Verifikation nebenläufiger Programme Wintersemester 2004/05

Ulrich Hannemann Jan Bredereke

3 A Proof Method for Partial Correctness

3.1 Definition plus Example

The proof method presented here for establishing partial correctness is called the *inductive assertion method* [Flo67].

Given a program P = (L, T, s, t), we define the following concepts:

- An assertion network for P is a function Q which associates to each location $l \in L$ a predicate Q_l , sometimes expressed by Q(l).
- Given an assertion network Q for P and a transition $\pi = (l, a, l')$, with $a = c \to f$, define the verification condition V_{π} along π by

$$V_{\pi} \stackrel{\text{def}}{=} \mathcal{Q}_l \wedge c \to \mathcal{Q}_{l'} \circ f.$$

The operation \circ denotes functional composition, that is, $f \circ g$ denotes the function resulting from applying f after g. We use the binding convention that the operator \circ binds stronger than the boolean operators, and that \wedge has priority over \rightarrow . For later use we define V(P, Q) as the set of verification conditions associated by Q with P:

$$V(P,Q) \stackrel{\text{def}}{=} \{Q_l \wedge c \to Q_{l'} \circ f | (l,c \to f,l') \in T\}.$$

- An assertion network for P is said to be *inductive* if all verification conditions in $V(P, \mathcal{Q})$ are valid.
- An assertion network \mathcal{Q} for P is said to be an *invariant network* if for every computation $\langle l_0; \sigma_0 \rangle \longrightarrow \langle l_1; \sigma_1 \rangle \longrightarrow \dots$ of P with $l_0 = s$ and $\models \mathcal{Q}_s(\sigma_0)$ we have that $\models \mathcal{Q}_{l_i}(\sigma_i)$.
- An inductive assertion network Q is called *consistent* or *correct* w.r.t. $\langle \varphi, \psi \rangle$ if the additional verification conditions $\models \varphi \to Q_s$ and $\models Q_t \to \psi$ hold.

In many of the examples in this book we use as a particular convention that the set of labels L is enumerated in order to facilitate the definition of assertion networks by associating label l_i with predicate Q_i . In this set up, $l_0 = s$ and the label with the highest index l_n stands for exit node t.

Example 3.1 To illustrate these concepts let us consider Figure 3 showing the program *Introot* for computing the integer square root of a nonnegative integer input y_1 , and assigning it to y_2 , where l_0 represents s, and l_3 represents t.

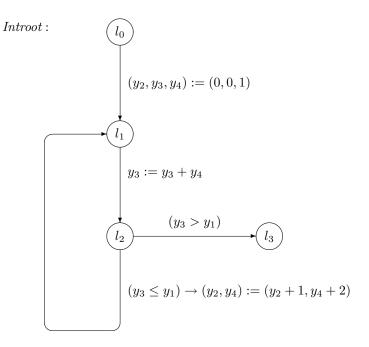


Figure 3: The program *Introot* for finding the integer root of y_1 and outputting the value of this root in y_2 .

Assume the assertion network Q associates the predicates Q_0 , Q_1 , Q_2 , Q_3 with the locations l_0 , l_1 , l_2 , l_3 , respectively. Corresponding to the four transitions

$$\pi_1: l_0 \to l_1$$

 $\pi_2: l_1 \to l_2$
 $\pi_3: l_2 \to l_1$
 $\pi_4: l_2 \to l_3$

there are four verification conditions to be checked. Consider first π_1 . Its verification condition is given by:

$$V_{\pi_1}: \mathcal{Q}_0(y_1, y_2, y_3, y_4) \to \mathcal{Q}_1(y_1, 0, 0, 1).$$

Analogously, the verification conditions for the other transitions are derived:

$$\begin{array}{l} V_{\pi_2}: \ \mathcal{Q}_1(y_1,y_2,y_3,y_4) \to \mathcal{Q}_2(y_1,y_2,y_3+y_4,y_4) \\ V_{\pi_3}: \ \mathcal{Q}_2(y_1,y_2,y_3,y_4) \wedge (y_3 \leq y_1) \to \mathcal{Q}_1(y_1,y_2+1,y_3,y_4+2) \\ V_{\pi_4}: \ \mathcal{Q}_2(y_1,y_2,y_3,y_4) \wedge (y_3 > y_1) \to \mathcal{Q}_3(y_1,y_2,y_3,y_4). \end{array} \ \Box$$

Next we formulate Floyd's inductive assertion method for proving transition diagrams partially correct.

3.2 Floyd's Inductive Assertion Method

To prove $\models \{\varphi\}$ P $\{\psi\}$, i.e., that a transition system P is partially correct w.r.t. a given specification $\langle \varphi, \psi \rangle$, we use:

Definition 3.2 (Floyd's inductive assertion method)

- 1. Give an assertion network Q for P.
- 2. Prove that this assertion network is inductive, that is, for each transition (l, a, l') of P prove validity of its associated verification condition

$$Q_l \wedge c \rightarrow Q_{l'} \circ f$$

assuming that $a = c \to f$.

