
HyTech: A Model Checker for Hybrid Systems
� y

Thomas A. Henzinger Pei-Hsin Ho Howard Wong-Toi

EECS Department Strategic CAD Labs Cadence Berkeley Labs

Univ. of California, Berkeley Intel Corp., Hillsboro, Oregon Berkeley, California

tah@eecs.berkeley.edu pho@ichips.intel.com howard@cadence.com

Abstract

A hybrid system is a dynamical system whose behavior exhibits both discrete and continuous

change. A hybrid automaton is a mathematical model for hybrid systems, which combines, in

a single formalism, automaton transitions for capturing discrete change with di�erential equa-

tions for capturing continuous change. HyTech is a symbolic model checker for linear hybrid

automata, a subclass of hybrid automata that can be analyzed automatically by computing with

polyhedral state sets. A key feature of HyTech is its ability to perform parametric analysis,

i.e. to determine the values of design parameters for which a linear hybrid automaton satis�es

a temporal-logic requirement.

1 Introduction

A hybrid system typically consists of a collection of digital programs that interact with each other

and with an analog environment. Examples of hybrid systems include manufacturing controllers,

automotive and
ight controllers, medical equipment, micro-electromechanical systems, and robots.

When these systems occur in mission-critical applications, formal guarantees about the absence of

logical and timing errors are desirable. The formal analysis of the mixed digital-analog nature of

hybrid systems requires a mathematical model that incorporates the discrete behavior of computer

programs with the continuous behavior of environment variables, such as time, position, and tem-

perature. The �rst extensions of discrete state-transition models toward mixed discrete-continuous

behavior concentrated on the single most important environment parameter|real time. One such

model is the timed automaton|a �nite automaton augmented with a �nite number of clocks, which

are real-valued variables whose values change continuously with the constant rate 1 [4]. Timed au-

tomata have been used successfully to analyze real-time protocols and asynchronous circuits. For

modeling more general kinds of hybrid systems, we use the hybrid automaton|a �nite automaton

with a �nite number of real-valued variables that change continuously, as speci�ed by di�erential

equations and di�erential inequalities, in more general ways than clocks [3, 36, 2].

For analyzing hybrid systems, we build on the model-checking technology, in which a formal

model of the system is checked, fully automatically, for correctness with respect to a requirement

�A preliminary version of this paper appeared in the Proceedings of the Ninth International Conference on

Computer-Aided Veri�cation (CAV 97), Lecture Notes in Computer Science 1254, Springer-Verlag, 1997, pp. 460{

463, and an extended version appeared in Software Tools for Technology Transfer 1 (special issue on Timed and
Hybrid Systems), 1997, pp. 110{122.

yThis research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award

CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-93-1-0056, by the ARO MURI grant

DAAH-04-96-1-0341, by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.

1

expressed in temporal logic [11, 37]. For this purpose, the entire state space of the system is ex-

plored. This can be done enumeratively, by considering each state individually, or symbolically,

by computing with constraints that represent state sets. Because of its ability to deal with very

large state spaces, symbolic model checking has been proven an e�ective technique for the auto-

matic analysis of complex �nite state-transition systems [10]. In recent years, the model-checking

approach has been extended to several classes of in�nite state-transition systems, including timed

automata [1]. Since clock values range over the in�nite domain of the nonnegative reals, it is im-

possible to enumerate all states of a timed automaton, and symbolic representations of state sets

must be employed. Speci�cally, the symbolic model checking of a timed automaton requires the

manipulation of certain linear constraints on clock values, namely, disjunctions of inequalities of

the form x � b and x� y � b, for clock vectors x and y, an inequality operator �2 f�;�g, and

a constant integer vector b, whose components are bounded for any given automaton [29]. Since

there are only �nitely many of these constraints, all computations required for model checking are

guaranteed to terminate.

By admitting more general linear constraints on continuous variables, namely, disjunctions of

inequalities of the form Ax � c, where A is a constant matrix and c is a constant vector, the

symbolic model-checking method for timed automata can be extended to a more general class of

hybrid automata called linear hybrid automata [5]. In a linear hybrid automaton, the dynamics of

the continuous variables are de�ned by linear di�erential inequalities of the form A _x � b, where _x

is the vector of �rst derivatives of the variables x.1 Since the number of possible constraints is no

longer �nite, when moving from timed automata to linear hybrid automata, the price to pay for

the increased generality is the loss of guaranteed termination for model checking. The method is

still of practical interest, however, because termination happens naturally in many examples and

can be enforced in others, say, by considering the behavior of a system over a bounded interval of

time.

Model checking can be used to provide more than a mere \yes" or \no" answer to the question of

whether a system satis�es a correctness requirement. HyTech provides also diagnostic information

that aids in design and debugging. If a system description contains design parameters, whose values

are not speci�ed, then HyTech computes necessary and su�cient constraints on the parameter

values that guarantee correctness. For example, for a railroad crossing, we will compute the exact

cuto� point, in meters from the crossing, at which a train has to signal its approach in order

for the gate to be closed by the time the train passes through the crossing. If a system fails to

satisfy a correctness requirement, then HyTech generates an error trajectory, which illustrates a

time-stamped sequence of events that leads to a violation of the requirement.

While linear hybrid automata are expressive compared to other formalisms for which model

checking is possible, such as �nite automata and timed automata, many embedded applications do

not meet the linearity constraints. In such cases, we conservatively approximate the system using

linear hybrid automata so that if the approximate automaton satis�es a correctness requirement,

then the original system satis�es the requirement as well. If, on the other hand, the approximate

system violates the requirement, and the generated error trajectory is not a possible trajectory of

the original system, then the approximation must be re�ned.

This paper consists of three sections. Section 2 presents the model of hybrid automata, Sec-

tion 3 illustrates the analysis techniques, and Section 4 brie
y describes the tool HyTech. A

simple thermostat is used as a running example to demonstrate modeling, approximation, safety

1It is important to realize that the de�nition of linearity for hybrid automata di�ers from the de�nition of linearity

commonly used in systems theory. In particular, the di�erential inequalities of linear hybrid automata may not depend

on the value of the variables, and thus dynamics of the form _x = x are prohibited.

2

on

1 � x � 3

_x = �x + 5

x = 3

_x = �x

o�

x = 1

turn on

1 � x � 3

turn o�

x = 2

Figure 1: Thermostat automaton

veri�cation, parametric analysis, and the use of the tool. For more involved model-checking proce-

dures of general temporal-logic requirements, as well as for theoretical results on timed automata,

the interested reader is encouraged to consult other literature [19].

2 Hybrid Automata

2.1 Example: a simple thermostat

A euclidean dynamical system prescribes how a set of real-valued variables evolve over time. A

system state is a point in R
n (where n is the number of variables), and a system trajectory is a

curve in R
n (called a
ow). The deterministic evolution of real variables is naturally prescribed

by an initial condition and di�erential equations; for example, the temperature x 2 R of a heated

plant may observe the initial condition x = 2 and the di�erential equation _x = �x + 5. The

nondeterministic evolution of real-valued variables can be prescribed using di�erential inequalities,

such as _x 2 [3; 4].

