Verifikation nebenlaufiger Programme
Wintersemester 2004 /05

Ulrich Hannemann Jan Bredereke

6 Proving Success and Absence of Runtime Er-
rors

6.1 Success

In order to prove success of a program P = (L, T, s,t) we have to ensure that
no computation of P ends in a failing configuration (l;0), | # t. Whenever we
reach a such a configuration (l;0), | # ¢, we should ensure to have an enabled
transition available, i.e., that (I,c — f,1') € T exists with ¢(o) = ¢t. The set of
states which allow taking at least one transion can be derived from the set of
transition originating from a certain location. For location I, [# t we define
T, Y (e — f,1;) € Tl = 1}

For t this set is empty by definition.

Next we characterize the set of states for which some transition is enable at
location [by the predicate

C = (\/ c)V false

(l,e—f,I)ET;

This predicate is notated by a disjunction over all guards of the transitions
leaving [. In case there is no transition, this predicate is set to false.

Definition 6.1 (Floyd’s inductive assertion method applied to proving
success) Given a transition diagram P = (L, T, s, t), in order to verify that it is
p-successful with respect to a precondition ¢ we use Floyd’s method for proving
success of sequential programs as formulated below:

1. Find an assertion network Q, show that it is inductive, and that = ¢ — Q,
holds.

2. Show for each [# ¢, that = Q; — C; holds.

Next we prove soundness and semantic completeness of the method.

Theorem 6.2 (Soundness)

Let P = (L,T,s,t). If Q is an inductive assertion network for P, = ¢ — Q,
holds, and = Q; — C; holds for all [# ¢, then every finite computation of P is
successful.

Proof
Consider an finite p-computation

n: (lo;o0) — (l1;01) — ..., — (ln;0p)

with lp = s, then inductiveness of Q and = ¢ — Q, implies that Q is invariant,
i.e., that = Qy,(0;) holds for 0 < i <mn.

Now assume that [,, # t, i.e., that 7 is a failing computation. In case that
some transition (l,,c — f,l,4+1) € T}, exists such that = ¢(o) holds we have a
contradiction to the fact that n is a computation of P, as i could be extended
by a computation step according to this transition. Thus no such transition is
enabled and consequently, we have C; (0,) = ff. But as = Q; — C; holds for
all [#t and l,, # t, we deduce that Q; (o,) evaluates to ff. This contradicts
the fact that = Qy,(0;) holds for 0 < i <mn.

|

Theorem 6.3 ((Semantic) Completeness)
Let P = (L,T,s,t). If P is p-successful, then there exists an inductive assertion
network Q such that = ¢ — Q; holds and = Q; — C; holds for all l € L, [# ¢.

Proof

We choose the same assertion network Q as in the semantic completeness proof
of the partial correctness method (Theorem 4.4). It is inductive, and = ¢ — Q4
holds.

It remains to prove that = Q; — C; holds for all I € L, I # ¢t. Thus let
leL, |l #t and 0 € ¥ such that = Q;(0) holds. By definition of Q, there
exists ¢’ such that = varphi(o’) holds and (s;o’) —* (l;0). Since [£ t and
P is p-successful, this can only be a proper prefix of a p-computation of P. In
particular we have a configuration (I’; o) following (I; o) in this p-computation.
This is possible only if there exists a transition (I,c — f,1’) € T such that |= ¢(o)
holds, and f(o) = 0”. As = ¢ — C; holds by construction, we obtain | C;(o),
ie. E Q — (C; holds.

|

6.2 Absence of Runtime Errors

Finally, we extend our notion of transition diagrams (and systems) by allowing
them to contain partial state transformations. In particular, we consider the
case that state transformations f occurring in instructions ¢ — f, which label an
edge of a transition diagram, are partial, such as, e.g., the state transformations
associated with x := 1/0 and z := 1/y. Clearly, executing z := 1/0, and
x = 1/y for y = 0, is undesirable because this leads to an undefined result, and,
therefore, to runtime errors.

Consequently, in addition to the four modalities of program correctness de-
fined in Session 2, we introduce a fifth one, called absence of runtime errors, and
discuss how to prove this modality for a given program (and given precondition).
Observe, that as a consequence of it being possible to model runtime errors in
our formalism, total correctness amounts to the sum of partial correctness, con-
vergence, success, and absence of runtime errors. That is, in order to prove total
correctness of a program P w.r.t. precondition ¢ and postcondition 1, one has

to prove that P is partially correct w.r.t. precondition ¢ and postcondition 1,
is ¢-convergent, and displays neither deadlocks nor runtime errors when started

in .

