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7 Shared Variables Concurrency

7.1 A Characterisation of Concurrent Execution

In this section a model is developed for characterising the influence upon the
program state of the execution of concurrent programs P that operate upon
shared variables. Such a program P ≡ P1‖ . . . ‖Pn consists of one or more pro-
cesses P1, . . . , Pn which communicate with each other by reading and updating
the values of so-called shared variables. Shared variables of P1, . . . , Pn are vari-
ables which are accessed by two or more processes – whence the name “shared”;
the remaining variables of P1, . . . , Pn are called local, because they are accessed
by merely one process Pi, i = 1, . . . , n.

During program execution several processes may compete in accessing the
same shared variable. Since ultimately such a shared variable models a partic-
ular memory location, and in current computers more than one process cannot
simultaneously access the same memory location, the outcome of such a com-
petition is that accesses to the same shared variable are linearly ordered, or
interleaved, as the lingo goes. This explains why two enabled actions, whose
execution requires them to access the same shared variable, are said to be in
conflict. Another aspect of concurrency is independent simultaneous execution
whenever the shared variables, which are accessed, are all different. Besides
these two elements – competition for access to the same variable, and indepen-
dent operation on disjoint sets of variables – a third element which characterises
execution of concurrent programs in this chapter is that each process involved
has a positive, although arbitrary, speed of execution, unless it is terminated,
deadlocked or waiting to obtain access to a shared variable, in which case we
postulate that access is eventually granted after waiting long enough. By con-
vention this also includes accesses to local variables, implying that every enabled
action operating on purely local variables will be eventually executed.

In a first approximation, the execution of a concurrent program therefore
satisfies the following two requirements:

Requirement 1: More than one process cannot have simultaneous access to
the same shared variable.

Requirement 2: The execution speed of every nonterminated and nondead-
locked process is positive and arbitrary, unless it is waiting for access to a
shared variable, in which case by waiting long enough access is eventually
granted and the process resumes execution.

Next we introduce the notion of an atomic action using a purely textual
representation of programs in case their representation as a transition system is
unambiguous. This is the case for, e.g, R1 : x := 1 and R2 : x := 2. What is
the effect of executing R1 ‖R2? By Requirement 1, R1 and R2 cannot access
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x simultaneously. However, the result of R1‖R2 is by no means fixed, for this
depends, as we shall see below, upon the way x := 1 and x := 2 are executed.
First consider the following two-bit implementation of these actions:

R1 : x := 1 ⇐⇒ first bit of (x) := 1; second bit of (x) := 0, and
R2 : x := 2 ⇐⇒ first bit of (x) := 0; second bit of (x) := 1,

where, for i = 0, 1, first bit of (x) := i and second bit of (x) := i are regarded as
single uninterruptable actions. Such uninterruptable actions are called atomic,
because during their execution no interference by other actions from other pro-
cesses takes place together with their execution. That is, during execution of an
atomic action the set of objects manipulated by that action (i.e., whose values
are read or changed) and the set of objects manipulated by other actions from
other processes are disjoint. In the case of R1 and R2 the atomic accesses to
the shared variable x concern single bits.

Executing R1 and R2 concurrently may now lead to x = 3 – which is the
effect of executing the following interleaving of their atomic actions:

first bit of (x) := 0; first bit of (x) := 1;
second bit of (x) := 0; second bit of (x) := 1

– or to x = 2 – the effect of executing:

first bit of (x) := 1; first bit of (x) := 0;
second bit of (x) := 0; second bit of (x) := 1.

Other possible interleavings lead to x = 0 or x = 1.
Secondly consider an alternative implementation of x := 1 and x := 2 for

which x := 1‖x := 2 leads to a different result:

R′
1 : x := 1 ⇐⇒ first byte of (x) := 00000001;

second byte of (x) := 00000000
R′

2 : x := 2 ⇐⇒ first byte of (x) := 00000010;
second byte of (x) := 00000000,

assuming a word-size for x of two bytes, and first byte of (x) := i and second
byte of (x) := j to be atomic. That is, the atomic accesses to shared variable x
concern in the case of R′

1 and R′
2 single bytes.

Now the effect of executing R′
1‖R′

2 is x = 1 or x = 2, which is different from
that of R1‖R2 which possibly leads to x = 3.

These examples indicate that to characterise the meaning of a concurrent
program one has to specify its atomic actions.

In the remainder of this section (7.1) we do this by reformulating Require-
ment 1 as follows by making a specific choice of atomic actions:

Requirement 1: All accesses to the same shared variable are linearly ordered.
There are two ways to access a (shared) variable: by reading its value
and by writing its value. In case of reading a value this is considered to
be an atomic action, i.e., to take place without being influenced by other
processes. When writing a value, this is also considered to be atomic.