By contrast, a boolean dynamical system prescribes how a set of boolean-valued variables evolve

over time. A system state is a point in B
m (where m is the number of variables), and a system

trajectory is a sequence of states (each pair of consecutive states is called a jump). The non-

deterministic evolution of boolean variables is naturally prescribed by an initial condition and a

transition relation, which indicates for every state the set of possible successor states. For example,

the status y 2 fon; o� g of a heater may observe the initial condition y = on and the transition

relation f(on; o�); (o� ; on)g, i.e. the heater may be turned on or o�. A boolean dynamical system,

thus, can be viewed as a �nite automaton.

A hybrid dynamical system has both real-valued and boolean-valued variables, say n real vari-

ables and m boolean variables. A system state, then, is a point in Bm�Rn, and a system trajectory

is a sequence of
ows and jumps: during
ows, the boolean part of the state stays constant and

the real part of the state evolves over time; at jumps, the entire state changes instantaneously.

We describe hybrid dynamical systems using hybrid automata. A hybrid automaton annotates the

control graph of a �nite automaton with conditions on real-valued variables. Each node of the

graph represents an operating mode of the system, and is annotated with di�erential inequalities

that prescribe the possible evolutions (
ows) of the real variables while the system remains in the

given mode. Each edge of the graph represents a switch in operating mode, and is annotated with

a condition that prescribes the possible changes (jumps) of the real variables when the system

executes the given mode switch.

If we combine the temperature x 2 R with the heater y 2 fon; o� g, we obtain a thermostat.

The hybrid automaton of Figure 1 has two operating modes: either the heater is on (mode on), or

the heater is o� (mode o�). Initially, the heater is on and the temperature x is 2 degrees. When

3

the heater is on, the temperature rises at the rate of �x+ 5 degrees per minute; when the heater

is o�, the temperature falls at the rate of �x degrees per minute. The heater can be turned o�

when the temperature reaches 3 degrees, and it can be turned on when the temperature falls to 1

degree. This is due to the edge conditions x = 3 and x = 1, which assert when a mode switch may

occur. To force mode switches, such as forcing the heater to be turned o� when the temperature

reaches 3 degrees, we annotate the operating modes with so-called invariant conditions (in addition

to the annotation with di�erential inequalities): the system can remain in a mode only as long as

the corresponding invariant condition is satis�ed. Thus, the invariant conditions 1 � x � 3 of

both operating modes prescribe that a mode switch must occur before the temperature leaves the

operating interval of [1,3] degrees.

2.2 Formal de�nition

A hybrid automaton is a system A = (X; V;
ow; inv; init; E; jump;�; syn) that consists of the

following components [2]:

Variables A �nite ordered set X = fx1; x2; : : : ; xng of real-valued variables. For example, the

thermostat automaton of Figure 1 uses the variable x to model the plant temperature (in this

case, n = 1).

Control modes A �nite set V of control modes. For example, the thermostat automaton has two

control modes, on and o� .

Flow conditions A labeling function
ow that assigns a
ow condition to each control mode

v 2 V . The
ow condition
ow(v) is a predicate over the variables in X [_
X, where _

X =

f _x1; : : : ; _xng. The dotted variable _xi, for 1 � i � n, refers to the �rst derivative of xi with

respect to time, i.e. _xi = dxi=dt. While the control of the hybrid automaton A is in mode v,

the variables in X evolve along a di�erentiable curve such that at all points along the curve,

the values of the variables and their �rst derivatives satisfy the
ow condition
ow(v). For

example, the control mode on of the thermostat automaton has the
ow condition _x = �x+5;

the control mode o� has the
ow condition _x = �x.

Invariant conditions A labeling function inv that assigns an invariant condition to each control

mode v 2 V . The invariant condition inv(v) is a predicate over the variables in X . While the

control of the hybrid automaton A is in mode v, the variables in X must satisfy the invariant

condition inv(v). For example, both control modes of the thermostat automaton have the

invariant condition 1 � x � 3.

Initial conditions A labeling function init that assigns an initial condition to each control mode

v 2 V . The initial condition init(v) is a predicate over the variables in X . The control of the

hybrid automaton A may start in the control mode v when the initial condition init(v) is true.

In the graphical representation of automata, initial conditions appear as labels on incoming

arrows without source modes, and initial conditions of the form false are not depicted. For

example, the control mode on of the thermostat automaton has the initial condition x = 2;

the control mode o� has the initial condition false.

Control switches A �nite multiset E of control switches. Each control switch (v; v0) is a directed

edge between a source mode v 2 V and a target mode v0 2 V . For example, the thermostat

automaton has two control switches, (on; o�) and (o� ; on).

4

Jump conditions A labeling function jump that assigns a jump condition to each control switch

e 2 E. The jump condition jump(e) is a predicate over the variables in X [X
0, where

X
0 = fx

0
1; : : : ; x

0
n
g. The unprimed symbol xi, for 1 � i � n, refers to the value of the variable

xi before the control switch, and the primed symbol x
0
i
refers to the value of xi after the control

switch. Thus, a jump condition relates the values of the variables before a control switch to the

possible values after the control switch. In the graphical representation of automata, we use

guarded assignments to represent jump conditions; for example, assuming n = 2, the guarded

assignment x1 = x2 ! x1 := 2x2 stands for the jump condition x1 = x2 ^ x
0
1 = 2x2 ^ x

0
2 = x2

(notice that because the variable x2 is not assigned a new value, its value after the jump is

equal to its value before the jump). In the thermostat automaton, the control switch (on; o�)

has the jump condition x = 3 ^ x
0 = x; the control switch (on; o�) has the jump condition

x = 1 ^ x
0 = x.

Events A �nite set � of events, and a labeling function syn that assigns an event in � to each

control switch e 2 E. For example, the control switch (on; o�) of the thermostat automa-

ton corresponds to the event turn o� ; the control switch (o� ; on) corresponds to the event

turn on. Though not used in the thermostat example, events permit the synchronization of

jumps between concurrent hybrid automata.

2.3 States and trajectories

A state of the hybrid automaton A is a pair (v; a) consisting of a control mode v 2 V and a vector

a = (a1; : : : ; an) that represents a value ai 2 R for each variable xi 2 X . The state (v; a) of A is

admissible if the predicate inv(v) is true when each variable xi is replaced by the value ai. The

state (v; a) is initial if the predicate init(v) is true when each xi is replaced by ai. For example, the

state (on; 1:5) of the thermostat automaton is admissible; the state (on; 0:5) is not. The thermostat

automaton has exactly one initial state, (on; 2).

Consider a pair (q; q0) of two admissible states q = (v; a) and q
0 = (v0; a0). The pair (q; q0) is a

jump of A if there is a control switch e 2 E with source mode v and target mode v0 such that the

predicate jump(e) is true when each variable xi is replaced by the value ai, and each primed variable

x
0
i
is replaced by the value a0

i
. The thermostat automaton has exactly two jumps, ((on; 3); (o� ; 3))

and ((o� ; 1); (on; 1)). The pair (q; q0) is a
ow of A if v = v
0 and there is a nonnegative real � 2 R�0

(the duration of the
ow) and a di�erentiable function � : [0; �]! R
n (the curve of the
ow) such

that the following three requirements hold:

1. Endpoints: �(0) = a and �(�) = a
0.

2. Invariant condition: For all time instants t 2 (0; �), the state (v; �(t)) is admissible.

3. Flow condition: Let _� : [0; �] ! R
n be the �rst time derivative of �. For all time instants

t 2 (0; �), the predicate
ow(v) is true when each variable xi is replaced by the i-th coordinate

of the vector �(t), and each dotted variable _xi is replaced by the i-th coordinate of _�(t).

