
-1

Writing RT-Tester Specifications with CSP

— Communicating Sequential Processes —

Prof. Dr. Jan Peleska
Dr. Cornelia Zahlten

University of Bremen and Verified Systems
14May2000

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

0 Overview

1. Introduction

2. Accompanying example: engine controller

3. CSP Test Specification File Structure

4. CSP Data Types

5. CSP Test Specification Interface

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1. Introduction

• Testing reactive systems

• RT-Tester – basic concepts

• The CSP specification language

2. Accompanying example: engine controller

3. CSP Test Specification File Structure

4. CSP Data Types

5. CSP Test Specification Interface

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1 Introduction

1.1 Testing Reactive Systems

• Reactive System: Computer System continuously interacting with its

environment

• Specification languages: formalisms to describe networks of timed

state machines and variants thereof

• Test Approach for Reactive Systems:

– Simulate components of the operational environment

– Check whether reactive system responds to inputs as required in the

specification

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Testing Reactive Systems

.

Verified’s

Test Configuration
HW-in-the-Loop

RT-Tester

.

Operational

Operational
System Configuration

Environment

tested
is

by

Embedded

Controller

(System Under Test)

SUT

Embedded
Controller =

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1.2 RT-Tester – basic concepts

RT-Tester performs

• Software integration tests

• Hardware-in-the-loop tests

for reactive systems.

RT-Tester provides automatic

• generation of test data

• test execution in real-time

• on-the-fly test evaluation

• test documentation

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

RT-Tester – basic concepts

• RT-Tester test specifications are written in CSP, possibly with

customised extensions written in C or C++.

• Test specifications are compiled into data structures (called transition

graphs) which can be interpreted in real-time by Abstract Machines.

• In test specifications, events to be passed between Abstract Machines and

the system under test (SUT) are described in an abstract way, the mapping

to concrete interfaces is performed by Interface Modules.

• An RT-Tester test case consists of one or more specifications exercised on

the SUT in parallel and in real-time.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

RT-Tester – basic concepts

TEST SPECIFICATION SUB-SYSTEM

develop and validate test specifications
in various formalisms

on-line visualization of test executions
in various presentation techniques

ABSTRACT MACHINE LAYER

COMMUNICATION CONTROL LAYER

INTERFACE MODULE LAYER

Test generation - real-time test execution - on-the-fly test evaluation

Refinement - abstraction - relaying of test data

implements direct interfaces to the System under Test

SYSTEM UNDER TEST

www-based interface for integrated (remote) access of RT-Tester components

TEST VISUALIZATION SUB-SYSTEM

TEST MANAGEMENT FRONT-ENDS

REAL-TIME TEST SUB-SYSTEM

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

RT-Tester – basic concepts

REAL-TIME TEST SUB-SYSTEM

ABSTRACT MACHINE LAYER

COMMUNICATION CONTROL LAYER

INTERFACE MODULE LAYER

SYSTEM UNDER TEST

TEST VISUALIZATIONTEST SPECIFICATION

TEST MANAGEMENT FRONT-ENDS
IFM

CCL

AML

REAL-TIME TEST SUB-SYSTEM

interpreting
specifications

AM-1 AM-2 AM-n

CCL-1 CCL-2

IFM-2IFM-1 IFM-k

To / From SUT

communication via rttiflib

event mapping
via rttemlib

abstract machine

or cutomised event mapping
via rttemlib
event mapping

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1.3 The CSP specification language

Communicating Sequential Processes (CSP), Hoare 1985

• CSP is a language to describe networks of processes which proceed

from one state to another by engaging into events.

• A sequential CSP process is a variant of a timed state machine.

• Processes may be composed by operators and synchronised by events.

• Each parallel component must be willing to participate in a given

synchronisation event before the whole network can make the transition.

