
Verifikation nebenläufiger Programme
Wintersemester 2004/05
Ulrich Hannemann Jan Bredereke

Example

In this section we illustrate the method of Owicki & Gries by proving mutual
exclusion of different algorithms. First we investigate the general structure of
mutual exclusion algorithms where two processes should be coordinated, leading
to the development of Dijkstra’s mutual exclusion algorithm [Dij65, Dij68] and
a proof of its correctness using the method of Owicki & Gries.

The mutual exclusion property we want to establish for these algorithms
cannot be expressed directly as a partial-correctness formula. Consequently,
we do not use the whole of the method of Owicki & Gries, since that proves
partial-correctness formulae of the {pre}P1|| . . . ||Pn{post}-type, but only part
of it. We only need the notion of inductive assertion networks in the way these
are constructed according to the method of Owicki & Gries, since these express
properties which hold at the locations of processes. We shall prove that these
properties, when applied to the locations of the critical sections of each process,
imply mutual exclusion.

In general, the mutual exclusion problem is present in a system of concur-
rently executing processes where some common resources can only be used by
one process at-a-time. For simplicity, we model these processes as infinite loops
alternating between a critical section and a non-critical section. The general
idea to enforce this property is to introduce pre- and postprotocols to the in-
volved processes to ensure mutual exclusion.

In order to model mutual exclusion algorithms in terms of transition dia-
grams for two processes we use the following conventions.

• For each process Pi, i = 1, 2 we introduce a boolean variable csi as ob-
servable, with the intention that the value of csi is tt if and only if Pi is
in its critical section.

• A program never starts in its critical section; we thus identify the begin-
ning of the noncritical section with the entry location.

• Infinitely looping programs never reach their exit location; this explains
the transition (s, false → id, t).

We first consider systems which are composed of two concurrent processes P1

and P2. We say that they satisfy the mutual exclusion property if their parallel
execution P1‖P2 ensures that ¬(cs1 ∧ cs2) always holds, i.e., P1 and P2 are
never in their critical sections simultaneously – for the transition diagrams as
in Figure 1 this obviously does not hold.

Example 1: Consider the following approach: For each process P1 and P2

a (boolean) variable reqi, i = 1, 2 is introduced to indicate that process Pi

requests access to its critical section. These variables are shared, but process

1

Pi : ����
si

� �
?

csi := tt

� �6

csi := ff

����
li

����
ti

�

false

Figure 1: General structure of a mutual exclusion algorithm.

Pi has exclusive write-access to its own request flag reqi. Process Pj , i 6= j, can
read reqi, but it cannot change the value of reqi.

To be sure that mutual exclusion holds we require that no process enters
the critical section while the other process has already requested entrance to its
critical section. Although we have satisfied the mutual exclusion requirement

Pi : ����
si

� �
?

reqi := tt

� �6

(csi, reqi) := (ff,ff)

����
l2i

� �¬reqj → csi := tt

����
l1i

?

����
ti

�

false

Figure 2: A deadlock solution.

(not formally proven), this “solution” suffers from the possibility of running
into a “deadlock” situation when Pi sets its request flag and does not enter the
critical section immediately, but instead Pj sets its request flag; then both req1

and req2 are true and neither P1 nor P2 can proceed.

Example 2: (Dijkstra’s Mutual Exclusion Algorithm) To avoid this
possibility of deadlock, another location is added to each process, setting reqi

to ff during a certain period so that Pj can reach its critical section and set
its flag reqj to ff after executing that section. Now we want to establish that
P1‖P2 in Figure 3 satisfies the mutual exclusion property. As precondition we
characterize a safe state for the program variables, stating that no process is in
its critical section and no process requested access to its critical section.

ϕ = ¬cs1 ∧ ¬cs2 ∧ ¬req1 ∧ ¬req2

Since the transition diagram resulting from parallel composition in terms of
their product would consist of 25 location and 60 transitions, we give a proof

2

Pi : ����
si -

reqi := tt

� �
?

reqj → reqi := ff

� �6

reqi := tt

����
l1i ����

l2i

?
¬reqj → csi := tt

����
l3i

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ}

(reqi, csi) := (ff,ff)

����
ti

�

false

Figure 3: Dijkstra’s mutual exclusion algorithm.

using the method of Owicki and Gries to reduce the required effort.
Proof
We have the following assertion network Qi for Pi, i = 1, 2, where j = 1, 2,
i 6= j.