For example, ((o� ; 3); (o� ; 2)) and ((o� ; 3); (o� ; 2:5)) are
ows of the thermostat automaton. If

(q; q0) is a jump, we say that q0 is a jump successor of q; if (q; q0) is a
ow, then q
0 is called a
ow

successor of q (notice that every admissible state is a
ow successor of itself, because there is always

a
ow of duration 0).

A trajectory of the hybrid automaton A is a �nite sequence q0; q1; : : : ; qk of admissible states qj
such that (1) the �rst state q0 of the sequence is an initial state of A, and (2) each pair (qj ; qj + 1)

5

o�

1 � x � 3

_x = �x

^ _y = 1 ^ _z = 0

x = 2

^ y = 0

^ z = 0 turn on

x = 1

x = 3

turn o�

on

1 � x � 3

_x = �x + 5

^ _y = 1 ^ _z = 1

Figure 2: Thermostat automaton augmented for safety veri�cation

of consecutive states in the sequence is either a jump of A or a
ow of A. A state of A is reachable

if it is the last state of some trajectory of A. While this is not usually the case, all admissible states

of the thermostat automaton are reachable.

2.4 Safety requirements

A safety requirement asserts that nothing bad will happen during the evolution of a system. Safety

requirements can often be speci�ed by describing the \unsafe" values and value combinations of

the system variables. Then, the system satis�es the safety requirement i� all reachable states are

safe. Safety veri�cation, therefore, amounts to computing the set of reachable states.

For hybrid automata, we specify safety requirements using state assertions. A state assertion '

for the hybrid automaton A is a function that assigns to each control mode v 2 V a predicate '(v)

over the variables in X . We say that the state assertion ' is true (or false) for a state (v; a) of A if

the predicate '(v) is true (false) when each variable xi is replaced by the value ai. The states for

which ' is true are called the '-states. For example, the invariant conditions of A de�ne a state

assertion inv , and the inv-states are precisely the admissible states; similarly, the initial conditions

de�ne a state assertion init that is true precisely for the initial states (
ow and jump conditions

do not de�ne state assertions). If unsafe is a state assertion for the hybrid automaton A, then

A satis�es the safety requirement speci�ed by unsafe if the state assertion unsafe is false for all

reachable states of A.

Sometimes the given variables or control modes are not su�cient to specify a safety requirement,

and the system description needs to be augmented with additional variables and control modes (or

with so-called monitor automata, which are executed concurrently with the system and report

when an unsafe state is entered; see below). For example, for the thermostat automaton, consider

the requirement that the heater is active less than 2=3 of the �rst 60 minutes. To specify this

requirement, we need a means of representing (1) the total elapsed time, say y, and (2) the total

accumulated time that the heater has been active, say z. To this end, we add the two auxiliary

variables y and z to the thermostat automaton, in a way that does not alter the behavior of the

automaton: the variable y is a clock (i.e. _y = 1 for all control modes) that measures the elapsed

time; the variable z is a stopwatch (i.e. _z = 1 or _z = 0) that measures the accumulated time spent

in the control mode on. The augmented automaton is shown in Figure 2. Now we can specify

the unsafe states using the state assertion unsafe that assigns the predicate y = 60 ^ z � 2y=3 to

both control modes. We will use HyTech to verify that the state assertion unsafe is false for all

reachable states of the augmented thermostat (notice that it is no longer the case that all admissible

states are reachable).

6

3 Analysis of Hybrid Automata

3.1 Computing the reachable states

To check if the hybrid automaton A satis�es the safety requirement speci�ed by the state assertion

unsafe, we attempt to compute another state assertion, reach, which is true exactly for the reachable

states of A. Then we check if there is any state for which both reach and unsafe are true: if so,

the safety requirement is violated, and we produce an error trajectory from an initial state to an

unsafe state (this is useful for debugging the system); if not, the safety requirement is satis�ed. We

attempt to compute the state assertion reach as follows. For a state assertion ', let Post(') be a

state assertion that is true precisely for the jump and
ow successors of the '-states, i.e. Post(')

is true for a state q
0 i� there exists a '-state q such that (q; q0) is either a jump or a
ow of A.

If we succeed in computing the state assertion '1 = Post(init), then we have characterized all

states that are reachable by trajectories of length 1 (i.e. by a single jump or
ow); if we succeed

in computing the state assertion '2 = Post('1), then we have characterized all states that are

reachable by trajectories of length 2; etc. Finally, if for some natural number k, we �nd that 'k

and 'k+1 = Post('k) are equivalent (i.e. they are true for the same states), then we can conclude

that 'k characterizes all states that are reachable by trajectories of any length, and therefore

reach = 'k (notice that, because every admissible state is a
ow successor of itself, if a state is

reachable by a trajectory of length k, then it is also reachable by a trajectory of length k + 1).

The success of this computation of reach hinges on two issues. First, for a state assertion ', we

need to be able to compute the state assertion Post('). This can be done reasonably e�ciently for a

restricted class of hybrid automata called linear hybrid automata. Second, the iterative computation

of reach must converge within a �nite number of Post applications. This can be guaranteed for

certain restricted classes of linear hybrid automata, such as the class of timed automata, all of

whose variables are clocks. While we address the �rst issue below, the second issue is more of

theoretical than practical interest: if a veri�cation attempt does not succeed, by exhausting all

available space or time resources, it is of little value to know that with unlimited resources the

computation would have converged. The convergence issue, therefore, is not discussed further, and

we refer the interested reader to the literature, where decidability results for several subclasses of

linear hybrid automata can be found [18, 17, 28, 26, 34, 27].

3.2 Linear hybrid automata

The hybrid automaton model is very expressive. While convenient for providing formal descriptions

of hybrid systems, the very generality of the model prohibits automatic analysis. We therefore

consider a restricted class of hybrid automata, the linear hybrid automata, for which the function

Post on state assertions can be computed e�ciently.

An atomic linear predicate is an inequality between a rational constant and a linear combination

of variables with rational coe�cients, such as 3x1 � x2 + 7x5 � 3=4. A convex linear predicate is

a �nite conjunction of linear inequalities. A linear predicate is a �nite disjunction of convex linear

predicates. The hybrid automaton A is a linear hybrid automaton if it satis�es the following two

requirements [5]:

1. Linearity: For every control mode v 2 V , the
ow condition
ow(v), the invariant condition

inv(v), and the initial condition init(v) are convex linear predicates. For every control switch

e 2 E, the jump condition jump(e) is a convex linear predicate.

7

2. Flow independence: For every control mode v 2 V , the
ow condition
ow(v) is a predicate

over the variables in _
X only (and does not contain any variables from X).

The second requirement ensures that the possible
ows are independent from the values of the

variables, and depend only on the control mode. While this requirement is quite limiting, and

prohibits
ow conditions such as _x = x, it does permit many kinds of variables that typically arise

in real-time computing, such as clocks (_x = 1), stopwatches (_x = 1 or _x = 0), and clocks with

bounded drift (_x 2 [1� �; 1 + �] for some constant �).

