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4 Soundness and Completeness

In general, if a proof method is presented to establish properties of systems,
then there are two basic questions which have to be considered.

• Is the proof method sound, that is, does every property which is proved
using the method always hold? That is, is it a valid property?

• Is the method complete, that is, is it adequate for proving any valid prop-
erty of the system?

We shall prove in the following sections that Floyd’s inductive assertion
method for sequential programming is sound and that it is complete in a re-
stricted sense (since by Gödel’s theorem no proof system for establishing validity
of verification conditions exists).

4.1 Soundness

First we prove soundness of the inductive assertion method, i.e.,

Theorem 4.1 (Soundness of the inductive assertion method)
Let P = (L, T, s, t). If Q is an inductive assertion network for P , |= ϕ → Qs,
and |= Qt → ψ, then P is partially correct w.r.t. < ϕ,ψ >, i.e., |= {ϕ} P {ψ}
holds.

The proof of this theorem follows from Lemmas 4.2 and 4.3.

Lemma 4.2 Let P = (L, T, s, t). If Q is an inductive assertion network for P
then this assertion network is invariant for P .

Proof
Consider an execution sequence 〈l0;σ0〉 −→ 〈l1;σ1〉 −→ . . . of P, with l0 = s and
|= Qs(σ0). From the definition of execution sequence there exists a sequence of
instructions c0 → f0, c1 → f1, . . . such that for every j ≥ 0, (lj , cj → fj , lj+1) ∈
T , cj(σj) = tt, and σj+1 = fj(σj). We prove by induction on j that Qj(σj) = tt,
where Qj denotes the predicate associated with location lj . The case that j = 0
follows immediately from |= Qs(σ0). Next we assume that we already have
Qj(σj) = tt. Let πj+1

def= (lj , cj → fj , lj+1). Since the network is inductive, we
know that the validity of Vπj+1 holds for σj . Thus we have that

|= (Qj ∧ cj → (Qj+1 ◦ fj))(σj),

by our induction hypothesis Qj(σj) = tt. Since the computation starting with
σj at lj did follow the transition πj+1, the necessary condition for the existence
of a πj+1 transition, cj , must certainly hold. Thus we conclude that (Qj+1 ◦
fj)(σj) must also hold. On the other hand, σj+1 is the state obtained from
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σj by the transition πj+1 so that σj+1 = fj(σj). Consequently it follows that
Qj+1(σj+1) = tt.

Lemma 4.3 follows easily from the definitions.

Lemma 4.3 Let P = (L, T, s, t). If Q is an invariant network for P , and
|= ϕ→ Qs and |= Qt → ψ hold, then P is partially correct w.r.t. < ϕ,ψ >, i.e.,
|= {ϕ} P {ψ} holds.

Let us step back for an overview of the advantages offered by the inductive
assertion method. At first glance it seems that we have complicated matters.
Starting with the need to prove that all ϕ-computations satisfy ψ when they
reach the exit location t, we have complicated the task by, e.g., also requiring a
proof that when such computations reach any other location l, they must satisfy
Ql. On the other hand, in general the ϕ−ψ relationship has to be established for
an infinite number of computations including a computation that goes exactly
once around some loop, one that goes twice around that loop, etc. We have to
consider more assertions to be verified, but over a finite number of transitions.

4.2 Semantic Completeness of the Inductive Assertion Method

Next we consider completeness of the inductive assertion method, i.e., we prove:

Theorem 4.4 (Semantic completeness)
Let P = (L, T, s, t). If P is partially correct w.r.t. < ϕ,ψ > then there exists
an inductive assertion network Q for P s.t. |= ϕ → Qs and |= Qt → ψ hold.
Moreover, for any invariant assertion network Ψ for P with |= ϕ→ Ψs one has
|= Ql → Ψl for all l ∈ L.

