdBH+01] for an extensive proof
of this).

Definition 21.9 (Operations on assertion networks)

• Let P1 and P2 be transition systems represented by (L1, T1, s, r) and (L2,
T2, r, t), where L1 ∩ L2 = {r}, and assume that Q1 and Q2 are assertion
networks for P1 and P2. The assertion network Q1;Q2 for P1;P2 is de-
fined as follows, provided that Q1(r) ≡ Q2(r), i.e., Q1(r) and Q2(r) are
syntactically equal:

(Q1;Q2)(l)
def= Q1(l), for l ∈ L1,
def= Q2(l), for l ∈ L2.

5

• Let Pi be a transition system represented by (Li, Ti, s, t), for i = 1, . . . , n,
where Li ∩ Lj = {s, t}, for 1 ≤ i < j ≤ n, and assume that Qi

is an assertion network for Pi, for i = 1, . . . , n. The assertion network
if beni=1Qi fi is defined for if beni=1Pi fi provided that Qi(s) ≡ Qj(s)
and Qi(t) ≡ Qj(t) for 1 ≤ i < j ≤ n:

if beni=1Qi fi (l) def= Qi(l), for l ∈ Li.

• Let PB and PE be transition systems represented by (LB , TB , s, r) and
(LE , TE , s, t), where LB ∩ LE = {s}. Assume that QB and QE are asser-
tion networks for PB and PE . The assertion network do QB be QE ; exit od
for do PB be PE ; exit od is defined provided that QB(s) ≡ QB(r), and
QB(s) ≡ QE(s):

do QB be QE ; exit od(l) def= QB(l), for l ∈ LB\{r},
def= QE(l), for l ∈ LE .

(2)

The operations introduced above are partial operations. If for some opera-
tion and assertion networks Qi the operation is defined, then we say that the
Qi networks are compatible.

Lemma 21.10 (Structural properties of (inductive) assertion networks)

1. Q is an assertion network for P1 ; P2 iff there exist compatible assertion
networks Q1 and Q2 for P1 and P2 s.t. Q = Q1 ; Q2. Moreover, Q is
inductive iff Q1 and Q2 are inductive.

2. Q is an assertion network for if beni=1Pi fi iff there exist compatible
assertion networks Q1, . . . ,Qn for P1, . . . , Pn, with Q = if beni=1Qi fi .
Moreover, Q is inductive iff Q1, . . . ,Qn are inductive.

3. Q is an assertion network for do PB be PE ; exit od iff there exist
compatible assertion networks QB and QE for PB and PE , such that
Q = do QB be QE ; exit od. Moreover, Q is inductive iff QB and QE

are inductive.

Proof
No proof

Before we state the relation between a Hoare-logic proof and the existence of
inductive assertion networks we first introduce some notation. Let S be a GCL+

program: let ` {p}Q(S){q} abbreviate the claim that there exists an inductive
assertion network Q(S) for T [[S]] such that for the entry location s one has
Q(S)(s) = p, and for the exit location t one has Q(S)(t) = q. Let ` {p}T [[S]] {q}
abbreviate the claim that there exists an inductive assertion network for T [[S]]
which is correct w.r.t. p and q. One should notice the difference between `
{p}Q(S){q} and ` {p}T [[S]] {q}. The latter formula states that there exists an
inductive assertion network Q for T [[S]] such that for the entry location s one
has that |= p → Q(s) holds, and for the exit location t that |= Q(t) → q holds.

6

Theorem 21.11 (Equivalence between Hoare logic and Floyd’s induc-
tive assertion method)
Let S be a GCL+ program.

• If S is guarded then

` {p}S{q} iff ` {p}Q(S){q}.

• If S is not guarded then

` {p}S{q} iff there exists an I such that |= p → I and ` {I}Q(S){q}.

• ` {p}S{q} iff ` {p}T [[S]] {q}.

Proof
Observe that the last claim of the theorem follows directly from the first two.
Next we simultaneously prove, by induction on the syntactic structure of S, the
implication (⇒) for the first two claims.

Basic case: Guarded assignment.
Let S ≡ 〈b → x̄ := ē〉 and assume ` {p}S{q}. This formula can only be derived
from Axiom 21.4 by applying the rule of consequence several times. Hence there
exist p′ and q′ with

` {p′}S{q′} with p′ ≡ b → q′[ē/x̄], |= p → p′, and |= q′ → q.

From this we deduce |= p → (b → q′[e/x]), hence |= p → (b → q[ē/x̄]), which
is equivalent to |= p ∧ b → q[ē/x̄]. This is, by definition of inductive, exactly
the verification condition for a syntactic assertion network for T [[〈b → x̄ := ē〉]]
with assertion p for the entry location, and assertion q for the exit location.
Hence

` {p}Q(〈b → x̄ := ē〉){q}.