A state assertion ' for A is linear if for every control mode v 2 V , the predicate '(v) is linear.

For linear hybrid automata, we have the following theorem [5]: if A is a linear hybrid automaton,

and ' is a linear state assertion for A, then Post(') can be computed and the result is again a linear

state assertion for A. This is because for linear hybrid automata, every
ow curve can be replaced

by a straight line between the two endpoints. The theorem enables the automatic analysis|safety

veri�cation as well as more general temporal-logic model checking [5]|of linear hybrid automata.

3.3 From nonlinear to linear hybrid automata

The thermostat automaton of Figure 1 is not a linear hybrid automaton, because the requirement of

ow independence is violated in both control modes. Since we have no direct means of automatically

verifying nonlinear hybrid automata, we have developed two techniques for replacing a nonlinear

hybrid automaton by a linear hybrid automaton [25]. The �rst technique, called clock translation,

replaces variables that cause nonlinearity by clocks. The second technique, called linear phase-

portrait approximation, replaces nonlinear predicates by more relaxed linear predicates.

Clock translation

The idea behind clock translation is that sometimes the value of a variable can be determined from

a past value and the time that has elapsed since the variable had that value. For instance, the

variable xi of the hybrid automaton A is clock-translatable if the following two requirements hold:

1. Solvability: In each
ow condition
ow(v), all occurrences of xi and _xi are within a conjunct

of the form _xi = g
v

i
(xi), where g

v

i
: R! R is an integrable function with constant sign over

the invariant condition (i.e. for any two admissible states (v; a) and (v;b), either both g
v

i
(ai)

and g
v

i
(bi) are positive, or both are negative). In each invariant, initial, and jump condition,

all occurrences of xi and x
0
i
are within conjuncts of the form x

0
i
= xi or xi � c or x0

i
� c, for

inequality operators � and rational constants c.

2. Initialization: For every control mode v, the initial condition init(v) implies xi = c for some

constant c. For every control switch (v; v0), either gv
i
= g

v
0

i
and jump(v; v0) implies x0

i
= xi,

or jump(v; v0) implies x0
i
= c for some constant c.

Under the conditions above, the value of xi is determined by (a) the time since it was last reassigned

to a constant, and (b) the value of that constant. Therefore, all invariant, initial, and jump

conditions on the clock-translatable variable xi can be translated to conditions on a clock t
x

i
that

is restarted whenever xi is reassigned to a constant. If necessary, control modes may need to be

duplicated to account for reassignments of xi to di�erent constants.

The variable x of the thermostat automaton is clock-translatable. Clock translation results

in the hybrid automaton of Figure 3. The control mode on is split into two control modes, one

for each of the two values that x may have when entering the mode on. The initial value of

8

turn o�

tx = ln(3=2)

turn o�

tx = ln 2^ t
0
x
= 0

turn on

tx = ln 3^ t
0
x
= 0

tx � ln 3

(o� ;3)

(on; 2)

^ _tx = 1

(on; 1)

tx � ln 2

^ _tx = 1

^ _tx = 1

tx � ln(3=2)

^ t
0
x
= 0

tx = 0

Figure 3: Clock translation of the thermostat automaton

x is 2, from which x follows the curve x(t) = �3e�t + 5. It takes ln(3=2) minutes to reach the

threshold temperature of 3 degrees. Thus the invariant condition x � 3 for mode on is translated to

tx � ln(3=2) at mode (on; 2). The jump condition x = 3^x0 = x of the switch (on; o�) is translated

to the jump condition tx = ln(3=2)^ t
0
x
= 0 for the switch ((on; 2); (o� ; 3)). The translated jump

condition resets the clock tx, since the di�erential equations prescribing the evolution of x di�er

at the source and target modes of the switch. Whenever the automaton control reenters the mode

on, the variable x has the value 1 and follows the curve x(t) = �4e�t + 5 for ln 2 minutes before

reaching the value 3.

Linear phase-portrait approximation

The idea behind linear phase-portrait approximation is to relax nonlinear
ow, invariant, initial,

and jump conditions using weaker linear conditions: each nonlinear predicate p is replaced by a

linear predicate p0 such that p implies p0. For example, the linear hybrid automaton of Figure 4 is a

linear phase-portrait approximation of the thermostat automaton. Since the invariant, initial, and

jump conditions of the thermostat are all linear, only the
ow conditions need to be relaxed. For

the control mode on, the invariant condition 1 � x � 3 and the
ow condition _x = �x + 5 imply

that the �rst derivative of x is bounded from above by 4 and bounded from below by 2. Hence

the
ow condition _x = �x + 5 can be relaxed to the linear condition _x 2 [2; 4]. Similarly, for the

control mode o� , the nonlinear
ow condition can be relaxed to the linear condition _x 2 [�3;�1].

While clock translation preserves the trajectories of a system, linear phase-portrait approxima-

tion adds trajectories to a system. Hence, if we prove that the relaxed system satis�es a safety

property, we can be sure that the original system also satis�es the property. However, if the relaxed

system violates a safety property, then we must check if the discovered error trajectory is a valid

trajectory of the original system. If not, then the analysis is inconclusive and the approximation

needs to be re�ned, perhaps by splitting control modes in order to gain more accurate overapprox-

imations of the possible
ows. For example, the control mode on of the thermostat automaton can

be split into two control modes, on1 and on2, each with the
ow condition _x = �x+ 5, mode on1

with the invariant condition 1 � x � 2, mode on2 with the invariant condition 2 � x � 3, and a

9

o�

1 � x � 3

_x 2 [�3;�1]

x = 3

turn on

x = 1

turn o�

on

_x 2 [2;4]

1 � x � 3
x = 2

Figure 4: Linear phase-portrait approximation of the thermostat automaton

o�

1 � x � 3

_x 2 [�3;�1]

x = 1

turn on

x = 3

turn o�

x = 2

x = 2

on2

1 � x � 2

on1

_x 2 [3; 4]

2 � x � 3

_x 2 [2; 3]

x = 2

Figure 5: Tighter linear phase-portrait approximation of the thermostat automaton

control switch from on1 to on2 labeled x = 2. Relaxation, then, yields the linear
ow conditions

_x 2 [3; 4] for on1 and _x 2 [2; 3] for on2. The resulting linear hybrid automaton appears in Figure 5.

It has strictly more trajectories than the original nonlinear automaton, but strictly fewer than the

earlier approximation from Figure 4. Since tighter linear approximations yield more control modes,

analysis becomes more expensive.

3.4 Safety veri�cation of the thermostat

Recall that we wish to verify that the heater is active for less than 2=3 of the �rst hour of op-

eration. By adding the auxiliary variables y and z, described above, to the linear phase-portrait

approximation of the thermostat automaton, we obtain the linear hybrid automaton of Figure 6.

To ensure convergence of the computation of the reachable states, the conjunct y � 60 has been

added to the invariant conditions, so that trajectories are tracked only for the �rst 60 minutes. As

above, the unsafe states are speci�ed by the linear state assertion unsafe that assigns the predicate

y = 60 ^ z � 2y=3 to both control modes. Since the linear hybrid automaton of Figure 6 has

strictly more trajectories than the original nonlinear thermostat from Figure 2, it su�ces to prove

the safety requirement for the linear version.