• CSP can be used for system specification, verification of

specifications and specification-based testing.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1. Introduction

2. Accompanying example: engine controller

3. CSP Test Specification File Structure

4. CSP Data Types

5. CSP Test Specification Interface

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

2 Accompanying example: engine controller

“Real” Operational Environment:

• User sends SPEED-UP and SLOW-DOWN commands to controller

• Controller ACCELERATEs and BRAKES the engine according to user

command

• Controller triggers EMERGENCY BRAKE after 5sec at top-speed, if user

does not give a SLOW-DOWN command before

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Accompanying example: engine controller

ENGINE
CONTROLLER

ENGINEUSER

speedUp , slowDown accelerate, brake

speed

zeroSpeedReached, maxSpeedReached

COMMUNICATION BUS

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Accompanying example: engine controller

Test Environment:

• RT-Tester Test Engine interfaces to Controller by USER INTERFACE and

ENGINE INTERFACE

• RT-Tester Abstract Machine 1 generates all relevant user behaviours

• RT-Tester Abstract Machine 2 simulates engine behaviour

• RT-Tester Abstract Machine 3 acts as TEST ORACLE and automatically

checks proper reactions of Controller

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Accompanying example: engine controller

ENGINE
CONTROLLER

RT-TESTER

ABSTRACT MACHINES

TEST
ORACLE

USER ENGINE-
SIMULATOR

COMMUNICATION BUS

speedUp
slowDown speed

accelerate, brake

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1. Introduction

2. Accompanying example: engine controller

3. CSP Test Specification File Structure

4. CSP Data Types

5. CSP Test Specification Interface

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

3 CSP Test Specification File Structure

CSP specifications are defined by (networks of communicating) sequential CSP

processes. Each process definition is written in the form name = CSP-term,

where name is an identifier for a CSP process, and CSP-term is a CSP

expression containing references to events, processes and the CSP operators to

be introduced below.

An RT-Tester CSP specification consists of

1. data types and constant definitions

2. channel declarations (interface definitions)

3. included Macro Processes (pre-defined auxiliary processes)

4. main process definition (the test specification process)

5. subprocess definitions (top-down decomposition of the main process)

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

1. Introduction

2. Accompanying example: engine controller

3. CSP Test Specification File Structure

4. CSP Data Types

5. CSP Test Specification Interface

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

4 CSP Data Types

Predefined Types: Bool Boolean values {true, false}

Int Integer values, e.g. {0..3} <= Int

Named Types: DIGIT = {0,1,2,3,4,5,11,12}

RANGE = {3..25}

C1 = 17

C2 = off

Data Types: datatype BUTTON = pushed | released

datatype Simple_Color = Red | Green | Blue

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5. CSP Test Specification Interface

• CSP Channels and Events

• Input/Output Channels

• Error and Warning Channels

• Timer Channels

• Internal Channels

• List of Channel Keywords

• Event Syntax

6. CSP Processes for writing RT-Tester Specifications

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5 CSP Test Specification Interface

5.1 CSP Channels and Events

• In RT-Tester CSP specifications, observable information is transported by

Channels.

• Channels are classified as

– Atomic: the channel transports an unstructured signal

– Structured: the channel transports structured data items (messages),

where each data component is member of a previously defined type.

• An Event corresponds to a point in time where

– an atomic channel signal is triggered, or

– a data item is passed along structured channels.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.2 Input/Output Channels

Datatypes: datatype BUTTON = pushed | released

DIGIT = {0,1,2,3,4,5,11,12}

I/O-Channels: --$$AM_OUTPUT

channel Ptt : BUTTON

channel DialDigit: DIGIT.BUTTON

--$$AM_INPUT

channel Called

Events: Ptt.pushed

Ptt.released

DialDigit.0.pushed

...

DialDigit.12.released

Called

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.3 Error and Warning Channels

RT-Tester channel declarations are introduced by keywords.

Error Channels: --$$AM_ERROR

channel error : {0..9}

If an error event is produced by the specification, RT-Tester produces an error

message and stops the test process.

Warning Channels: --$$AM_WARNING

channel warning : {10..19}

If a warning event is produced by the specification, RT-Tester produces a

warning but the test process goes on.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.4 Timer Channels

Timers are special channels to specify and test timing conditions.

