
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

9 The Proof Method of Owicki & Gries

9.1 Formulating a complete version

The solution of Owicki and Gries to the particular form of incompleteness sig-
nalled in Example 8.2 is the introduction of auxiliary variables that do not occur
in the original transitions of a program but are added to their assignments in
order to be able to express assumptions about the other components. These
variables are not allowed in conditions inside transitions. Furthermore, auxil-
iary variables should not occur in the original assignments of the program –
they only occur in assignments to auxiliary variables themselves, and thus the
values of the program variables are also not affected by adding auxiliary vari-
ables. Within our semantic set up this is expressed by requiring that conditions
c in our original program do not depend on these auxiliary variables, in the
sense defined in Session 2. Hence auxiliary variables do not influence control
flow, since the enabledness of transitions does not change by adding auxiliary
variables.

Summarising, we have the following formal definition of auxiliary variables:

Definition 9.1 (Auxiliary variables) A set of program variables z̄ = z1, . . . ,
zn is a set of auxiliary variables of a program P if

• for any boolean condition c of P , z̄ ∩ var(c) = ∅,

• for any state transformation f of P there exist state transformations g
and h such that f = g ◦ h, z̄ ∩ var(g) = ∅, and the write variables of h are
among z̄.

(For the definition of var(f) and the write variables of a function f we refer to
Session 2.)

Observe that the above second condition expresses that every state trans-
formation f of P can be decomposed in a state transformation g which does
not involve the auxiliary variables and a state transformation h which changes
only the auxiliary variables. Note also that logical variables trivially satisfy this
definition.

Now, the test for interference freedom allows one to check the consistency of
the introduced assumptions when these are expressed in terms of the program
variables and the auxiliary variables.

Example 9.2 (Continuation of Example 8.2) In our example we can use
two auxiliary variables z1 and z2 to encode the location which the control flow
of a process has reached: zi = 0 iff Pi is at location si, and zi = 1 iff Pi is
at location ti. Therefore we augment the program with assignments to these
auxiliary variables, resulting in P ′ ≡ P ′

1 ‖ P ′
2 as in Figure 1.

1

P ′
1 : ��

��
s1 -y, z1 := y + 1, 1��

��
t1 P ′

2 : ��
��
s2 -y, z2 := y + 1, 1��

��
t2

Figure 1: Adding auxiliary variables z1 and z2 to the program from Figure 4 of
Session 8.

In the predicates defined in Figure 2 these auxiliary variables are used to
express the relation between the values of y and the locations of the other
process.

��
��
s1

Qs1

def= z1 = 0 ∧
(z2 = 0 → y = 0) ∧
(z2 = 1 → y = 1)

?

y, z1 := y + 1, 1

��
��
t1

Qt1
def= z1 = 1 ∧

(z2 = 0 → y = 1) ∧
(z2 = 1 → y = 2)

‖

��
��
s2

Qs2

def= z2 = 0 ∧
(z1 = 0 → y = 0) ∧
(z1 = 1 → y = 1)

?

y, z2 := y + 1, 1

��
��
t2

Qt2
def= z2 = 1 ∧

(z1 = 0 → y = 1) ∧
(z1 = 1 → y = 2)

Figure 2: The use of auxiliary variables in predicates allows for the expression
of interference free assertion networks.

We prove that this modified program P ′ is partially correct with respect to
the specification < y = 0 ∧ z1 = 0 ∧ z2 = 0, y = 2 >:

1. Local correctness of P ′
1 and P ′

2 is straightforward.

2. Interference freedom:

• Assume Qs1 ∧Qs2 holds, that is, z1 = 0∧ z2 = 0∧ y = 0 holds. Then
after executing y, z2 := y + 1, 1 we have z1 = 0 ∧ z2 = 1 ∧ y = 1, and
thus Qs1 holds.

• Assume Qt1 ∧Qs2 holds, that is, z1 = 1∧ z2 = 0∧ y = 1 holds. Then
after executing y, z2 := y + 1, 1 we have z1 = 1 ∧ z2 = 1 ∧ y = 2, and
thus Qt1 holds.