We write f(on; p1); (o� ; p2)g for the state assertion that assigns the predicate p1 to the control

mode on , and assigns p2 to o� . The computation of the reachable states starts from the state

assertion

'0 = init = f(on; x = 2 ^ y = 0^ z = 0); (o� ; false)g;

i.e. all initial states have the control mode on , and x is initially 2 degrees. We compute the state

10

_x 2 [2;4] ^

on

_y = 1 ^ _z = 1

1 � x � 3 ^ y � 60

x = 2

^ z = 0

^ y = 0

o�

1 � x � 3 ^ y � 60

_x 2 [�3;�1] ^

_y = 1 ^ _z = 0

turn on

x = 1

x = 3

turn o�

Figure 6: Linear thermostat automaton for safety veri�cation

y; z

2
x

on

'0-state

Figure 7: Flow successors of the '0-state, if inv(on) were true

assertion '1 = Post('0) in two steps. First, we �nd all jump successors of '0-states: there are

none, because the control switch from on to o� requires that x is 3 degrees. Second, we �nd all

ow successors of '0-states. For this purpose, observe that for a state assertion ', the predicate

9x1; : : : ; xn: 9� � 0: 9 _x1; : : : ; _xn: '(v)^
ow(v)^ x
0
1 = x1 + � _x1 ^ : : :^ x

0
n = xn + � _xn

is true for the values a1; : : : ; an of the variables x01; : : : ; x
0
n
i� the state (v; a) is a
ow successor of

a state for which ' is true, assuming the unconstraining invariant condition inv(v) = true . From

linear predicates, the existential quanti�ers can be eliminated e�ectively. In particular, for ' = '0

and v = on, we obtain the predicate

9x; y; z: 9� � 0: 9 _x; _y; _z: x = 2 ^ y = 0 ^ z = 0

^ _x 2 [2; 4]^ _y = 1 ^ _z = 1 ^ x
0 = x + � _x ^ y

0 = y + � _y ^ z
0 = z + � _z

= (9� � 0: 2 + 2� � x
0
� 2 + 4� ^ y

0 = � ^ z
0 = �)

= (2z0 + 2 � x
0
� 4z0 + 2 ^ y

0 = z
0);

which corresponds to the unbounded cone in Figure 7. After renaming primed symbols to un-

primed symbols and intersecting with the invariant condition of the control mode on, we obtain

11

y; z

2 3
x

1

2

1

4

1

on

'0-state

Figure 8: Flow successors of the '0-state

the predicate

x � 3 ^ 2z + 2 � x � 4z + 2 ^ y = z;

which corresponds to the shaded region in Figure 8. This predicate characterizes the states with

the control mode on that can be reached from an initial state by a single
ow. Since there are

no states with the control mode o� that can be reached from an initial state by a single
ow, we

conclude
'1 = Post('0)

= f(on; x � 3 ^ 2z + 2 � x � 4z + 2 ^ y = z); (o� ; false)g:

Next, we compute '2 = Post('1). The jump successors of '1-states are those states for which the

state assertion

f(on; false); (o� ; x = 3^
1

4
� z �

1

2
^ y = z)g

is true. This is because the control switch from on to o� may happen only when x = 3, and

the values of x, y, and z are not changed by the jump, and 2z + 2 � 3 � 4z + 2 simpli�es to

1=4 � z � 1=2. Since '1 is already closed under
ow successors (i.e. all
ow successors of '1-states

are also '1-states), we conclude

'2 = Post('1)

= f(on; x � 3 ^ 2z + 2 � x � 4z + 2 ^ y = z); (o� ; x = 3 ^ 1
4
� z �

1
2
^ y = z)g:

For computing '3 = Post('2), there are no new jump successors and no new
ow successors with

the control mode on. The addition of all
ow successors with the control mode o� yields

'3 = Post('2)

=

(
(on; x � 3 ^ 2z + 2 � x � 4z + 2 ^ y = z);

(o� ; 1 � x � 3^ z + 2
3
� y � z + 2 ^ 2z � x � 4z)

)
:

Now the control switch from o� to on adds new jump successors:

'4 = Post('3)

=

(
(on; (x � 3^ 2z + 2 � x � 4z + 2^ y = z) _ (x = 1 ^ 1

4
� z �

1
2
^ z + 2

3
� y � z + 2));

(o� ; 1 � x � 3 ^ z + 2
3
� y � z + 2 ^ 2z � x � 4z)

)
:

12

x = 1:5

x = 1:5 x = 2:5

x = 2:5

y = 0 ^ z = 0

low

1 � x � 1:5

mid range

1:5 � x � 2:5

high

2:5 � x � 3

^ 0 � y � 60

^ _z = 0

^ 0 � y � 60

^ _z = 1

^ 0 � y � 60

^ _z = 0
_y = 1 _y = 1 _y = 1

Figure 9: Monitor automaton

x = 1:5

x = 1:5

x = 2:5

x = 2:5

x = 2:5

x = 2:5x = 1:5

x = 1:5 1:5 � x � 2:5

x = 2 ^ y = 0 ^ z = 0

(on, mid range)

_x 2 [2;4]

1:5 � x � 2:5

(o�, mid range)

_x 2 [�3;�1]

1 � x � 1:5

(on,low)

x = 3

_x 2 [2;4]

1 � x � 1:5

(o�, low)

_x 2 [�3;�1]

2:5 � x � 3

(on, high)

_x 2 [2; 4]

2:5 � x � 3

(o�, high)

_x 2 [�3;�1]

^ 0 � y � 60

^ _y = 1

^ _z = 0

^ 0 � y � 60

^ _y = 1

^ _z = 1

^ 0 � y � 60

^ _y = 1

^ _z = 0

^ 0 � y � 60

^ _y = 1

^ _z = 0

^ 0 � y � 60

^ _y = 1

^ _z = 1

^ 0 � y � 60

^ _y = 1

^ _z = 0

turn on

x = 1

turn o�

Figure 10: Parallel composition of thermostat automaton and the monitor automaton

The �rst disjunct of the on part of '4 characterizes the states that can be reached without jumps;

the o� part characterizes the states that can be reached by
ows and at most one jump, from on

to o� ; and the second disjunct of the on part characterizes the states that can be reached by
ows

and at most two jumps, from on to o� and from o� to on. HyTech performs these computations

for us, fully automatically, until neither new jump successors nor new
ow successors can be found.

After 73 iterations, it returns the linear state assertion reach that is true precisely for the reachable

states. Last, HyTech veri�es that the variable-free predicate 9X:

W
v2V (reach(v) ^ unsafe(v)) is

false. Hence there is no state for which both reach and unsafe are true, which con�rms that the

thermostat satis�es the safety requirement.

3.5 Parallel composition and monitors

Safety requirements cannot always be speci�ed using state assertions. In the thermostat example,

it was necessary to embellish the original automaton from Figure 1 with the variables y and z in

order to specify the desired heater utilization requirement. Sometimes, it is convenient to build a

separate automaton, called a monitor, whose role is to enter an unsafe state precisely when the

13

original system violates a requirement. The monitor must observe the original system without

changing its behavior. Reachability analysis is then performed on the parallel composition of the

system with the monitor.