Timers: TIMERS = {1..5}

--$$AM_SET_TIMER

channel setT : TIMERS

--$$AM_ELAPSED_TIMER

channel elaT : TIMERS

--$$AM_RESET_TIMER

channel resT : TIMERS

setT: Set a timer to a value of fixed time ticks.

elaT: Timer elapsed. These events are produced by RT-Tester.

resT: Reset a timer to zero, e.g. stop the timer.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.5 Internal Channels

Internal channels are used for internal or hidden events.

Internal: --$$AM_INTERNAL

channel myInternalChan : myType

Declares channels

• which should occur in the test execution log, but should NOT be sent to

the SUT or other AMs (for example: internal events as requirement tags).

• which are hidden by means of the \ - operator.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.6 List of Channel Keywords

Keywords: --$$AM_ERROR

--$$AM_WARNING

--$$AM_SET_TIMER

--$$AM_ELAPSED_TIMER

--$$AM_RESET_TIMER

--$$AM_INPUT

--$$AM_OUTPUT

--$$AM_INTERNAL

Each keyword introduces a section of channel definitions.

The above order is fixed, e.g. error channels have to be declared first, internal

channels have to be declared last.

Keywords may be omitted, if there are no channels of that type.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

”pragma” List of Channel Keywords

Keywords: pragma AM_ERROR

pragma AM_WARNING

pragma AM_SET_TIMER

pragma AM_ELAPSED_TIMER

pragma AM_RESET_TIMER

pragma AM_INPUT

pragma AM_OUTPUT

pragma AM_INTERNAL

RT-Tester provides two alternatives to introduce keywords: They may start

with either --$$ or pragma .

Future versions of RT-Tester will only support the pragma version.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

5.7 Event Syntax

channel chan : 0..6

channel singlevent

chan!5 process produces output 5 on channel chan

chan?5 process waits for input 5 and accepts only this input

chan.5 process produces or accepts only event chan.5

This depends on the keyword AM INPUT or

AM OUTPUT, which preceeds the channel declaration.

chan?x process waits for any input on this channel

!singlevent same as singlevent

?singlevent syntax error

singlevent process produces or accepts the event

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6. CSP Processes for writing RT-Tester Specifications

• STOP Process

• Events and Prefixing

• If-Then-Else

• Wait-Timers

• Process References

• Recursion

• Parameterised Processes

• Expressions on Parameters

• Sequential Composition

• Macro Processes

• External Choice

• Timeout-Timers

• Parameterised External Choice and Guards

• Internal Choice

• Internal Choice and Timers

• Interrupt Operator

• Hiding

• Interleaving

• Parallel

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6 CSP Processes for writing RT-Tester Specifications

6.1 STOP Process

Syntax: P = STOP

Description: A process with no action at all.

Test Features: If an input occurs while RT-Tester is testing the process

STOP, an error message is produced (unexpected input

event).

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.2 Events and Prefixing

Syntax: P = a -> Q

Description: Event ‘a’ is immediately followed by process Q.

Examples: P = in?x -> acc!x -> STOP

Process P waits for an input value on channel in, sends

that same value to channel acc, then stops. x is a local

process variable, implicitly declared by usage in in?x.

Test Features: Any other (non-expected) input is an error.

If a specified output is not produced by P, somebody waits.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.3 If-Then-Else

Syntax: X = if (<condition>) then P else Q

Description: Process X behaves as process P if <condition> evaluates

to true, otherwise X behaves as process Q. <condition>

is a boolean expression over local process variables and

process parameters (see below).

Test Features: If-Then-Else may be used to evaluate correctness of SUT

responses.

Example: TEST_ENVIRONMENT =
toSUT!5 -> fromSUT?x ->

(if (x < 5)
then (outputOk! -> STOP)
else (warning! -> STOP))

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.4 Wait-Timers

Syntax: --$$AM_SET_TIMER

channel setT : {0..9}

--$$AM_ELAPSED_TIMER

channel elaT : {0..9}

...

ENV = toSUT!1 -> setT!0 -> elaT.0 -> toSUT!2 -> STOP

Description: Wait-timers are realised as pairs of SET-TIMER/ELAPSED-
TIMER events. setT!0 sets timer number 0, and elaT.0 indi-
cates that the time interval associated with this timer has elapsed.
The concrete duration (fixed time or random time interval) is
bound to each timer in the RT-Tester configuration file.