Q(si)
def= ¬csi ∧ ¬reqi ∧ (csj → reqj) ∧ (¬(csi ∧ csj))

Q(l1i)
def= ¬csi ∧ reqi ∧ (csj → reqj) ∧ (¬(csi ∧ csj))

Q(l2i)
def= ¬csi ∧ ¬reqi ∧ (csj → reqj) ∧ (¬(csi ∧ csj))

Q(l3i)
def= csi ∧ reqi ∧ (csj → reqj) ∧ (¬(csi ∧ csj))

Q(ti)
def= false

Local correctness: We have to check the following local verification condi-
tions of which only the fourth one is nontrivial.

• |= Q(si) → Q(l1i) ◦ (reqi := tt)).

• |= Q(l1i) ∧ reqj → Q(l2i) ◦ (reqi := ff)).

• |= Q(l2i) → Q(l1i) ◦ (reqi := tt)).

• |= Q(l1i) ∧ ¬reqj → Q(l3i) ◦ (csi := tt)).

Here we have to particularly check that our invariant ¬(csi∧ csj) is main-
tained. Now Q(l1i)∧¬reqj implies that (csj → reqj)∧¬reqj and therefore
¬csj . Since csj is not changed by this transition, we have established that
¬(csi ∧ csj) holds in l3i .

• |= Q(l3i) → Q(si) ◦ (csi, reqi := ff,ff)).

• |= Q(si) ∧ false → Q(ti).

Interference freedom: We only consider the interesting case in which the
transition from l1i to l3i is taken in Pi and prove that the assertion network
associated with the locations of Pj remains interference free.

• |= Q(l1i) ∧Q(sj) ∧ ¬reqj → Q(sj) ◦ (csi := tt)).

The only crucial clause is ¬(cs1 ∧ cs2). Since Q(sj) implies ¬csj and csj

is not changed by this particular transition, Q(sj) holds afterwards.

3

• |= Q(l1i) ∧Q(l1j) ∧ ¬reqj → Q(l1j) ◦ (csi := tt)).

Now since Q(l1j) implies reqj , we conclude from the premise that reqj ∧
¬reqj has to hold to enable the transition in this particular case. This
turns out to be false, and hence the verification condition above is satisfied
trivially.

• |= Q(l1i) ∧Q(l2j) ∧ ¬reqj → Q(l2j) ◦ (csi := tt)).

Since Q(l2j) is the same as Q(sj) this condition is already proven above.

• |= Q(l1i) ∧Q(l3j) ∧ ¬reqj → Q(l3j) ◦ (csi := tt)).

Again, Q(l3j) implies reqj , and analogously to the case of Q(l1j) this veri-
fication condition is satisfied trivially.

• |= Q(l1i) ∧Q(tj) ∧ ¬reqj → Q(tj) ◦ (csi := tt)).

Since Q(tj) ≡ false, this verification condition holds trivially.

We have to check 60 verification conditions for the interference freedom test and
12 local verification conditions – but due to the symmetry of the processes only
half of them have to be actually carried out. This is an improvement over the
direct product. Additionally, the verification conditions for the Owicki & Gries
method are better structured and usually simpler than those for the product of
the processes.

As indicated in Session 8, the above assertion network for P is inductive,
and, by Lemma 4.2, it is also invariant. This means that for every computation
η : 〈l0;σ0〉 −→ 〈l1;σ1〉 −→ 〈l2;σ2〉 −→ . . . we have |= Qli(σi). The proof
above indicates that P1‖P2 satisfies the mutual exclusion property, since every
assertion implies ¬(cs1 ∧ cs2).

References

[Dij65] E.W. Dijkstra. Solution of a problem in concurrent programming con-
trol. CACM, 8(9), 1965.

[Dij68] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, edi-
tor, Programming Languages, pages 43–112. Academic Press, New York,
1968.

4