For the thermostat example, consider the task of verifying that the temperature lies in the

midrange [1:5; 2:5] at least 25% of the �rst 60 minutes of operation. The monitor automaton of

Figure 9 uses the variable y to measure the total elapsed time, as before, and uses the variable z

to measure the accumulated time that the temperature has been in the range [1:5; 2:5]. The unsafe

states are speci�ed by the state assertion that assigns the predicate y = 60^ z < y=4 to all control

modes of the monitor automaton.

The parallel composition of the monitor automaton and the thermostat automaton of Figure 1 is

depicted in Figure 10. The variable set of the compound automaton is the union of the variable sets

of both component automata, and the control graph of the compound automaton is the cartesian

product of the component graphs. Each control mode of the compound automaton corresponds

to both a control mode from the �rst component automaton and a control mode from the second

component automaton (hence there are 2�3 = 6 control modes in our example). Each control switch

of the compound automaton corresponds either to simultaneous control switches (with matching

event labels) of both component automata (this cannot happen in the example), or to a control

switch (with event label not appearing in the event set of the other component) of one of the

component automata. This notion of parallel composition corresponds to the interleaving model

of discrete concurrent computation. HyTech constructs the compound automaton automatically

and con�rms the desired safety requirement, namely, that all reachable states of the compound

automaton correspond to safe states of the monitor automaton.

3.6 Parametric analysis

High-level system descriptions often use design parameters|symbolic constants with unknown,

�xed values. The parameters are not assigned values until the implementation phase of design. The

goal of parametric analysis is to determine necessary and su�cient constraints on the parameters

under which safety violations cannot occur. Thus, rather than merely verifying (or falsifying)

systems for certain values of the design parameters, quantitative information is extracted, further

aiding the design process. Common uses for parametric analysis include determining minimum

and maximum bounds on variables, and �nding cuto� values for timers and cuto� points for the

placement of sensors.

In a linear hybrid automaton A, a design parameter � can be represented as a variable whose

value never changes, i.e. all
ow conditions must imply _� = 0 and all jump conditions must imply

�
0 = �. Then, in all states of a trajectory of A, the parameter � has the same value (but the value

of � may di�er from trajectory to trajectory). The value a 2 R is called safe for � if whenever

we add the conjunct � = a to all initial conditions of A, then no unsafe state is reachable. This is

the case precisely when there is no trajectory of A such that (1) the last state of the trajectory is

unsafe, and (2) the parameter � has the value a in all states of the trajectory. Since the value of �

is constant along each trajectory, requirements (1) and (2) are equivalent to the single requirement

that the last state of the trajectory is unsafe and assigns the value a to the parameter �. Thus,

the predicate 9X n f�g:
W
v2V (reach(v) ^ unsafe(v)) is a predicate over the variable � which is

true precisely for the unsafe values for �. If reach and unsafe are linear state assertions, then the

existential quanti�er can be eliminated e�ectively, and we obtain, by negation, a linear predicate

that characterizes exactly the safe values for the parameter �. Multiple parameters can be handled

analogously.

14

open
x � 5

closing

0:9 � _x � 1:1

train present

x := 0
x = 5

train leaves

closed

Figure 11: Railroad-gate controller automaton

near

d � �100

�50 � _d � �35

d = �100

train leaves

d = 1000

train present

approaching

d � 1000

d := 5000

�55 � _d � �45

far
d = 5000

Figure 12: Train automaton

Example: railroad-gate controller

We consider the railroad-gate controller from Figures 17 and 19 of [6]. The controller, modeled by

the automaton of Figure 11, lowers and raises a gate at a railroad crossing. Whenever it detects

the presence of an oncoming train, it closes the gate after 5 time units, as measured with the local

clock x. The clock is subject to 10% drift, and thus the gate may be closed at any time between

4.5 time units and 5.5 time units after the approaching train is detected. The controller raises the

gate when the train exits the vicinity of the crossing. The train is modeled by the automaton of

Figure 12. It approaches the crossing at a speed between 45 and 55 meters per time unit. When it

is 1000 meters from the crossing, a sensor signals its approach to the controller, and the speed of

the train is reduced to the range of 35 to 50 meters per time unit. A second sensor, at 100 meters

past the crossing, signals the exit of the train. The train may return to the crossing, but only on

a route that is at least 5100 meters long.

The complete system is represented by the parallel composition of the controller automaton

and the train automaton. In this example, event labels are used to synchronize the concurrent

execution of the controller and the train: the control switches labeled train present must be exe-

cuted simultaneously, thus ensuring that the controller receives the approach signal from the train;

similarly, the control switches labeled train leaves must be executed simultaneously, ensuring that

the controller receives the exit signal from the train (as before, control switches without event labels

are executed individually). The resulting compound automaton is shown in Figure 13. Many of

15

�55 � _d � �45

(approaching;open)

d � 1000

(far;open)

d := 5000

�50 � _d � �35

d � �100^ x � 5

^ _x = 1

(near; closing)

d � �100

�50 � _d � �35

(near ; closed)

d = 5000

x = 5

train leaves

d = �100 d = 1000!

train present

x := 0

Figure 13: Parallel composition of train automaton and controller automaton

the control modes of the compound automaton are not reachable in the control graph via a path

of directed edges from the initial mode (far ; open). No state in such a mode can satisfy the state

assertion reach, so these modes are excluded from the �gure. The safety requirement of interest

asserts that whenever the train is within 10 meters of the crossing, then the gate is closed. Ac-

cordingly, the unsafe states are speci�ed by the state assertion that assigns the predicate false to

the control modes of the compound automaton whose controller component is closed, and assigns

�10 � d � 10 to all other control modes. HyTech automatically veri�es this property.

In this example, parametric analysis can be used to determine how much advance notice the

controller requires in order to meet the safety requirement. For this purpose, we replace the constant

1000, which indicates the location of the sensor that detects oncoming trains, by a parameter �.

Then, the controller is alerted when an approaching train is � meters from the crossing. The

parametric train automaton is shown in Figure 14. HyTech computes that for the same controller

and the same safety requirement as before, the necessary and su�cient constraint for correctness

is � > 2877
9 . Thus the controller will lower the gate in time if and only if it is warned of the

approaching train before the train is 2877
9
meters from the crossing.

Example: heater utilization

For the thermostat example, we can use parametric analysis to determine an upper bound on

the time the heater is active during the �rst hour of operation. For this purpose, we introduce

a parameter � and specify the unsafe states by the state assertion that assigns the predicate

y = 60 ^ z � � to all control modes. We then let HyTech compute the values of � for which

an unsafe state is reachable. The largest such � value is an upper bound on the value of z after

60 minutes of elapsed time. For the linear phase-portrait approximation from Figure 6, HyTech

returns the constraint � � 36, implying that the thermostat is active for no more than 36 minutes

during the �rst hour. For the more accurate approximation from Figure 5, HyTech computes the

16

near

d � �100

�50 � _d � �35

^ _� = 0

train present

d = �d = �100

train leaves

approachingfar
d := 5000

d � �

_� = 0

�55 � _d � �45

^ _� = 0

d = 5000

Figure 14: Parametric train automaton

tighter upper bound of 331
3 minutes.

In this paper, we use linear phase-portrait approximations of the thermostat automaton to

demonstrate safety veri�cation and parametric analysis. However, the clock translation of the

thermostat automaton, depicted in Figure 3, could also be used. This hybrid automaton is not

itself a linear hybrid automaton, since its description involves irrational constants such as ln 2.