• Symmetrically, Qs2 and Qt2 are invariant under y, z1 := y + 1, 1.

3. Clearly, |= y = 0∧ z1 = 0∧ z2 = 0 → Qs1 ∧Qs2 and |= Qt1 ∧Qt2 → y = 2.

Hence P ′ is partially correct w.r.t. specification < y = 0 ∧ z1 = 0 ∧ z2 = 0, y =
2 >.

However, we started out wishing to prove P to be partially correct w.r.t.
< y = 0, y = 2 >! So, how does one argue that the former, a statement about
P ′ involving z1, z2 and y, implies the latter, a statement involving P and only
y?

P ′’s partial correctness w.r.t. < y = 0∧ z1 = 0∧ z2 = 0, y = 2 > means that
every terminating (y = 0 ∧ z1 = 0 ∧ z2 = 0)-computation terminates in a state

2

satisfying y = 2. Then also every terminating (y = 0)-computation terminates
in a state satisfying y = 2, since (1) z1 and z2 do not occur in tests, and hence
do not have any influence on the flow of control during program execution, and
(2) neither z1 nor z2 occur in postcondition y = 2. That is, whatever the values
of z1 and z2 are at the beginning of the computation, the same sequence of
instructions from P1 is executed as for z1 = 0 ∧ z2 = 0 at the beginning of that
sequence, while the postcondition remains valid. Moreover, they do not affect
assignments to y. That is, not only is the sequence of instructions executed for
initial state y = 0 independent of the values of z1 and z2, but also the state
transformation of y between the beginning and end of P ′ is independent of these
values. Hence P ′ is partially correct w.r.t. specification < y = 0, y = 2 >.

This argument summarises soundness of the following initialisation rule,
because we can initialise the auxiliary variables z1 and z2 both to 0 so that the
old precondition y = 0∧ z1 = 0∧ z2 = 0 results in a new precondition y = 0 for
P ′, while preserving partial correctness of P ′.

Rule 9.1 (Initialisation rule)

{ϕ} P {ψ}
{ϕ ◦ f} P {ψ}

,

where f is a function such that its write variables constitute a set of auxiliary
variables for P which do not occur in ψ.

Here the format
{ϕ1} P1 {ψ1}
{ϕ2} P2 {ψ2}

is used to express the rule that |= {ϕ1} P1 {ψ1} implies |= {ϕ2} P2 {ψ2}. If the
latter is the case, the rule is called sound.

Example 9.3 (Continuation of Example 8.2) In more detail, with Qsi as
in Figure 2 above, the following equivalences hold:

Qs1 ∧Qs2

↔ z1 = 0 ∧ (z2 = 0 → y = 0) ∧ (z2 = 1 → y = 1)∧
z2 = 0 ∧ (z1 = 0 → y = 0) ∧ (z1 = 1 → y = 1)

↔ (by propositional logic) z1 = 0 ∧ z2 = 0 ∧ y = 0.

Choosing (z1, z2) := (0, 0) for f , one has

|= (z1 = 0 ∧ z2 = 0 ∧ y = 0) ◦ f ↔ y = 0.

Now, using these two results and given that

{z1 = 0 ∧ z2 = 0 ∧ y = 0} P ′ {y = 2}

holds for P ′ as above, the initialisation rule states:

{z1 = 0 ∧ z2 = 0 ∧ y = 0} P ′ {y = 2}
{y = 0} P ′ {y = 2}

3

and therefore (soundness of this rule) leads to

|= {y = 0} P ′ {y = 2}.

Please, observe that |= y = 0 → z1 = 0∧z2 = 0∧y = 0 does not hold. Hence, one
needs an extra rule to justify the step from |= {z1 = 0∧z2 = 0∧y = 0} P ′ {y = 2}
to |= {y = 0} P ′ {y = 2}. This justifies the initialisation rule, applied above.

This raises as the next question how to get rid of P ′ in |= {y = 0} P ′ {y = 2},
for it is our intention to prove |= {y = 0} P {y = 2}!