Consequently, the atomic accesses of shared variables in the remainder of this
section concern the full size of words used for implementing them.
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Example 7.1 Let Q1 ≡ x := x+ 1, Q2 ≡ x := x+ 1 and Q ≡ Q1 ‖ Q2. Then
|= {x = 0} Q {x = 2} need not hold, because execution of Q is not equivalent
to the sequential execution of x := x + 1;x := x + 1, since x := x + 1 is not
atomic according to Requirement 1, reformulated as above. This is explained
below. Assume execution of x := x + 1 by Qi to be equivalent to execution
of ti := x; ti := ti + 1;x := ti with ti standing for a local register of Qi (here
modelled by a local variable), i = 1, 2, and ti := x, ti := ti + 1 and x := ti
considered as atomic actions. Note that this interpretation of the execution of
x := x+ 1 is consistent with Requirement 1.

Now a counterexample to the partial correctness formula above is provided
by the following interleaving of ti := x; ti := ti + 1;x := ti, for i = 1, 2 : t1 :=
x; t2 := x; t2 := t2 + 1;x := t2; t1 := t1 + 1;x := t1, which results in x = 1 as
postcondition, when started in x = 0.

Listing the remaining possible interleavings of t1 := x; t1 := t1 + 1;x := t1
and t2 := x; t2 := t2 + 1;x := t2 then leads to establishing |= {x = 0} Q {x =
1 ∨ x = 2}.

7.2 The Generalisation of Floyd’s Approach to Nondeter-
ministic Interleavings

The essence of Floyd’s inductive assertion method is the observation that a
partial-correctness proof can be reduced to checking finitely many verification
conditions, i.e., for every transition l

a→ l′: if execution arrives at l, the asso-
ciated predicate Ql holds, and if the action a is executed, then Ql′ holds at
l′. This observation is based upon the fact that every execution sequence is
equivalent with a sequence of transitions taken from a fixed, finite, collection.

Since concurrent execution is now modelled by nondeterministic interleav-
ings of atomic actions, the incorporation of concurrency within Floyd’s method
dictates that every nondeterministic interleaving of atomic actions should be
described using such transitions. That is, execution of a transition should cor-
respond to an atomic action.

Thus, execution of P1 ‖ . . . ‖ Pn should be characterised by the interleaved
execution of such transitions from a fixed, finite, collection. Furthermore, during
execution of a local transition contained in Pi no execution is modelled in Pj ,
for j 6= i. This implies that a global transition of P1 ‖ . . . ‖ Pn contained in Pi

is characterised by two n-tuples of composite locations, beginning in an n-tuple
〈l1, . . . , li, . . . , ln〉 and ending in an n-tuple 〈l1, . . . , l′i, . . . , ln〉 with l1, . . . , ln and
l′i locations in P1, . . . , Pn and Pi, and local transition li

a→ l′i in Pi containing at
most one critical reference. In case action a is obvious from the context, l a→ l′

is abbreviated to l→ l′. Composite locations will also be called global locations
in the following.

Example 7.2 Let x be shared and y be local. Consider the concurrent program
fragment illustrated in Figure 1. According to the above, in order to describe
the execution of this fragment one has to introduce:

1. composite locations: 〈s1, s2〉 , 〈s1, l2〉 , 〈s1, t2〉 , 〈t1, s2〉 , 〈t1, l2〉 , 〈t1, t2〉

2. global transitions:
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l2
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(x, y := x+ 1, 0)

��
��
t2

Figure 1: A simple fragment of a shared variable concurrent program.

(〈s1, s2〉 , 〈t1, s2〉)︸ ︷︷ ︸
s2 fixed

, (〈s1, l2〉 , 〈t1, l2〉)︸ ︷︷ ︸
l2 fixed

, (〈s1, t2〉 , 〈t1, t2〉)︸ ︷︷ ︸
t2 fixed

, . . .

This leads to the transition diagram in Figure 2. Instead of 3 instructions be-

��
��
〈s1, s2〉

@
@

@@R

x := 1�
�

��	

x := 0

��
��
〈t1, s2〉

?

x := 1

��
��
〈s1, l2〉

?

(x, y := x+ 1, 0)
��

���
����

x := 0

��
��
〈t1, l2〉

@
@
@R

(x, y := x+ 1, 0)

��
��
〈s1, t2〉

�
�

�	
x := 0

��
��
〈t1, t2〉

Figure 2: Parallel composition reduced to a sequential diagram.

tween 5 nodes, one has to consider 7 instructions between 6 nodes, which in
general leads to an exponential increase of instructions and nodes to be consid-
ered.

Note that we have now considered (x, y := x+ 1, 0) as an atomic action.

We continue in the next section with the development of a formal verification
theory for concurrent programs operating upon shared variables, based on the
assumption that transitions (l, c→ f, l′) are executed as single atomic actions.
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7.3 Concurrent Transition Systems with Shared Variables

We generalise the inductive assertion method to concurrent transition systems
that communicate by means of shared variables. From now on, primitive boolean
and state functions are considered to be total, i.e., we base this section on
Sessions 1 - 5, unless stated otherwise.

First we define the parallel composition of transition diagrams by means of
a transition diagram itself.