3. Prove that Q is consistent with $\langle \varphi, \psi \rangle$, i.e., that the additional verification conditions $\models \varphi \to Q_s$ and $\models Q_t \to \psi$ are valid.

Example 3.3 (Continuation of Example 3.1) Consider the program *Introot* for integer root finding. We prove $\models \{y_1 \geq 0\}$ *Introot* $\{y_2^2 \leq y_1 < (y_2 + 1)^2\}$ using Floyd's method. Take the assertion network defined by:

$$\begin{aligned} \mathcal{Q}_0(\bar{y}) &\stackrel{\text{def}}{=} y_1 \geq 0 \\ \mathcal{Q}_1(\bar{y}) &\stackrel{\text{def}}{=} (y_2^2 \leq y_1) \wedge (y_3 = y_2^2) \wedge (y_4 = 2 * y_2 + 1) \\ \mathcal{Q}_2(\bar{y}) &\stackrel{\text{def}}{=} (y_2^2 \leq y_1) \wedge (y_3 = (y_2 + 1)^2) \wedge (y_4 = 2 * y_2 + 1) \\ \mathcal{Q}_3(\bar{y}) &\stackrel{\text{def}}{=} y_2^2 \leq y_1 < (y_2 + 1)^2. \end{aligned}$$

We first show that this network is inductive.

Substituting the predicates Q_0 and Q_1 into V_{π_1} we must prove its validity:

$$\models (y_1 \ge 0) \to (0 \le y_1) \land (0 = 0) \land (1 = 0 + 1)$$

is trivially valid.

Similarly for V_{π_2} :

$$\models (y_2^2 \le y_1) \land (y_3 = y_2^2) \land (y_4 = 2 * y_2 + 1) \rightarrow (y_2^2 \le y_1) \land (y_3 + y_4 = (y_2 + 1)^2) \land (y_4 = 2 * y_2 + 1).$$

Notice that $y_2^2 \le y_1$ and $y_4 = 2 * y_2 + 1$ appear both in the antecedent and the consequent. Hence we show:

$$\models (y_3 = y_2^2) \land (y_4 = 2 * y_2 + 1) \rightarrow (y_3 + y_4 = (y_2 + 1)^2).$$

Substituting y_2^2 for y_3 and $2 * y_2 + 1$ for y_4 in the consequent we obtain

$$y_2^2 + 2 * y_2 + 1 = (y_2 + 1)^2$$
,

which is obviously correct.

Next consider the validity of V_{π_3} :

$$\models (y_2^2 \le y_1) \land (y_3 = (y_2 + 1)^2) \land (y_4 = 2 * y_2 + 1) \land (y_3 \le y_1) \rightarrow ((y_2 + 1)^2 \le y_1) \land (y_3 = (y_2 + 1)^2) \land (y_4 + 2 = 2 * (y_2 + 1) + 1).$$

One has that $((y_2+1)^2 \le y_1)$ in the consequent follows from $y_3 = (y_2+1)^2$ and $y_3 \le y_1$ in the antecedent, and hence this is a valid statement.

Finally, consider the validity of V_{π_4} :

$$\models (y_2^2 \le y_1) \land (y_3 = (y_2 + 1)^2) \land (y_4 = 2 * y_2 + 1) \land (y_3 > y_1) \rightarrow (y_2^2 \le y_1 < (y_2 + 1)^2).$$

The first conjunct of the consequent is $y_2^2 \le y_1$ which already appears in the antecedent. The second conjunct $y_1 < (y_2+1)^2$ is a consequence of $y_3 = (y_2+1)^2$ and $y_3 > y_1$ – both appearing in the antecedent.

This establishes that Q_0 , Q_1 , Q_2 , Q_3 as defined above constitute an inductive assertion network. We will see that they are also *invariant assertions* (forming an invariant network). Thus, whenever an execution which started with $y_1 \geq 0$ reaches the point l_2 in the program,

$$Q_2 \stackrel{\text{def}}{=} (y_2^2 \le y_1) \land (y_3 = (y_2 + 1)^2) \land (y_4 = 2 * y_2 + 1)$$

must be true invariantly of the current values of the program variables. And, if we ever reach l_3 , we are assured by \mathcal{Q}_3 that y_1 lies between y_2^2 and $(y_2+1)^2$ or equals y_2^2 , in other words, y_2 is the best integer approximation from below to the square root of y_1 , i.e., $y_2 = \lfloor \sqrt{y_1} \rfloor$.

the square root of y_1 , i.e., $y_2 = \lfloor \sqrt{y_1} \rfloor$. In order to prove $\models \{y_1 \geq 0\} Introot \{y_2^2 \leq y_1 < (y_2 + 1)^2\}$ we must additionally prove $\models y_1 \geq 0 \rightarrow \mathcal{Q}_0$ and $\models \mathcal{Q}_3 \rightarrow y_2^2 \leq y_1 < (y_2 + 1)^2$, which are in this case obviously true.

References

[Flo67] R.W. Floyd. Assigning meanings to programs. In Proceedings AMS Symposium Applied Mathematics, volume 19, pages 19–31, Providence, R.I., 1967. American Mathematical Society.