Definition 6.4 (Absence of runtime errors) Given a transition diagram P
and a precondition ¢, whenever no p-computation of P ever reaches a location
in which an enabled transition is undefined, one speaks of absence of (or freedom
from) runtime errors of P in . |

We present as method for proving p-absence of runtime errors a modification
of Floyd’s inductive assertion method.

Obtaining a method for proving ¢-absence of runtime errors is at first sight
straightforward. Just modify the second clause of the definition of Floyd’s
method by also proving

= Qi Ac— Def(f),

where Def(f) denotes a predicate expressing the domain of definition of f, and
delete in its third clause the condition | Q; — 1.

However, how does one evaluate the verification condition = false — trueo
(x := 1/0)? Here the difficulty is that true o (x := 1/0) denotes a nowhere-
defined function.

In general, the possibility of state transformations f being partial functions
leads to the occurrence of partially-defined boolean functions, when applying
Floyd’s method, and this forces one to modify the definitions of the boolean
connectives accordingly, because these occur in the formulation of verification
conditions.

Since a boolean function ¢ : ¥ — Bool, with Bool = {tt, ff}, can now be
partial — e.g., consider trueo (x := 1/0), one distinguishes between three cases:
that ¢(o) = tt, (o) = ff and (o) is undefined, for o € X; the latter case we
abbreviate by ¢(o) = L, with “L” pronounced as “bottom”. That is, instead
of dealing with partial functions to Bool, we model them using total functions
to Bool, , with Bool | = {tt,ff, L}, where p(c) = L in the total-function view
of ¢ iff p(0o) is undefined in the partial-function view of .

The meanings of -, —, A and V in this total-function view are given by:

1. definition of “=": = || tt| ff| L
Fle] L

2. definition of “—=”: — H tt ‘ jj”‘ 1

] fF] L
Fleulw
L] L]|L
3. definition of “A”: A || tt | ff| L
]] fF] L
VAN
LLifgIL

4. definition of “V”: VvV H tt‘ jj‘" L

|]t
Flle| FlL
Tl LL

The motivation for these definitions is twofold:

1. Tt defines ttVv 1L = 1 V ¢t = tt. When generalised to existential quantifiers
this lets such reasonable predicates as 3x(1/x = 1) denote tt.

2. By ordering Bool; as follows: L C tt, L C ff, Bool; becomes a so-called
complete partial order (cpo). In this structure we want A, V and — to
denote monotone functions in their arguments, where f is monotone if:

aCb= f(a)C f(b).

It can be checked that requirements (i) and (ii) above determine the mean-
ings of these propositional connectives uniquely, and that they coincide with the
ones given above them. Consult, e.g., [IRE98, Chapter 8], for more details on
this topic.

Next we face the choice between partial and total inductive assertions. Here
we choose them to be total {t, ff}-valued functions ¢, ¢ : ¥ — Bool. That is,
the predicates Q; used for reasoning about transition diagrams in the inductive
assertion approach are total {tt, ff}-valued boolean functions, even in the pres-
ence of runtime errors during the execution of transition diagrams. Observe that
this is consistent with the five modalities of program correctness which we want
to prove. For example, partial correctness means that only in the case of ter-
mination has some predicate to hold; and, since in that case the resulting state
is well-defined, that predicate can be chosen to be total and {t, ff}-valued. Or,
in the case of success, one has to prove absence of blocking when the execution
is started in a given precondition, which must, therefore, yield a well-defined
starting state, and, hence, can be chosen to be total and {¢, ff}-valued. Similar
arguments apply to the other modalities.

Given the formal framework as defined above, we modify the definition of
Floyd’s inductive assertion network as follows in order to obtain a method of
proving absence of runtime errors in ¢ of transition diagrams P.

Definition 6.5 (Floyd’s inductive assertion method including absence
of runtime errors)

1. Consider a total {tt, ff}-valued boolean function .
2. Choose the predicates Q; to be total and {t, ff}-valued.

3. Prove that Q is inductive and implies freedom from runtime errors of P,
that is, for each transition (I, a,l’) of P, prove the validity of

Qi Ac— (Quof)ADef(f),
with Def(f) as above, assuming that a = ¢ — f.

4. Prove that Q is consistent w.r.t. precondition ¢, i.e., require the proof of

):SO—’Qs. |

This method verifies explicitly whether the applied state transformations
in P are well-defined. Consequently, soundness of the method is obvious. Its
semantic completeness can be proved using the reachability predicates Q; from
Theorem 4.4 as the assertion network.

References

[dRE98] W.-P. de Roever and K. Engelhardt. Data Refinement. Cambridge
University Press, 1998.