Linear phase-portrait approximation must be applied before the automaton can be analyzed with

HyTech. For example, the value of ln 2 is approximately 0:69315, so the invariant tx � ln 2 for the

mode (on; 1) may be replaced by tx � 70=100, and the constraint tx = ln 2 in the jump condition for

the switch ((on; 1); (o� ; 3)) may be replaced by 69=100 � tx � 70=100. When ln 3 and ln(3=2) are

likewise approximated to the nearest 1=100, HyTech computes an upper bound of 23:51 minutes

of heater utilization.

4 HyTech

We give only a very brief introduction toHyTech|a detailed tutorial appears in the user guide [24].

A HyTech input �le consists of two parts. The �rst part contains the textual description of a

collection of linear hybrid automata, which are automatically composed for the analysis. The second

part of the input contains a sequence of analysis commands. The analysis language is a simple while-

programming language that provides as primitive the data type \state assertion" with a variety of

operations, including Post , boolean operators, and existential quanti�cation. This gives the user

a
exible framework for writing state-space exploration programs. For added convenience, there

are built-in macros for reachability analysis, parametric analysis, the conservative approximation

of state assertions [22], and the generation of error trajectories (see below).

For example, the following command lines are taken from the analysis script for determining,

for the thermostat from Figure 6, the duration � that the heater is active during the �rst hour of

operation:

17

Time: 0.00

Location: on

x = 2 & y = 0 & z = 0

VIA 0.50 time units

Time: 0.50

Location: on

x = 3 & 2y = 1 & 2z = 1

VIA: turn off

Time: 0.50

Location: off

x = 3 & 2y = 1 & 2z = 1

VIA 0.67 time units

Time: 1.17

Location: off

x = 1 & 6y = 7 & 2z = 1

VIA: turn on

Time: 1.17

Location: on

x = 1 & 6y = 7 & 2z = 1

VIA 0.83 time units

Time: 2.00

Location: on

3x = 8 & y = 2 & 3z = 4

Figure 15: Error trajectory

unsafe := y=60 & z >= alpha; (1)

reachable := (2)

reach forward from init states endreach; (3)

bad alpha values := omit all locations (4)

hide non parameters in reachable & unsafe endhide; (5)

prints "Spec. violated for parameter values:"; (6)

print omit all locations bad alpha values; (7)

good alpha values := ~bad alpha values; (8)

prints "Spec. satisfied for parameter values:"; (9)

print omit all locations good alpha values; (10)

In line 1, the unsafe states are speci�ed. The states that are reachable from the initial states via

iteration of the Post operator are computed in line 3. The command on lines 4 and 5 performs

existential quanti�cation, in order to obtain a predicate that characterizes the unsafe reachable

states as a constraint on the parameters. The symbol ~ that appears in line 8 denotes the negation

operation. The statements in lines 6, 7, 9, and 10 produce the following output:

Spec. violated for parameter values:

alpha <= 36

Spec. satisfied for parameter values:

alpha > 36

18

4.1 Diagnostic information

One of the main bene�ts of state-space exploration tools lies in their ability to generate error

trajectories when a system fails to satisfy a requirement. This information can then be used for

debugging the system. If a system fails to satisfy a safety requirement, then an error trajectory

leads from an initial state to an unsafe state. For example, for the thermostat of Figure 6, the

heater can be active for more than 2=3 of the time during the �rst few minutes of operation. A

debugging trace that demonstrates this fact is generated by the following input commands:

unsafe := y=2 & z >= 2/3 y; (1)

reachable := (2)

reach forward from init states endreach; (3)

if not empty(reachable & unsafe) (4)

then print trace to unsafe using reachable; (5)

else prints "Safety property satisfied."; (6)

endif; (7)

During the reachability analysis invoked in lines 2 and 3, backward pointers are maintained to

indicate a predecessor state for each reachable state. This information is utilized by the command

on line 5, which constructs an error trajectory. The HyTech output appears in Figure 15. It

corresponds to the trajectory

(on; 2; 0; 0); (on; 3; 1
2 ;

1
2); (o� ; 3; 12 ;

1
2); (o� ; 1; 116;

1
2); (on; 1; 1

1
6;

1
2); (on; 2

2
3; 2; 1

1
3);

where (on; 2; 0; 0) represents the state (on; x = 2; y = 0; z = 0), etc. Notice that the HyTech

output also provides the duration of
ows. In the generated trajectory, the temperature x increases

as slowly as possible in control mode on , until it reaches 3 degrees after 0.5 minutes; then it

decreases as fast as possible in control mode o� , until it reaches 1 degree at 1.17 minutes; and

then it increases as slowly as possible until the time limit of 2 minutes. From the last state of the

trajectory, we infer that the heater has been active for exactly 2=3 of the �rst 2 minutes of elapsed

time.

4.2 Applications

HyTech has been used in a number of case studies|primarily control-based applications|including

a distri-buted robot controller [21], a robot system in manufacturing [21], the Philips audio control

protocol [33], an active structure controller [23], a generalized railroad controller [23], a nonlinear

temperature controller [20], a predator-prey ecology [30], an aircraft landing-gear system [35], a

steam-boiler controller [31], and an automotive engine chassis-level controller [38]. Corbett [12] has

veri�ed robot controllers written in a subset of Ada by automatically translating them into linear

hybrid automata for analysis with HyTech. We are currently experimenting with the modeling

and analysis of timed circuits.

Tools are also available for the simulation of hybrid automata, such as Shift [14], and for the

abstract interpretation of linear hybrid automata, such as Polka [16]. Abstract-interpretation

techniques can enforce the convergence of �xpoint computations by relaxing state assertions. For

the veri�cation of hybrid systems that are primarily discrete but include clocks, we recommend the

use of specialized tools for the restricted class of timed automata. Symbolic model checkers for timed

automata include Kronos [13], timed Cospan [7], timed Hsis [8], Uppaal [9], and Veriti [15].

These systems use algorithms that are speci�c to clocks, and therefore are more e�cient for clock

systems than the more general algorithms of HyTech. For the analysis of hybrid systems whose

19

complexity is primarily in the continuous domain, we recommend the use of dynamics theory and

numerical tools: in this case, the abstractions from nonlinear hybrid automata to linear hybrid

automata are likely to be too crude to reap the full bene�ts of automated analysis. HyTech has

been most successful when applied to systems that involve an intricate interplay between discrete

and continuous dynamics.

4.3 Availability

Early versions of HyTech were built using Mathematica [21, 32], and linear predicates were repre-

sented and manipulated as symbolic formulas. Based on the observation that a linear predicate over

n variables de�nes a union of polyhedra in Rn, the current, more e�cient generation ofHyTech [23]

manipulates linear predicates via calls to a library for polyhedral operations [16]. HyTech has

been ported to the following platforms: Digital workstations running Ultrix V4.5 and Digital Unix

V3.2D-1, HP 9000 workstations running HP-UX, Sun workstations running SunOS 4.x and Solaris

5.4, and x86 PCs running Linux. The HyTech home page

http://www.eecs.berkeley.edu/~tah/HyTech

includes the source code, executables, an online demo, a user guide, a graphical front end (courtesy

of members of the Uppaal project [9]), numerous examples, online versions of papers, and pointers

to additional literature. Requests may also be sent to hytech@eecs.berkeley.edu.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real time. Information and

Computation, 104(1):2{34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer

Science, 138:3{34, 1995.

