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3 A Proof Method for Partial Correctness

3.1 Definition plus Example

The proof method presented here for establishing partial correctness is called
the inductive assertion method [Flo67].

Given a program P = (L, T, s, t), we define the following concepts:

• An assertion network for P is a function Q which associates to each loca-
tion l ∈ L a predicate Ql, sometimes expressed by Q(l).

• Given an assertion network Q for P and a transition π = (l, a, l′), with
a = c→ f , define the verification condition Vπ along π by

Vπ
def= Ql ∧ c→ Ql′ ◦ f.

The operation ◦ denotes functional composition, that is, f ◦ g denotes the
function resulting from applying f after g. We use the binding convention
that the operator ◦ binds stronger than the boolean operators, and that
∧ has priority over →. For later use we define V (P,Q) as the set of
verification conditions associated by Q with P :

V (P,Q) def= {Ql ∧ c→ Ql′ ◦ f |(l, c→ f, l′) ∈ T}.

• An assertion network for P is said to be inductive if all verification condi-
tions in V (P,Q) are valid.

• An assertion network Q for P is said to be an invariant network if for every
computation 〈l0;σ0〉 −→ 〈l1;σ1〉 −→ . . . of P with l0 = s and |= Qs(σ0)
we have that |= Qli(σi).

• An inductive assertion network Q is called consistent or correct w.r.t.
〈ϕ,ψ〉 if the additional verification conditions |= ϕ → Qs and |= Qt → ψ
hold.

In many of the examples in this book we use as a particular convention that
the set of labels L is enumerated in order to facilitate the definition of assertion
networks by associating label li with predicate Qi. In this set up, l0 = s and
the label with the highest index ln stands for exit node t.

Example 3.1 To illustrate these concepts let us consider Figure 3 showing the
program Introot for computing the integer square root of a nonnegative integer
input y1, and assigning it to y2, where l0 represents s, and l3 represents t.
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Introot :

(y2, y3, y4) := (0, 0, 1)
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y3 := y3 + y4
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(y3 ≤ y1) → (y2, y4) := (y2 + 1, y4 + 2)

(y3 > y1)

Figure 3: The program Introot for finding the integer root of y1 and outputting
the value of this root in y2.

Assume the assertion network Q associates the predicates Q0, Q1, Q2, Q3

with the locations l0, l1, l2, l3, respectively. Corresponding to the four transi-
tions

π1 : l0 → l1
π2 : l1 → l2
π3 : l2 → l1
π4 : l2 → l3

there are four verification conditions to be checked. Consider first π1. Its
verification condition is given by:

Vπ1 : Q0(y1, y2, y3, y4) → Q1(y1, 0, 0, 1).

Analogously, the verification conditions for the other transitions are derived:

Vπ2 : Q1(y1, y2, y3, y4) → Q2(y1, y2, y3 + y4, y4)
Vπ3 : Q2(y1, y2, y3, y4) ∧ (y3 ≤ y1) → Q1(y1, y2 + 1, y3, y4 + 2)
Vπ4 : Q2(y1, y2, y3, y4) ∧ (y3 > y1) → Q3(y1, y2, y3, y4).

Next we formulate Floyd’s inductive assertion method for proving transition
diagrams partially correct.

3.2 Floyd’s Inductive Assertion Method

To prove |= {ϕ} P {ψ}, i.e., that a transition system P is partially correct w.r.t.
a given specification < ϕ,ψ >, we use:
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Definition 3.2 (Floyd’s inductive assertion method)

1. Give an assertion network Q for P .

2. Prove that this assertion network is inductive, that is, for each transition
(l, a, l′) of P prove validity of its associated verification condition

Ql ∧ c→ Ql′ ◦ f,

assuming that a = c→ f .

3. Prove that Q is consistent with 〈ϕ,ψ〉, i.e., that the additional verification
conditions |= ϕ→ Qs and |= Qt → ψ are valid.

