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3 A Proof Method for Partial Correctness

3.1 Definition plus Example

The proof method presented here for establishing partial correctness is called
the inductive assertion method [Flo67].
Given a program P = (L, T, s,t), we define the following concepts:

e An assertion network for Pis a function @ which associates to each loca-
tion | € L a predicate Q;, sometimes expressed by Q(1).

e Given an assertion network Q for P and a transition 7 = (I, a,l’), with
a = c — f, define the verification condition V, along m by

Vi< Qi Ac— Quof.

The operation o denotes functional composition, that is, f o g denotes the
function resulting from applying f after g. We use the binding convention
that the operator o binds stronger than the boolean operators, and that
A has priority over —. For later use we define V(P, Q) as the set of
verification conditions associated by Q with P:

V(P,Q) = {QiAc— Quofl(l,c— f,I) €T}

e An assertion network for P is said to be inductive if all verification condi-
tions in V(P, Q) are valid.

e An assertion network Q for P is said to be an invariant network if for every
computation (lg;00) — (l1;01) — ... of P with lp = s and | Q(0p)
we have that = 9, ().

e An inductive assertion network Q is called consistent or correct w.r.t.
(p, ) if the additional verification conditions = ¢ — Qg and = Q; —
hold.

In many of the examples in this book we use as a particular convention that
the set of labels L is enumerated in order to facilitate the definition of assertion
networks by associating label [; with predicate Q;. In this set up, lop = s and
the label with the highest index [,, stands for exit node t.

Example 3.1 To illustrate these concepts let us consider Figure 3 showing the
program Introot for computing the integer square root of a nonnegative integer
input y;, and assigning it to yo, where [y represents s, and l3 represents t.



Introot : @

(y2,y3,¥y4) := (0,0, 1)

—

Y3 = Y3+ Ya

(y3 <y1) = (Y2,ya) == (Y2 + 1,94 +2)

-

Figure 3: The program Introot for finding the integer root of y; and outputting
the value of this root in ys.

Assume the assertion network Q associates the predicates Qq, Q1, Qo, Q3
with the locations ly, l1, l2, I3, respectively. Corresponding to the four transi-
tions

m o lpg — 1
o @ ll — 12
T3 . 12 — ll
T4 - lg — lg

there are four verification conditions to be checked. Consider first m. Its
verification condition is given by:

V7r1 : Qo(yl7y27y3;y4) - Ql(ylaoa(),l)'

Analogously, the verification conditions for the other transitions are derived:

Vs o Qu(y1, Y2, Y3, Y1) — Q2(Y1, Y2, Y3 + Ya, ya)

Vst Qa(y1,y2,y3,94) A (Y3 < 1) — Qi(y1,92 +1,u3,y4 +2)

Vi o Qa(y1, 92, Y3, y2) A (ys > 1) — Qa(y1, Y2, Y3, Ya)- O
Next we formulate Floyd’s inductive assertion method for proving transition

diagrams partially correct.

3.2 Floyd’s Inductive Assertion Method

To prove = {¢} P {9}, i.e., that a transition system P is partially correct w.r.t.
a given specification < ¢, >, we use:



Definition 3.2 (Floyd’s inductive assertion method)
1. Give an assertion network Q for P.

2. Prove that this assertion network is inductive, that is, for each transition
(I,a,l") of P prove validity of its associated verification condition

O ANc— Qpof,

assuming that a =c¢ — f.

3. Prove that Q is consistent with (¢, 1), i.e., that the additional verification
conditions = ¢ — Q, and = Q; — 1 are valid. O

Example 3.3 (Continuation of Example 3.1) Consider the program Introot
for integer root finding. We prove = {y1 > 0} Introot {y3 < y; < (y2 + 1)?}
using Floyd’s method. Take the assertion network defined by:

Q@) =31 >0

QN E W <y)A(ys=y3)A(ya=2%y2+1)

DM EWB<y)A(ys= @2+ DA (ys=2%y2+1)
Q) =y <y < (y2+1)2

We first show that this network is inductive.
Substituting the predicates Qy and Q; into V;, we must prove its validity:

Fy>0—=0<y)A0=0)A(1=0+1)

is trivially valid.
Similarly for Vg,:

E W <y)A(ys=u3)A(ya =2xy2+1) —
(3 <y1)A(ys+ya= (Y2 + 1)) A (ya=2xya+ 1).

Notice that y3 < y; and y4 = 2 * y2 + 1 appear both in the antecedent and the
consequent. Hence we show:

s =u3) Aa=2%y2+1) = (ys+ya = (12 +1)%).
Substituting y3 for y3 and 2 * yo + 1 for y4 in the consequent we obtain
Yo + 2%y + 1= (y2 +1)%

which is obviously correct.
Next consider the validity of V,:

EW<y)As=@+1)*)A(ya=2%y+1)A(ys <u) —
(241 <y)A(ys= W2+ D) A (ya+2=2%(y2+1) +1).

One has that ((y2 +1)? < 1) in the consequent follows from y3 = (y2 +1)? and
y3 < y1 in the antecedent, and hence this is a valid statement.
Finally, consider the validity of V ,:

Ew<y)As=@+1)*)A(ya=2%y2+1)A(ys > y1) —
(5 <1 < (y2+1)%).



The first conjunct of the consequent is y3 < y; which already appears in the
antecedent. The second conjunct y; < (y2+1)? is a consequence of y3 = (yo+1)?
and y3 > y; — both appearing in the antecedent.

This establishes that Qg, Q1, Q2, Q3 as defined above constitute an inductive
assertion network . We will see that they are also invariant assertions (forming
an invariant network). Thus, whenever an execution which started with y; > 0
reaches the point [y in the program,

Q= (Y <y)A(ys= 2+ 1)*) A (ya =2%yo +1)

must be true invariantly of the current values of the program variables. And, if
we ever reach [3, we are assured by Q3 that y; lies between y3 and (yz + 1)? or
equals y3, in other words, y, is the best integer approximation from below to
the square root of y1, i.e., yo = [/y1].

In order to prove = {y; > 0}Introot{y3 < y1 < (y2 + 1)} we must additionally
prove =y >0 — Qp and = Q3 — y3 < y1 < (y2 + 1)2, which are in this case
obviously true. |
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