Test Features: The test environment uses wait-timers if time has to pass between
consecutive outputs sent to the SUT.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.5 Process References

Syntax: P = Q where Q is another defined CSP process.

Description: A process may reference another process by name. For

example, this supports the re-use of existing process defi-

nitions.

Example: P = fromSUT?x -> (if (x == 5) then Q else R)

Q = toSUT!0 -> STOP

R = toSUT!1 -> STOP

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.6 Recursion

Description: Process references may be applied recursively. This is used

to define non-terminating processes. Ungarded recursion,

that is, unbounded recursive process references without

interleaved events, is not allowed (leads to diverging pro-

cesses).

Test Features: Recursion is important to test non-terminating systems:

Using recursion, it is possible to generate an arbitrary num-

ber of different I/O patterns for communication between

environment and SUT.

Example: P = fromSUT?x -> (if (x == 5) then Q else R)
Q = setT!0 -> elaT.0 -> toSUT!0 -> P
R = toSUT!1 -> Q

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.7 Parameterised Processes

Syntax: Q(x1,...,xn) = ...

Description: A process definition may be parameterised by formal pa-

rameters x1,...,xn, which are bound to concrete values

as soon as the process is referenced by another one, pro-

viding the actual parameter values. Formal parameters are

implicitly typed.

Example: --$$AM_INPUT
channel fromSUT : {0..9}
--$$AM_OUTPUT
channel toSUT : {0..9}

P = fromSUT?x -> (if (x == 5) then Q else R(x))
Q = setT!0 -> elaT.0 -> toSUT!0 -> P
R(z) = toSUT!(z+1)%10 -> Q

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.8 Expressions on Parameters

Description: In addition to the types introduced above, process param-

eters may be defined as sets and sequences.

Set expressions: {} : empty set
{ n1..n2 } : number range set (n1, n2 integers)
{|chan1,chan2,...|}: all events associated with chan-
nels chan1,chan2,...
card(M) : cardinality of (=number of elements in) set M
empty(M) : Boolean test for empty set M
member(x,M) : Boolean test whether x is element of M
union(M1,M2) : union of sets M1 and M2
inter(M1,M2) : intersection of sets M1 and M2
diff(M1,M2) : set difference M1 \ M2

Example: P = Q({})
Q(M) = fromSUT?x -> (if (member(x,M) or (card(M) > 5))

then (error! -> STOP)
else Q(union({x},M)))

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Expressions on Parameters: Sequences

Sequence expressions: <> : empty sequence
< n1..n2 > : number range sequence (n1, n2 integers)
#s : length of sequence s
null(s) : Boolean test for empty sequence s
elem(x,s) : Boolean test whether x is member of sequence s
s1^s2^... : Concatenation of sequences s1, s2, ...
head(s) : first element of sequence s
tail(s) : sequence equal to "s without head(s)"

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Expressions on Parameters: Local Definitions

Syntax: let <definition> within <CSP-Term>

Description: In a CSP term, local definitions – e.g., constants, functions

or sets – can be introduced by using a let-within construct

in front of the CSP term. In the <definition>-part of

the let-within construct the same name = expression

syntax (possibly recursive!) is used as in CSP process def-

initions.

Example: Q(s) =
let
getElem(n,s) = if (#s < n)

then a
else (if (n == 1)

then head(s)
else getElem(n-1,tail(s)))

within
(if (null(s)) then STOP else getElem(#s,s) -> Q(tail(s)))

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.9 Sequential Composition

Syntax: P; Q with defined CSP processes P and Q

Description: A process P may terminate using the SKIP termination

process. In this situation, another process Q may start its

activity. This is expressed by the sequential composition

operator “;”. If P does not terminate with SKIP, Q will

never be activated.

Example: X = P;Q

P = in?x -> (if (x == 5) then SKIP else P)

Q = out!3 -> STOP

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.10 Macro Processes

Description: Parameterised processes may be used to define a library

or re-usable CSP macro processes. The RT-Tester macro

library is contained in CSP-file rttmacros.csp. It can be

included using the directive include "rttmacros.csp"

in the CSP specification file. Note that the directory path

is required if the include file is not contained in the working

directory.

