Verifikation nebenläufiger Programme Wintersemester 2004/05 Ulrich Hannemann Jan Bredereke

8 The Proof Method of Owicki & Gries

8.1 Basic intuition of the method of Owicki & Gries

Since the generalization of Floyd's method generates a set of verification conditions whose size is *exponential* in the number of processes, as an alternative a more manageable proof method is adopted which is based on *local* inductive assertion networks which additionally satisfy the *interference freedom test* formulated by Susan Owicki and David Gries [OG76]. We try to improve the situation by deriving predicates associated with global locations from predicates attached to local locations. First these local predicates in P_i are proved to be *locally correct*, i.e., partially correct for the sequential execution of P_i when P_i is considered in isolation as a separate process. We investigate what must be added to these proofs in order to achieve partial correctness of $P_1 \parallel \ldots \parallel P_n$.

Let $P \equiv P_1 \parallel \ldots \parallel P_n$. Associate predicates to *local* locations of P instead of to its global locations: assume that for every *local* location l_i in P_i there exists a predicate Q_{l_i} . In order to apply the inductive assertion method, Definition 3.2, associate with every global location $l = \langle l_1, \ldots, l_n \rangle$ of P (where l_i denotes a location of P_i) the predicate $Q_l \equiv Q_{l_1} \land \ldots \land Q_{l_n}$; the resulting inductive assertion network is called $Q_1 \times \ldots \times Q_n$. Next this assertion network is shown to be inductive by proving the verification conditions for all steps. That is, for each transition $b \to f$ leading from $l = \langle l_1, \ldots, l_n \rangle$ to $l' = \langle l'_1, \ldots, l'_n \rangle$ we have to prove

$$\models \mathcal{Q}_l \wedge b \to \mathcal{Q}_{l'} \circ f,$$

i.e.,

$$\models (\mathcal{Q}_{l_1} \wedge \ldots \wedge \mathcal{Q}_{l_n} \wedge b) \to (\mathcal{Q}_{l'_1} \wedge \ldots \wedge \mathcal{Q}_{l'_n}) \circ f.$$

By the definition of a transition in a parallel composition, l differs from l' in at most only one local location. Suppose this step is a transition in P_i . Then $l_j \equiv l'_j$, for $i \neq j$, and hence $\mathcal{Q}_{l_j} = \mathcal{Q}_{l'_j}$. We shall demonstrate that it is sufficient to prove:

 $1. \models \mathcal{Q}_{l_i} \land b \to \mathcal{Q}_{l'_i} \circ f,$

i.e., the *local* verification condition in P_i , and

2. $\models \mathcal{Q}_{l_j} \land \mathcal{Q}_{l_i} \land b \to \mathcal{Q}_{l_j} \circ f$, for all $j \neq i$, that is, all predicates \mathcal{Q}_{l_j} associated with other processes P_j , with $j \neq i$, are *invariant* under execution of this particular transition in P_i . In other words, executing a transition in P_i does not interfere with the validity of the local assertions \mathcal{Q}_{l_j} chosen in the other processes. This can be understood as follows:

$$\begin{array}{ll} \mathcal{Q}_{l} \wedge b = & (\text{by definition and propositional logic}) \\ (\bigwedge_{\substack{j \neq i \\ j \neq i}} \mathcal{Q}_{l_{j}} \wedge \mathcal{Q}_{l_{i}} \wedge b) \wedge (\mathcal{Q}_{l_{i}} \wedge b) \rightarrow & (\text{by 1 and 2 above}) \\ (\bigwedge_{\substack{j \neq i \\ Q_{l'}}} \mathcal{Q}_{l_{j}} \circ f) \wedge \mathcal{Q}_{l'_{i}} \circ f = & (\text{by definition and propositional logic}) \\ \mathcal{Q}_{l'} \circ f. \end{array}$$

Consequently, the combination of conditions 1 and 2 above leads to a sound proof method.

Condition 1 implies that process P_i is partially correct w.r.t. $\langle Q_{s_i}, Q_{t_i} \rangle$ in isolation. We say that P_i is locally correct w.r.t. $\langle Q_{s_i}, Q_{t_i} \rangle$, for $i = 1, \ldots, n$. Condition 2 corresponds to the interference freedom test of Owicki & Gries [OG76].

This leads to a more efficient method for proving partial correctness of $P_1 \parallel \dots \parallel P_n$: first prove partial correctness for every process P_i in isolation, and then check interference freedom. In order to compute the complexity of this new method, again suppose that P_i has r locations and s edges. Now we have to find $n \times r$ local assertions and then we must prove for every edge

- local correctness: 1 verification condition, and
- interference freedom: there are $(n-1) \times r$ assertions in the other processes, so $(n-1) \times r$ verification conditions.

Since there are $n \times s$ edges in $P_1 \| \dots \| P_n$, we obtain $n \times s \times (1 + (n-1) \times r)$ verification conditions. Clearly this improves upon the global method, which required $n \times s \times r^{n-1}$ verification conditions, and reflects the so-called *state* explosion associated with parallel composition.

