AG BS
Jan Peleska
Florian Lapschies

Exercise sheet 5

Motivated by our previous door/laser locking mechanism examples the working example of this exercise sheet is the laboratory lock depicted in figure 1 :

Outside

Laboratory

Figure 1: EUC: Door System
A laboratory room has a single entrance, a lock composed of two consecutive doors. Inside of the laboratory experiments are conducted that are potentially hazardous to humans. Each door d_{0} and d_{1} can be locked separately by an electro-mangnetic door lock. Applying electrical current to one of these door locks activates a magnet that lifts a metal bolt and thereby locks that door. If the current is released the door is unlocked. This setting has the advantage that no scientist is trapped inside the laboratory during a power outage. Notice, that the experiments conducted in that room require electrical power and immediately turn harmless in such a case. The locks are controlled by a single hardware controller that has the following inputs: An input r coming from a door-request button outside of the laboratory which is set iff the button is pressed. Contact sensors c_{0} and c_{1} that are set iff the door d_{0} and d_{1} are closed, respectively. By setting the outputs close ${ }_{0}$ and close $_{1}$ the controller can lock the doors d_{0} and d_{1}, respectively.
The door locking system should behave in the following way:

- For safety reasons only one scientist is allowed to be in the laboratory at a time.
- Both doors may never be unlocked or be open simultaneously.
- A scientist who wants to enter the laboratory has to press the door-request button. The controller then unlocks d_{0} if no other scientist is in the laboratory or is currently entering it.
- After the scientist has passed and then closed d_{0}, the controller locks d_{0} and unlocks d_{1}.
- The scientist then passes d_{1} into the laboratory and then closes d_{1}. As long as the scientist is in the laboratory, d_{1} remains unlocked.
- When the scientist finished his work in the laboratory he leaves by passing and then closing d_{1}. The controller then locks d_{1} and unlocks d_{0}.
- After the scientist finally passed and then closed d_{0}, d_{0} is locked again until the next door-request.

In addition the following assumption can be made:

- Initially, all doors are closed and locked, no scientist is in the laboratory or is entering it.
- Only one non claustrophobic scientist fits between d_{0} and d_{1}.
- Once a scientist opens a door he actually passes that door. After that he closes it properly. In other words, he does not reconsider passing that door or likes opening doors for fun.

Exercise 1 Circuit Design

Design the digital circuit for the door controller composed of SR-flip-flops, and-, or- and negation-circuits.

Exercise 2 Fault Tree Analysis

Perform a fault tree analysis of the laboratory lock controlled by your circuit design.

Submit your solution to florian(at)informatik.uni-bremen.de and hand in a printout in the session on Thursday, 14th of January.