Induction step:

• Sequential composition.
Let S ≡ S1 ; S2 and assume ` {p}S{q}. This formula can only be de-
rived from the sequential composition rule, and by applying the rule of
consequence several times afterwards. Hence there exist p′, q′, and r such
that

` {p′}S1{r}, ` {r}S2{q′} and |= p → p′, |= q′ → q.

Hence by the rule of consequence ` {r}S2{q}. Thus by the induction
hypothesis, there exists an r′ with |= r → r′ and ` {r′}Q(S2){q}, choos-
ing r′ def= r in case S2 is guarded. Moreover, again by the rule of con-
sequence applied to |= p → p′, |= r → r′ and ` {p′}S1{r} we deduce
` {p}S1{r′}. By the induction hypothesis, there exists an I with |= p → I,
` {I}Q(S1){r′}, and p ≡ I if S1 is guarded. Notice that the premises
for the sequential composition of Q(S1) and Q(S2) are met, cf. Defini-
tion 21.9, and by Lemma 21.10 this sequential composition is inductive.
Hence ` {I}Q(S1 ; S2){q}. Moreover p ≡ I if S1 and thus S is guarded.

7

• Guarded choice.
Let S ≡ if beni=1Si fi with all Si guarded, and assume ` {p}S{q}. Then
by the same arguments as above there exist p′ and q′ such that |= p →
p′, |= q′ → q and ` {p′}if beni=1Si fi {q′} is deduced from the choice
rule 21.7. Hence ` {p′}Si{q′} for all i. Now by the rule of consequence
` {p}Si{q} for all i. Moreover all Si are guarded, hence by the induction
hypothesis ` {p}Q(Si){q}. Also the premises for the choice construct
between assertion networks are met, and by Lemma 21.10 this choice is
inductive. Hence ` {p}Q(if beni=1Si fi){q}.

• Iteration.
Let S ≡ do SBbeSE ; exit od with SB and SE guarded, and assume
` {p} S {q}. By the same arguments as above we deduce the existence
of I and q′ such that |= p → I, |= q′ → q, ` {I}SB{I} and ` {I}SE{q′},
and therefore ` {I}SE{q}. By the induction hypothesis we deduce
` {I}Q(SB){I} and ` {I}Q(SE){q} since SB and SE are guarded. This
yields, using Lemma 21.10,

` {I}Q(do SBbeSE ; exit od){q}.

Since |= p → I the result follows.

This finishes the proof of the implication ⇒ for the first two claims. For the con-
verse implication we only have to prove that ` {p}Q(S){q} implies ` {p}S{q},
since in case |= p → I and ` {I} Q(S) {q} this implies ` {I}S{q}, and therefore
` {p}S{q}. This is quite straightforward, so that we only prove the basic case
and one induction step.

Basic case: Guarded assignment.
Assume ` {p}Q(〈b → x̄ := ē〉){q}, then by definition of inductiveness |= p ∧ b →
q[ē/x̄], which is equivalent to |= p → (b → q[ē/x̄]). Hence by the consequence
rule and the guarded assignment axiom: ` {p}〈b → x̄ := ē〉{q}.

Induction step:

• Sequential composition.
Let S ≡ S1 ; S2 and assume ` {p}Q(S1 ; S2){q}. By the structural
properties of inductive assertion networks, cf. Lemma 21.10, there ex-
ist inductive assertion networks Q1 for S1, and Q2 for S2, such that
Q(S1 ; S2) = Q1 ; Q2. By Definition 21.9 we have that Q1(r) = Q2(r),
where r is the exit location of S1 and the entry location of S2. Put
r′ def= Q1(r), then ` {p}Q(S1){r′} and ` {r′}Q(S2){q}. Hence by induc-
tion hypothesis ` {p}S1{r′} and ` {r′}S2{q}. Applying the sequential
composition rule yields ` {p}S1 ; S2{q}, the desired result.

• The other cases are left as an exercise to the reader.

In the above theorem, the existence of an I which satisfies |= p → I and also
` {I}Q(S){q} is essential in case S is a loop construct, as can been seen from
Example 21.7, see also the exercises.

Now soundness and relative completeness of our Hoare logic for GCL+ can
be established as a corollary of Theorem 21.11.

8

Theorem 21.12 (Soundness and relative completeness)
Proof system PSseq for GCL+ is sound and relatively complete.

References

[dRdBH+01] Willem-Paul de Roever, Frank S. de Boer, Ulrich Hannemann,
Jozef Hooman, Yassine Lakhneche, Mannes Poel, and Job Zwiers.
Concurrency Verification. Number 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cam-
bridge, UK, April 2001.

9