Since every (y = 0)-computation in P has a corresponding (y = 0)-computa-
tion in P ′ which assigns the same values to y, we also obtain that P is partially
correct w.r.t. < y = 0, y = 2 >.

This second argument summarises application of Owicki & Gries’ so-called
auxiliary variables rule, stating that a correctness statement about P ′ in the
postcondition of which no auxiliary variables occur implies the similar statement
about P , where P is obtained from P ′ by removing auxiliary variables.

Rule 9.2 (Owicki & Gries’ auxiliary variables rule) Let z̄ be a set of aux-
iliary variables of P ′. Then

{ϕ} P ′ {ψ}
{ϕ} P {ψ}

provided z̄ ∩ var(ψ) = ∅ and P is obtained from P ′ by restricting the state
transformations of P ′ to all the variables excluding the auxiliary variable set z̄.
More precisely, let f be a state transformation of P ′ such that f = g ◦ h, where
g does not involve z̄ and the write variables of h are among z̄, then g is the
corresponding state transformation of P .

Example 9.4 (Continuation of Example 8.2) In the case of our example,
application of the auxiliary variables rule amounts to

{y = 0} (y, z1) := (y + 1, 1) ‖ (y, z2) := (y + 1, 1) {y = 2}
{y = 0} y := y + 1 ‖ y := y + 1 {y = 2}

,

where the above assignments stand for the corresponding transition diagrams
from Figures 3 of Session 8 and 1. Consequently its soundness gives that from

|= {y = 0} P ′ {y = 2}

one derives
|= {y = 0} P {y = 2},

with P as defined in Example 8.2.

The general formulation of the proof method of Owicki & Gries [OG76] is
given below.

Definition 9.5 (The proof method of Owicki & Gries) Consider P ≡ P1 ‖
. . . ‖ Pn. To prove {ϕ}P{ψ} we introduce the proof method of Owicki & Gries:

4

1. Augment Pi by introducing auxiliary variables; every action b → f can
be extended as follows: b → f ◦ g, where g is a state transformation
such that its write variables are among the auxiliary variables z̄ where
z̄ ∩ var(ϕ, P, ψ) = ∅. This leads to an augmented transition diagram
P ′ ≡ P ′

1 ‖ . . . ‖ P ′
n.

2. Associate a predicate Ql with every location l of P ′
i .

3. Prove local correctness of every P ′
i : For every transition l

a→ l′ of P ′
i ,

assuming a ≡ b→ f , we prove

|= Ql ∧ b→ Ql′ ◦ f.

4. Prove interference freedom, that is, for every transition l
a→ l′ of P ′

i , and
for every predicate Ql′′ associated to a location l′′ of P ′

j , with j 6= i,
assuming a ≡ b→ f ,1 we prove

|= Ql ∧Ql′′ ∧ b→ Ql′′ ◦ f.

5. Prove

• |= ϕ → (
∧n

i=1Qsi
) ◦ h, for some state transformation h whose write

variables write(h) belong to the set of auxiliary variables z̄, and
where si denotes the initial location of P ′

i , and

• |= (
∧n

i=1Qti
) → ψ, where ti denotes the final location of P ′

i .

Let us trace how the proof method of Owicki & Gries has been applied
in case of our example. Step 1 corresponds with the transformation of P in
Figure 3 of Session 8 to P ′ as in Figure 1. Step 2 is given by Figure 2, step 3 is
straightforward, and step 4 has been checked above. The first part of step 5 is
trivial, since ϕ ≡ y = 0 and

|=
∧
i

Qsi ◦ h↔
∧
i

Qsi ◦ (z1, z2) := (0, 0) ↔ 0 = 0 ∧ 0 = 0 ∧ y = 0 ↔ y = 0,

choosing (z1, z2) := (0, 0) for h; the second part of step 5 amounts to proving
the validity of

|= z1 = 1 ∧ z2 = 1 ∧ y = 2 → y = 2,

which is trivial.
Observe that when n = 1 this proof method still makes sense.

References

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319–340, 1976.

1The intention is here that b → f identifies a label occurring in P ′, i.e., it is of the form
b → f ′ ◦ g with b → f ′ occurring in P .

5

