
Specification of an Elevator in Z

Safety-Critical Systems 3, WiSe’07/08

Jan Peleska (jp@tzi.de)

Christof Efkemann (chref@tzi.de)

5th version, Nov 06, 2007

Safety Requirements

Declaration of Constants

The number of the ground floor and of the highest floor:

topFloor : �
groundFloor : �

groundFloor < topFloor

Declaration of Types

The set of all admissible floor numbers:

FLOORS == groundFloor . . topFloor

An extra value outside of FLOORS :

noFloor : �

noFloor /∈ FLOORS

1

The set of floor request values:

FLOORREQS == FLOORS ∪ {noFloor}

Possible states of a door:

DOOR ::= open | closed

Possible motion states for the elevator:

DIRECTION ::= up | down | stopped

Specification of the State Space

The elevator state space, as far as it is safety-relevant:

ElevatorState
motorState : DIRECTION
door : DOOR
thisFloor : FLOORS

thisFloor = topFloor ⇒ motorState ∈ {stopped , down}
thisFloor = groundFloor ⇒ motorState ∈ {stopped , up}
door 6= closed ⇒ motorState = stopped

Specification of the Operations

The polled input sensor? returns the number of the current floor.

The following partial operations check for the sanity of the sensor? input. Currently,
the specification assumes that the sensor always works. If we want to make the Move
operation total, we need to specify more partial operations that handle the case of a
detected sensor failure. Obviously, in that case the elevator should stop as soon as
possible, and a technician should be called.

2

MoveUp
∆ElevatorState
sensor? : FLOORS

motorState = up
sensor? ∈ {thisFloor , thisFloor + 1}
thisFloor ′ = sensor?

MoveDown
∆ElevatorState
sensor? : FLOORS

motorState = down
sensor? ∈ {thisFloor − 1, thisFloor}
thisFloor ′ = sensor?

StableState
∆ElevatorState
sensor? : FLOORS

motorState = stopped
sensor? = thisFloor
thisFloor ′ = sensor?

Move =̂ MoveUp ∨ MoveDown ∨ StableState

User Requirements

Specification of the State Space

3

UserState
ElevatorState
upQ : seqFLOORS
downQ : seqFLOORS
move : DIRECTION

∀ i : 1 . . (#upQ − 1) • upQ(i) < upQ(i + 1)
∀ i : 1 . . (#downQ − 1) • downQ(i) > downQ(i + 1)
#upQ ≥ 1 ⇒ thisFloor < head(upQ)
#downQ ≥ 1 ⇒ thisFloor > head(downQ)

Specification of the Operations

The input targetFloor? contains the floor desired, if a button is pressed. It contains
the value noFloor , if no button is pressed. As discussed in the lecture, after one
round of processing, the interface resets the value to noFloor , even if the button is
pressed for a longer time.

RequestBase
∆UserState
ΞElevatorState
targetFloor? : FLOORREQS

targetFloor? ∈ FLOORS
move ′ = move

RequestUp
RequestBase

targetFloor? > thisFloor
ran upQ ′ = ran upQ ∪ {targetFloor?}
downQ ′ = downQ

4

RequestDown
RequestBase

targetFloor? < thisFloor
ran downQ ′ = ran downQ ∪ {targetFloor?}
upQ ′ = upQ

RequestThis
RequestBase

targetFloor? = thisFloor
downQ ′ = downQ
upQ ′ = upQ

Request =̂ RequestUp ∨ RequestDown ∨ RequestThis

The operation StartMove actually starts the elevator to move, if there is a request
pending.

StartMoveBase
∆UserState

upQ ′ = upQ
downQ ′ = downQ
thisFloor ′ = thisFloor
motorState ′ = move ′

StartMoveUp
StartMoveBase

move = stopped
#upQ > 0
move ′ = up

StartMoveUpGoOn
StartMoveBase

move = up
motorState = stopped
move ′ = move

5

StartMoveDown
StartMoveBase

move = stopped
#downQ > 0
move ′ = down

StartMoveDownGoOn
StartMoveBase

move = down
motorState = stopped
move ′ = move

StartMove =̂ StartMoveUp ∨ StartMoveUpGoOn ∨
StartMoveDown ∨ StartMoveDownGoOn

The operation UserMove decides what happens if the elevator reaches another floor.
Here, we assume that the safety-relevant parts are already handled by the operation
Move.

UserMoveUpBase
∆UserState
sensor? : FLOORS

sensor? = thisFloor + 1
downQ ′ = downQ

UserMoveUpSkip
UserMoveUpBase

sensor? 6= upQ(1)
upQ ′ = upQ
motorState ′ = motorState
move ′ = move

6

UserMoveUpArrive
UserMoveUpBase

sensor? = upQ(1)
upQ ′ = tail upQ
motorState ′ = stopped

UserMoveUpArriveGoOn
UserMoveUpArrive

#upQ > 1
move ′ = move

UserMoveUpArriveStop
UserMoveUpArrive

#upQ = 1
#downQ = 0
move ′ = stopped

UserMoveUpArriveTurn
UserMoveUpArrive

#upQ = 1
#downQ > 0
move ′ = down

UserMoveUp =̂ UserMoveUpSkip ∨ UserMoveUpArriveGoOn ∨
UserMoveUpArriveStop ∨ UserMoveUpArriveTurn

UserMoveDownBase
∆UserState
sensor? : FLOORS

sensor? = thisFloor − 1
upQ ′ = upQ

7

UserMoveDownSkip
UserMoveDownBase

sensor? 6= downQ(1)
downQ ′ = downQ
motorState ′ = motorState
move ′ = move

UserMoveDownArrive
UserMoveDownBase

sensor? = downQ(1)
downQ ′ = tail downQ
motorState ′ = stopped

UserMoveDownArriveGoOn
UserMoveDownArrive

#downQ > 1
move ′ = move

UserMoveDownArriveStop
UserMoveDownArrive

#downQ = 1
#upQ = 0
move ′ = stopped

UserMoveDownArriveTurn
UserMoveDownArrive

#downQ = 1
#upQ > 0
move ′ = up

UserMoveDown =̂ UserMoveDownSkip ∨ UserMoveDownArriveGoOn ∨
UserMoveDownArriveStop ∨ UserMoveDownArriveTurn

8

UserStableState
∆UserState
sensor? : FLOORS

sensor? = thisFloor
upQ ′ = upQ
downQ ′ = downQ
motorState ′ = motorState
move ′ = move

UserMove =̂ UserMoveUp ∨ UserMoveDown ∨ UserStableState

And finally the composition of all the safety and the user requirements operations of
the elevator:

ElevatorOp =̂ Move ∧ (Request ∨ StartMove ∨ UserMove)

9