Example:

-- Wait-Timer Macro Process

WAIT(t) = setT!t -> elaT.t -> SKIP

-- process using the WAIT-macro

P = a -> WAIT(0); b -> WAIT(1); c -> P

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.11 External Choice

Syntax: P [] Q with defined CSP processes P and Q

Description: P [] Q is the process which behaves like P or Q, depending

on whether the initial event is processed by P or Q, respec-

tively. If both P and Q may engage into the initial event,

the choice between the processes is non-deterministic.

Example: P = (a -> P1) [] (b -> P2)

P1 = ...

P2 = ...

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.12 Timeout-Timers

Description: External choice can be used to model different process be-

haviours, depending on whether an expected event occurs

in time or a timer elapses.

Example: --$$AM_SET_TIMER
channel setT : {0}
--$$AM_ELAPSED_TIMER
channel elaT : {0}
--$$AM_OUTPUT
channel toSUT : {0..9}
--$$AM_INPUT
channel fromSUT : {0..9}

P = toSUT!5 -> setT!0 -> Q
Q = elaT.0 -> error! -> STOP

[]
fromSUT?x -> R(x)

R(x) = ...

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.13 Parameterised External Choice and Guards

Syntax: P(z) = [] x:M @ <bexpr(z,x)>&<chanexpr(z,x)>

-> Q(x) with boolean expression bexpr(z,x) in process

parameters z and local variable x and channel expression

<chanexpr(z,x)> in channels, process parameters z and

local variable x of P.

Description: The external choice operator allows the choice to range

over events which are specified by means of the parameter

expression syntax introduced above: For every x in set

M, a channel event specified by <chanexpr(z,x)> may

be taken, but only if the boolean guard <bexpr(z,x)>

evaluates to true.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Parameterised External Choice and Guards

Example: -- Process that accepts every event from set M

P = RUN({a,b,c,d})

RUN(M) = [] e:M @ e -> RUN(M)

-- Process that accepts every event from M exactly once

-- and then stops with ready-signal

Q = JUSTONCE({a,b,c,d})

JUSTONCE(M) = (M == {}) & ready! -> STOP

[]

([] e:M @ e -> M(diff(M,{e})))

-- Process that accepts events from variable number of channels

X = Y({1,2,3,4})

Y(M) = [] i:M @ in.i?x -> PROCESS(i,x);Y(diff(M,{i}))

PROCESS(i,x) = ... -> SKIP

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.14 Internal Choice

Syntax: P = Q |~| R with defined CSP processes Q, R

Description: Process P behaves either like Q or like R, but the decision

is made internally, so that processes cooperating with P

cannot influence this decision.

Test Features: Internal choice in outputs from the environment to the

system under test is exploited by the RT-Tester test gen-

eration mechanism to choose outputs according to the test

coverage strategy. In mixed input/output internal choice

expressions, the test environment may choose to refuse all

outputs and wait for an input from SUT instead.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.15 Internal Choice and Timers

Description: If the test specification contains an internal choice over out-

puts to SUT and a WAIT-condition, the test environment

may choose to wait instead of producing an event.

Test Features: This is variant is helpful if the SUT should behave dif-

ferently depending on whether it gets a message from the

environment in time or not.

Example: ENV = (toSUT!5 -> ENV1)

|~|

(WAIT(1);fromSUT?x -> ENV2)

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.16 Interrupt Operator

Syntax: P = Q /\ R with defined CSP process Q, R.

Description: Process P will behave like Q until it is interrupted by

an initial event e of process R. If process Q cannot engage

into e in its present state, P will continue behaving like R

from there on. If e is an initial event of R, and Q in its

present state can engage into e as well, it is nondetermin-

istic whether P will continue to behave as Q or “switch” to

R. In most practical applications, the initial events of R are

distinct from those Q may engage into.

Example: P = (a -> b -> STOP) /\ (c -> d -> STOP)
behaves identically to
Q = (a -> ((b -> c -> d -> STOP) [] (c -> d -> STOP)))

[] (c -> d -> STOP)

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.17 Hiding

Syntax: P = Q \ H with defined CSP process Q and

set of events H.

