

Theorie reaktiver Systeme

Thema:

Bisimilarität

Äquivalenz von CSP - Prozessen?

Gesucht: geeignetes Kriterium für Äquivalenz

- Syntaktische Identität der Transitionssysteme
- Isomorphie
- Bisimilarität
- ...

Bisimulation über CSP-Prozesse

Eine Relation $\varrho \subseteq CSP \times CSP$ heisst (starke) Bisimulation wenn gilt:

Falls $P \varrho Q$ (also $(P, Q) \in \varrho$), dann gilt:

- 1. Für alle $e \in \alpha(P)$:
- Wenn $P \stackrel{e}{\longrightarrow} P'$, dann existiert Q', so dass $Q \stackrel{e}{\longrightarrow} Q'$ und es gilt $P' \varrho Q'$.
- 2. Für alle $e \in \alpha(Q)$:

Wenn $Q \stackrel{e}{\longrightarrow} Q'$, dann existiert P', so dass $P \stackrel{e}{\longrightarrow} P'$ und es gilt $P' \varrho Q'$.

Im Folgenden bezeichnet "Bisimulation" immer eine starke Bisimulation.

Sei ϱ eine Relation. Die inverse Relation ϱ^{-1} ist definiert als

$$\varrho^{-1} = \{ (\mathbf{y}, \mathbf{x}) \mid (\mathbf{x}, \mathbf{y}) \in \varrho \}$$

Seien ϱ_1 und ϱ_2 Relationen. Die Komposition von ϱ_1 und ϱ_2 ist definiert als:

$$\varrho_1 \circ \varrho_2 = \{(x, z) \mid \exists y.(x, y) \in \varrho_1 \text{ and } (y, z) \in \varrho_2\}$$

 ϱ , ϱ_1 und ϱ_2 seien Bisimulationen.

- \bullet \emptyset ist eine Bisimulation.
- Id ist eine Bisimulation.
- ϱ^{-1} ist eine Bisimulation.
- $\varrho_1 \circ \varrho_2$ ist eine Bisimulation.
- $\varrho_1 \cup \varrho_2$ ist eine Bisimulation.

<u>Definition</u> Zwei CSP-Prozesse P und Q sind <u>aquivalent</u> bezüglich Bisimulation oder bisimilar, falls $(P,Q) \in \varrho$ ist und ϱ eine Bisimulation ist. Notation: $P \sim_{BS} Q$.

$$\sim_{BS} = \bigcup \{ \varrho \mid \varrho \text{ ist Bisimulation } \}$$

- \sim_{BS} ist Äquivalenzrelation.
- \sim_{BS} ist die grösste Bisimulation.

• Wenn ϱ eine Bisimulation ist und $P \varrho Q$ gilt, so gilt auch $P \sim_{BS} Q$.

Beispiele:

$$a \rightarrow P \sim_{BS} a \rightarrow (a \rightarrow P)$$
 $P \square (Q \square R) \sim_{BS} (P \square Q) \square R$
 $(a \rightarrow P) \parallel (b \rightarrow Q) \sim_{BS}$

 $(a \rightarrow (P \mid || (b \rightarrow Q))) \square (b \rightarrow ((a \rightarrow P) \mid || Q))$

Vorgehensweise zum Beweis $P \sim_{BS} Q$:

- 1. Definiere Relation ϱ .
- 2. Zeige: ϱ ist Bisimulationsrelation für P und Q.
- 3. Wegen $\varrho \subseteq \sim_{BS}$ folgt dann $P \sim_{BS} Q$.

Für endliche LTS P und Q ist entscheidbar, ob $P \sim_{BS} Q$.


```
Partition := \{S\};

Splitter := Label × Partition;

while (Splitter \neq \emptyset)

choose (a, C_{Spl}) \in Splitter;

forall C \in Partition

Split(C, a, C_{Spl}, Partition, Splitter);

Splitter := Splitter - (a, C_{Spl});
```


procedure $Split(C, a, C_{Spl}, Partition, Splitter)$

$$C^+ := \{P \mid P \in C \land \exists Q.(P \xrightarrow{a} Q \land Q \in C_{Spl})\};$$

if
$$(C^+ \neq C \land C^+ \neq \emptyset)$$

$$C^- := C - C^+;$$

Partition : = Partition $\cup \{C^+, C^-\} - \{C\}$;

Splitter := Splitter \cup (Label \times { C^+ , C^- })- Label \times {C};