Definition 7.3 (Parallel composition) Given transition diagrams Pi ≡ (Li,
Ti, si, ti), i = 1, . . . , n, we define their parallel composition as the product tran-
sition diagram P ≡ (L, T, s, t), also denoted by P1‖ . . . ‖Pn, where:

• L = L1 × . . .× Ln

• T = {(l, a, l′) | l = 〈l1, . . . , li, . . . , ln〉, l′ = 〈l′1, . . . , l′i, . . . , l′n〉,
such that (li, a, l′i) ∈ Ti, lj = l′j , j 6= i}

• s = 〈s1, . . . , sn〉

• t = 〈t1, . . . , tn〉.

We can generalise Definition 7.3 to the parallel composition of transition
systems by observing that the above definition does not impose any restric-
tion on the names of the nodes involved. Mathematically this amounts to the
observation that renaming is a congruence w.r.t. the operation of parallel com-
position defined above, and that therefore this operation can be extended to the
equivalence classes generated by the renaming relation.

In the following we will define all our operations on diagrams. However,
in case it is obvious that the renaming relation is a congruence w.r.t. these
operations, we will no longer mention their extension to the equivalence classes
generated by this relation.

Lemma 7.4 (Associativity and commutativity of parallel composi-
tion) Parallel composition of transition systems is associative and commutative.
That is, for transition systems P1, P2, and P3, [[P1 ‖ P2] ‖ P3] is one-to-one
(i.e., isomorphic) to [P1 ‖ [P2 ‖ P3]], and [P1 ‖ P2] is one-to-one (i.e., isomor-
phic) to [P2 ‖ P1].

Proof
Left as an exercise.

As a consequence of Lemma 7.4, one can drop brackets inside P1‖ . . . ‖Pn-
terms.

Applying the global method

Thus, all definitions based on the notion of transition diagrams in the previous
chapter also apply to the parallel composition of transition diagrams (or sys-
tems) in the present chapter. In particular, the execution of P1‖ . . . ‖Pn starts in
s = 〈s1, . . . , sn〉, that is, in all entry nodes of its constituent processes P1, . . . , Pn.
Then execution proceeds by subsequently taking an enabled transition in one
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of the processes P1, . . . , Pn. This can take place infinitely often, or until all
processes are blocked because there are no enabled transitions left, or until a
number of processes have terminated and the remaining ones are blocked, or
until the program terminates. In the last case all processes have reached their
exit nodes and hence P1 ‖ . . . ‖ Pn has reached t = 〈t1, . . . , tn〉. Otherwise, if a
process Pi is no longer enabled and yet t has not been reached, P1 ‖ . . . ‖ Pn is
said to be blocked, and a deadlock has been reached.

Note that parallelism is defined by an interleaving of the individual transition
of the processes P1, . . . , Pn. In particular we draw attention to the fact that now
the local transitions in the processes Pi,, i = 1, . . . , n, are executed atomically.

As in Session 1, the function val is defined as follows, where η denotes a
maximal execution sequence of P1 ‖ . . . ‖ Pn:

val(η) def=


σ, in case η terminates in t, and the last state of η is σ,

fail , in case η ends in l, l 6= t, to indicate a deadlocked
(or blocked) computation, and

⊥, in case η is infinite.

Define Comp [[P1‖ . . . ‖Pn]]σ as the set of computations of P1‖ . . . ‖Pn start-
ing in initial state σ, and the meaning of P1‖ . . . ‖Pn as the function:

M [[P1‖ . . . ‖Pn]]σ
def
= {val(η) | η ∈ Comp [[P1‖ . . . ‖Pn]]σ}.

Hence M [[P1‖ . . . ‖Pn]]σ may contain proper states, and the symbols fail
and ⊥ corresponding with nontermination, i.e., with a deadlock and divergence,
respectively, which are not considered as proper program states.

The definition of partial correctness from the previous chapter applies imme-
diately to the parallel composition of transition diagrams (or systems) because
it results by Definition 7.3 in a particular instance of a transition diagram (or
system) according to Definition 1.5.

In particular, a program P1 ‖ . . . ‖ Pn is partially correct w.r.t. a specification
< ϕ,ψ > iff for all states σ, σ′, if |= ϕ(σ) and σ′ ∈ M[[ P1 ‖ . . . ‖ Pn ]](σ) then
|= ψ(σ′) holds. This is also expressed by |= {ϕ}P1 ‖ . . . ‖ Pn{ψ}.

The definitions of success, convergence and total correctness carry over, sim-
ilarly.

Since the parallel composition of (sequential) transition diagrams is itself a
sequential transition diagram, which describes all possible interleavings of the
parallel components, we can simply apply the inductive assertion method to
concurrent systems. This leads to a global proof method where an assertion
has to be found for every global location in P1 ‖ . . . ‖ Pn. If every process
Pi has r locations and s edges then P1 ‖ . . . ‖ Pn has rn global locations and
n × s edges. For every edge there are rn−1 global locations from which it can
start, thus also rn−1 verification conditions. Thus for P1 ‖ . . . ‖ Pn we have to
prove n × s × rn−1 verification conditions, which is exponential in the number
of programs. Consequently this method has no practical value.
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