Example 3.3 (Continuation of Example 3.1) Consider the program Introot
for integer root finding. We prove |= {y1 ≥ 0} Introot {y2

2 ≤ y1 < (y2 + 1)2}
using Floyd’s method. Take the assertion network defined by:

Q0(ȳ)
def= y1 ≥ 0

Q1(ȳ)
def= (y2

2 ≤ y1) ∧ (y3 = y2
2) ∧ (y4 = 2 ∗ y2 + 1)

Q2(ȳ)
def= (y2

2 ≤ y1) ∧ (y3 = (y2 + 1)2) ∧ (y4 = 2 ∗ y2 + 1)
Q3(ȳ)

def= y2
2 ≤ y1 < (y2 + 1)2.

We first show that this network is inductive.
Substituting the predicates Q0 and Q1 into Vπ1 we must prove its validity:

|= (y1 ≥ 0) → (0 ≤ y1) ∧ (0 = 0) ∧ (1 = 0 + 1)

is trivially valid.
Similarly for Vπ2 :

|= (y2
2 ≤ y1) ∧ (y3 = y2

2) ∧ (y4 = 2 ∗ y2 + 1) →
(y2

2 ≤ y1) ∧ (y3 + y4 = (y2 + 1)2) ∧ (y4 = 2 ∗ y2 + 1).

Notice that y2
2 ≤ y1 and y4 = 2 ∗ y2 + 1 appear both in the antecedent and the

consequent. Hence we show:

|= (y3 = y2
2) ∧ (y4 = 2 ∗ y2 + 1) → (y3 + y4 = (y2 + 1)2).

Substituting y2
2 for y3 and 2 ∗ y2 + 1 for y4 in the consequent we obtain

y2
2 + 2 ∗ y2 + 1 = (y2 + 1)2,

which is obviously correct.
Next consider the validity of Vπ3 :

|= (y2
2 ≤ y1) ∧ (y3 = (y2 + 1)2) ∧ (y4 = 2 ∗ y2 + 1) ∧ (y3 ≤ y1) →

((y2 + 1)2 ≤ y1) ∧ (y3 = (y2 + 1)2) ∧ (y4 + 2 = 2 ∗ (y2 + 1) + 1).

One has that ((y2 +1)2 ≤ y1) in the consequent follows from y3 = (y2 +1)2 and
y3 ≤ y1 in the antecedent, and hence this is a valid statement.

Finally, consider the validity of Vπ4 :

|= (y2
2 ≤ y1) ∧ (y3 = (y2 + 1)2) ∧ (y4 = 2 ∗ y2 + 1) ∧ (y3 > y1) →

(y2
2 ≤ y1 < (y2 + 1)2).
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The first conjunct of the consequent is y2
2 ≤ y1 which already appears in the

antecedent. The second conjunct y1 < (y2+1)2 is a consequence of y3 = (y2+1)2

and y3 > y1 – both appearing in the antecedent.
This establishes that Q0,Q1,Q2,Q3 as defined above constitute an inductive

assertion network . We will see that they are also invariant assertions (forming
an invariant network). Thus, whenever an execution which started with y1 ≥ 0
reaches the point l2 in the program,

Q2
def= (y2

2 ≤ y1) ∧ (y3 = (y2 + 1)2) ∧ (y4 = 2 ∗ y2 + 1)

must be true invariantly of the current values of the program variables. And, if
we ever reach l3, we are assured by Q3 that y1 lies between y2

2 and (y2 + 1)2 or
equals y2

2 , in other words, y2 is the best integer approximation from below to
the square root of y1, i.e., y2 = b√y1c.
In order to prove |= {y1 ≥ 0}Introot{y2

2 ≤ y1 < (y2 + 1)2} we must additionally
prove |= y1 ≥ 0 → Q0 and |= Q3 → y2

2 ≤ y1 < (y2 + 1)2, which are in this case
obviously true.
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