[3] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid automata: an algorithmic

approach to the speci�cation and veri�cation of hybrid systems. In R. Grossman, A. Nerode,

A. Ravn, and H. Rischel, editors, Hybrid Systems I, Lecture Notes in Computer Science 736,

pages 209{229. Springer-Verlag, 1993.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,

1994.

[5] R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic veri�cation of embedded systems.

IEEE Transactions on Software Engineering, 22(3):181{201, 1996.

[6] R. Alur, T. A. Henzinger, and P. W. Kopke. Real-time system = discrete system + clock

variables. Software Tools for Technology Transfer, 1(1), 1997.

[7] R. Alur and R. P. Kurshan. Timing analysis in Cospan. In R. Alur, T. Henzinger, and

E. Sontag, editors, Hybrid Systems III, Lecture Notes in Computer Science 1066, pages 220{

231. Springer-Verlag, 1996.

20

[8] F. Balarin and A. L. Sangiovanni-Vincentelli. Iterative algorithms for formal veri�cation of

embedded real-time systems. In ICCAD 94: International Conference on Computer Aided

Design, pages 450{457, 1994.

[9] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal: a tool-suite for

automatic veri�cation of real-time systems. In R. Alur, T. Henzinger, and E. Sontag, editors,

Hybrid Systems III, Lecture Notes in Computer Science 1066, pages 232{243. Springer-Verlag,

1996.

[10] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142{70, 1992.

[11] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching-

time temporal logic. In Workshop on Logic of Programs, Lecture Notes in Computer Science

131. Springer-Verlag, 1981.

[12] J. C. Corbett. Timing analysis of Ada tasking programs. IEEE Transactions on Software

Engineering, 22(7):461{483, 1996.

[13] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur, T. Henzinger,

and E. Sontag, editors, Hybrid Systems III, Lecture Notes in Computer Science 1066, pages

208{219. Springer-Verlag, 1996.

[14] A. Deshpande, A. G�oll�u, and L. Semenzato. The Shift programming language and run-time

system for dynamic networks of hybrid automata. IEEE Transactions on Automatic Control,

1997. To appear.

[15] D. Dill and H. Wong-Toi. Veri�cation of real-time systems by successive over- and underap-

proximation. In P. Wolper, editor, CAV 95: Computer-aided Veri�cation, Lecture Notes in

Computer Science 939, pages 409{422. Springer-Verlag, 1995.

[16] N. Halbwachs, P. Raymond, and Y.-E. Proy. Veri�cation of linear hybrid systems by means of

convex approximation. In B. LeCharlier, editor, SAS 94: Static Analysis Symposium, Lecture

Notes in Computer Science 864, pages 223{237. Springer-Verlag, 1994.

[17] M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on �nite and in�nite

graphs. In Proceedings of the 36rd Annual Symposium on Foundations of Computer Science,

pages 453{462. IEEE Computer Society Press, 1995.

[18] T. Henzinger. Hybrid automata with �nite bisimulations. In Z. F�ul�op and F. G�ecseg, editors,

ICALP 95: Automata, Languages, and Programming, Lecture Notes in Computer Science 944,

pages 324{335. Springer-Verlag, 1995.

[19] T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual Symposium

on Logic in Computer Science, pages 278{292. IEEE Computer Society Press, 1996. Invited

tutorial.

[20] T. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In P. Wolper,

editor, CAV 95: Computer-aided Veri�cation, Lecture Notes in Computer Science 939, pages

225{238. Springer-Verlag, 1995.

21

[21] T. Henzinger and P.-H. Ho. HyTech: The Cornell Hybrid Technology Tool. In P. Antsaklis,

A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems II, Lecture Notes in Computer

Science 999, pages 265{293. Springer-Verlag, 1995.

[22] T. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid automata.

In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems II, Lecture Notes

in Computer Science 999, pages 252{264. Springer-Verlag, 1995.

[23] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation. In Proceedings of

the 16th Annual Real-time Systems Symposium, pages 56{65. IEEE Computer Society Press,

1995.

[24] T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In E. Brinksma,

W. Cleaveland, K. Larsen, T. Margaria, and B. Ste�en, editors, TACAS 95: Tools and Al-

gorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science

1019, pages 41{71. Springer-Verlag, 1995.

[25] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid systems.

IEEE Transactions on Automatic Control, 1998. To appear.

[26] T. Henzinger and P. Kopke. State equivalences for rectangular hybrid automata. In U. Monta-

nari and V. Sassone, editors, CONCUR 96: Concurrency Theory, Lecture Notes in Computer

Science 1119, pages 530{545. Springer-Verlag, 1996.

[27] T. Henzinger and P. Kopke. Discrete-time control for rectangular hybrid automata. In

P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, ICALP 97: Automata, Lan-

guages, and Programming, Lecture Notes in Computer Science 1256, pages 582{593. Springer-

Verlag, 1997.

[28] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata?

In Proceedings of the 27th Annual Symposium on Theory of Computing, pages 373{382. ACM

Press, 1995.

[29] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time

systems. Information and Computation, 111(2):193{244, 1994. Special issue for LICS 92.

[30] T. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for nonlinear hybrid

systems. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III, Lecture Notes

in Computer Science 1066, pages 377{388. Springer-Verlag, 1996.

[31] T. Henzinger and H. Wong-Toi. Using HyTech to synthesize control parameters for a steam

boiler. In J.-R. Abrial, E. B�orger, and H. Langmaack, editors, Formal Methods for Indus-

trial Applications: Specifying and Programming the Steam Boiler Control, Lecture Notes in

Computer Science 1165, pages 265{282. Springer-Verlag, 1996.

[32] P.-H. Ho. Automatic Analysis of Hybrid Systems. PhD thesis, Cornell University, 1995.

[33] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In P. Wolper,

editor, CAV 95: Computer-aided Veri�cation, Lecture Notes in Computer Science 939, pages

381{394. Springer-Verlag, 1995.

[34] P. Kopke. The Theory of Rectangular Hybrid Automata. PhD thesis, Cornell University, 1996.

22

[35] S. Nadjm-Tehrani and J.-E. Str�omberg. Proving dynamic properties in an aerospace appli-

cation. In Proceedings of the 16th Annual Real-time Systems Symposium, pages 2{10. IEEE

Computer Society Press, 1995.

[36] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and analysis

of hybrid systems. In R. Grossman, A. Nerode, A. Ravn, and H. Rischel, editors, Hybrid

Systems I, Lecture Notes in Computer Science 736, pages 149{178. Springer-Verlag, 1993.

[37] J. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems in Cesar. In

M. Dezani-Ciancaglini and U. Montanari, editors, Fifth International Symposium on Program-

ming, Lecture Notes in Computer Science 137, pages 337{351. Springer-Verlag, 1981.

[38] T. Stauner, O. M�uller, and M. Fuchs. Using HyTech to verify an automotive control system.

In O. Maler, editor, HART 97: International Workshop on Hybrid and Real-Time Systems,

Lecture Notes in Computer Science 1201, pages 139{153. Springer-Verlag, 1997.

23