Description: Applying the hiding operator to Q results in a process P

behaving like Q, with all events contained in set H no longer

observable. Note that hiding over external choices may

introduce nondeterminism, because the selected branches

are no longer visible.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Hiding

Test Features: If events in a CSP specification should neither occur in

the test execution log, nor be communicated between test

environment and SUT, these events must be hidden. In

practice, this situation occurs if (1) a specification is re-

used, but some events should become invisible in the new

version or (2) auxiliary events have been introduced to

construct a parallel process specification (see below), and

the auxiliary events should not be visible.

Example: P = (a -> b -> STOP) \ {a}

shows the same behaviour as (b -> STOP).

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.18 Interleaving

Syntax: P = Q ||| R with defined CSP processes Q, R

Description: Process P = Q ||| R shows the behaviours of Q and R,

running independently and in parallel, without any syn-

chronisation between Q and R. Note that if Q and R can

produce the same events, it may be impossible to decide

from the outside which process is responsible for the event

generation.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Interleaving

Test Features: The interleaving operator may be practical if one wishes

to disregard certain SUT outputs to the test environment

temporarily. If these events are just ignored in the test

specification, they will produce an error message. Using

a RUN process interleaved with the intended specification

will avoid these error messages. Observe that with RT-

Tester, activities which are always independent from each

other should be specified separately, using two Abstract

Machines to exercise the corresponding test activities in

parallel.

Example: -- process which always accepts events on channels fromSUT1, fromSUT2
-- (Q should only refer to channels different from from-
SUT1, fromSUT2)
P = Q ||| RUN({| fromSUT1, fromSUT2 |})

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

6.19 Parallel

Syntax: P = Q [| M |] R with defined CSP processes Q, R and

set of synchronisation events M.

Description: Process P = Q [| M |] R shows the behaviour of processes Q,
R running in parallel and synchronising over all events in set M:
Q may only engage into an event e from M, if R does so at the
same time. The event is then produced just once, interpreted as
a synchronous communication e between both processes. With
RT-Tester, events from M may be of type INPUT, OUTPUT or
INTERNAL. In the first case, the synchronously generated event
is also sent to other Abstract Machines and the SUT. In the sec-
ond case, the event must be sent by the SUT or by other AMs.
In the third case, the event is invisible for other AMs or for the
SUT.

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

Parallel

Test Features: The parallel operator is practical to distribute the different as-
pects contained in one test specifications onto several parallel CSP
processes. For example, a parallel process Q may be used to de-
tect a specific communication pattern which triggers a different
behaviour in R. If the parallelisation of the specification has intro-
duced auxiliary channels bearing no relation to SUT interfaces, it
may be useful to hide them.

Example: P = (Q [| {| condition |} |] R(false)) \ {| condition |}

Q = in?x -> (if (...)
then (condition!true -> Q)
else (condition!false -> Q))

R(c) =
condition?z -> R(z)
[]
fromSUT?x -> (if (c and ...)

then R(c)
else error! -> R(c))

VERIFIED SYSTEMS INTERNATIONAL GMBH, BREMEN, http://www.verified.de

54

	
	Overview
	Introduction
	Testing Reactive Systems
	RT-Tester -- basic concepts
	The CSP specification language

	Accompanying example: engine controller
	CSP Test Specification File Structure
	CSP Data Types
	CSP Test Specification Interface
	CSP Channels and Events
	Input/Output Channels
	Error and Warning Channels
	Timer Channels
	Internal Channels
	List of Channel Keywords
	Event Syntax

	CSP Processes for writing RT-Tester Specifications
	STOP Process
	Events and Prefixing
	If-Then-Else
	Wait-Timers
	Process References
	Recursion
	Parameterised Processes
	Expressions on Parameters
	Sequential Composition
	Macro Processes
	External Choice
	Timeout-Timers
	Parameterised External Choice and Guards
	Internal Choice
	Internal Choice and Timers
	Interrupt Operator
	Hiding
	Interleaving
	Parallel