Proof
Assume P is partially correct w.r.t. < ϕ,ψ >. Then apply the inductive asser-
tion method as follows:

• Let Q be the following assertion network for P : For each l ∈ L, we define
a predicate Ql such that for all σ ∈ Σ, |= Ql(σ) iff there exists a state σ′

s.t. |= ϕ(σ′) and 〈s;σ′〉 −→∗ 〈l;σ〉. Here −→∗ denotes the reflexive and
transitive closure of the transition relation −→ between configurations.
By the definition of invariance of a network we immediately obtain for
each invariant assertion network Ψ for P that if |= ϕ → Ψs holds, then
|= Ql → Ψl holds, for each l ∈ L.

• We show that Q as defined above is an inductive assertion network. Con-
sider a transition π = (l, a, l′), with a = c → f . We have to prove
|= Ql ∧ c → Ql′ ◦ f . Let σ be a state such that |= Ql(σ) and |= c(σ).
From |= Ql(σ) we obtain that 〈s;σ′〉 −→∗ 〈l;σ〉, for some initial state σ′

which satisfies ϕ. Since |= c(σ) there exists a computation step 〈l;σ〉 −→
〈l′; f(σ)〉. So we have 〈s;σ′〉 −→∗ 〈l′; f(σ)〉, and thus by definition of Ql′

we conclude |= Ql′(f(σ)).
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• We prove |= ϕ→ Qs and |= Qt → ψ.

– Consider σ s.t. |= ϕ(σ) holds. Since 〈s;σ〉 −→∗ 〈s;σ〉, it follows
immediately from the definition of Qs that |= Qs(σ) holds.

– Let σ be such that |= Qt(σ). From the definition of Qt it then
follows that σ ∈M[[ P ]](σ′), for some σ′ such that |= ϕ(σ′). Since P
is partially correct w.r.t. < ϕ,ψ > this leads to |= ψ(σ).

In the above proof the so-called reachability predicates Ql are characterised
mathematically, and not by means of assertions in, e.g., first-order predicate
logic. When formalising the inductive assertion method within some logical sys-
tem such as Hoare logic – a necessary prerequisite for machine-checked proofs
– it is mandatory to express Ql by such an assertion. This is done by encod-
ing computations within the standard model of the natural numbers using a
technique called Gödel encoding [Göd31]. This explains why we are especially
interested in transition diagrams over an underlying data domain which con-
tains this standard model (or, alternatively, in proof methods in which all valid
properties in this standard model have been added as axioms). Unfortunately,
there exists no complete formal system for proving the verification conditions
for such diagrams, and consequently there is no hope of obtaining a complete
formal system for proving the correctness of such diagrams. (By a proof in a
formal proof system we understand a finite sequence of formulae each of which is
either an axiom of that system or obtained by applications of one of its inference
rules to formulae which occur earlier in that sequence.)

In the above proof we have established semantic completeness, i.e., we have
proved the existence of an assertion network Q such that all the associated
verification conditions, plus |= ϕ → Qs and |= Qt → ψ hold. We did not
express those predicates as assertions from first-order predicate logic. Rather,
we gave a semantical description of their meaning.

It is important to observe that Theorem 4.4 does not claim that one can prove
the verification conditions for P w.r.t. Q and prove |= ϕ→ Qs and |= Qt → ψ
within a formal proof system, e.g., using the axioms and rules for first-order
predicate logic over the natural numbers. It merely states that these verifi-
cation conditions and these implications are valid. By Gödel’s incompleteness
result [Göd31], no complete proof system exists for proving these verification
conditions over the natural numbers.

We can construct for every Ql a corresponding assertion from first-order
predicate logic which has the same meaning as Ql. Having obtained such as-
sertions, we have established another kind of completeness, called relative com-
pleteness. Relative completeness of a proof method implies that there exist
proofs for every valid correctness statement, provided all valid assertions over
the underlying data domain (or interpretation), which is assumed to contain the
standard model of the natural numbers, are assumed as axioms.

This implies in the case of Theorem 4.4 that we may assume that every
(valid) verification condition plus the (valid) implications ϕ→ Q0 and Qt → ψ
can be used as axioms.
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