Example 8.1 Consider program $P \equiv P_1 \parallel P_2$ as in Figure 1.

$$P_1: \begin{array}{c} s_1 \\ \hline y := y + 1 \\ \hline t_1 \\ \hline \end{array} \begin{array}{c} P_2: \\ \hline s_2 \\ \hline \end{array} \begin{array}{c} y := y + 2 \\ \hline t_2 \\ \hline \end{array} \begin{array}{c} t_2 \\ \hline \end{array}$$

Figure 1: A very simple concurrent program.

We prove that P is partially correct w.r.t. specification $\langle y = 0, y = 3 \rangle$, i.e.,

- $\models \{y = 0\} P \{y = 3\}$. Take the assertion network Q defined in Figure 2.
 - 1. It is easy to check that P_i is partially correct w.r.t. $\langle Q_{s_i}, Q_{t_i} \rangle$, for $i \in \{1, 2\}$.
 - 2. Verify interference freedom:
 - We show that Q_{s1} and Q_{t1} are invariant under y := y + 2, as follows.
 Assume Q_{s1} ∧ Q_{s2} holds. Then y = 0, and thus after executing y := y + 2 we have that Q_{s1} ≡ y = 0 ∨ y = 2 holds.
 - Assume $Q_{t_1} \wedge Q_{s_2}$ holds. Then y = 1, and thus after executing y := y + 2 we have that $Q_{t_1} \equiv y = 1 \lor y = 3$ holds.

$$\begin{array}{c} \mathcal{Q}_{s_1} \stackrel{\mathrm{\tiny def}}{=} y = 0 \lor y = 2 \quad \overbrace{s_1} \\ y := y + 1 \\ \mathcal{Q}_{t_1} \stackrel{\mathrm{\tiny def}}{=} y = 1 \lor y = 3 \quad \overbrace{t_1} \\ \end{array} \qquad \begin{array}{c} \overbrace{s_2} \\ y := y + 2 \\ \overbrace{t_2} \\ \mathcal{Q}_{t_2} \stackrel{\mathrm{\tiny def}}{=} y = 2 \lor y = 3 \end{array}$$

Figure 2: And its associated inductive assertion network.

• Similarly, \mathcal{Q}_{s_2} and \mathcal{Q}_{t_2} are invariant under y := y + 1.

3. •
$$\models y = 0 \rightarrow Q_s$$
, since $Q_s \equiv Q_{s_1} \land Q_{s_2}$ and $\models Q_{s_1} \land Q_{s_2} \leftrightarrow y = 0$, and
• $\models Q_t \rightarrow y = 3$, since $Q_t \equiv Q_{t_1} \land Q_{t_2}$ and $\models Q_{t_1} \land Q_{t_2} \leftrightarrow y = 3$. \square

8.1.1 Incompleteness of the proposed method

Example 8.2 (Incompleteness of the proposed method) Consider $P \equiv P_1 \parallel P_2$ as in figure 3.

$$P_1: \begin{array}{c} s_1 \\ \end{array} \underbrace{y := y + 1}_{\bullet} \\ \hline t_1 \\ \end{array} \begin{array}{c} P_2: \\ \end{array} \underbrace{y := y + 1}_{\bullet} \\ \hline t_2 \\ \end{array}$$

Figure 3: An even simpler concurrent program.

The aim is to prove that P is partially correct w.r.t. specification $\langle y = 0, y = 2 \rangle$. Analogously to the previous example, we investigate whether the assertion network given in Figure 4 is interference free.

Figure 4: And a failed attempt at defining an interference free inductive assertion network for it.

Clearly P_i is partially correct w.r.t. $\langle \mathcal{Q}_{s_i}, \mathcal{Q}_{t_i} \rangle$, for $i \in \{1, 2\}$. These predicates, however, are not interference free. For instance, assume that $\mathcal{Q}_{s_1} \land \mathcal{Q}_{s_2}$ holds. Then $y = 0 \lor y = 1$, and thus after executing y := y + 1 we have that $y = 1 \lor y = 2$ holds. Hence $\mathcal{Q}_{s_1} \equiv y = 0 \lor y = 1$ is not invariant under

execution of y := y + 1 in P_2 .

A second problem is that $\mathcal{Q}_{t_1} \wedge \mathcal{Q}_{t_2}$ does not imply y = 2.

It is even impossible to find assertions that prove specification $\langle y = 0, y = 2 \rangle$ for P using program variable y only! In order to show this, suppose we have Q_{s_i} and Q_{t_i} which are locally correct for P_i and, moreover, $\models y = 0 \rightarrow Q_{s_1} \land Q_{s_2}$, and $\models Q_{t_1} \land Q_{t_2} \rightarrow y = 2$. From the first implication, $\models y = 0 \rightarrow Q_{s_1} \land Q_{s_2}$, we obtain that Q_{s_1} and Q_{s_2} hold for a state which assigns the value 0 to y. Since we assumed local correctness, this implies that $Q_{t_1} \land Q_{t_2}$ hold for a state which assigns the value 1 to y, thus $\models y = 1 \rightarrow Q_{t_1} \land Q_{t_2}$. This, however, leads to a contradiction with the second implication, $\models Q_{t_1} \land Q_{t_2} \rightarrow y = 2$.

References

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatica, 6:319–340, 1976.