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ABSTRACT
This article presents novel results on automated test genera-
tion for hybrid control systems. In contrast to test automa-
tion techniques for purely discrete controllers this involves
the generation of both discrete and real-valued, potentially
time-continuous, input data to the system under test. To
this end, the test automation techniques introduced here are
allocated in two-layers: The upper layer contains a symbolic
test case generator constructing test cases as paths through
an abstracted representation of the transition graph specify-
ing the system under test. Different test strategies designed
to pursue various quality objectives lead to different selec-
tions of symbolic test cases. Symbolic test cases are trans-
formed into feasible, i. e., executable, test cases by construct-
ing concrete sequences of input data, allowing the execu-
tion of the pre-planned transition sequence. The input data
construction is performed by the lower layer consisting of a
constraint solver. This component applies interval analysis
techniques identifying the domains from where to pick the
appropriate test data. The well known complexity problems
of the various paving algorithms used in interval analysis are
circumvented by three main concepts: First, sequences of
constraints, each element representing a conjunct of a larger
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global constraint, are processed separately, thereby keeping
the dimension of the local constraint problems involved at
an acceptable level. Second, interval vectors containing the
global solution set are contracted using forward-backward
interval constraint propagation. Third, both symbolic test
case generator and constraint solver learn to avoid symbolic
transition sequences whose prefixes are already known to be
infeasible and to avoid interval solutions for local constraints
which are known to be in conflict with other local constraints
to be satisfied for the same symbolic test case, respectively.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Require-
ments/Specifications; D.2.5 [Software Engineering]:
Testing and Debugging

1. INTRODUCTION
Hybrid systems perform control tasks involving the process-
ing of both discrete and real-valued, potentially time-con-
tinuous (analog), data. As a consequence, testing hybrid
systems controllers requires the generation and evaluation
of discrete and analog I/O data written to and read from
interfaces of the system under test (SUT). This article con-
tributes to the problem of automated specification-based test
generation for hybrid systems: Test data are derived from
hybrid systems specifications describing the required behav-
ior of the SUT1. As specification formalism we use time-
discrete input-output hybrid systems (TDIOHS) which are
suitable for describing sequential (possibly non-terminating)
time-discrete dynamical control systems. Our results, how-
ever, only rely on an appropriate internal representation of
the specification model, so that different formalisms can be
supported via transformation front-ends. In particular, our
concepts can be applied to hybrid variants of Statecharts [4].
Moreover, they also apply to structural software testing,
where the TDIOHS represent the control flow graphs of the
software units under test.

1The methods described here alternatively allow to specify
the guaranteed behavior of the operational environment in-
teracting with the controller and to derive tests from this
environment specification. In this paper, however, we only
focus on SUT specifications, while leaving environment be-
haviour unspecified.



Testing is usually applied with the objective to investigate
specific quality objectives in the SUT, such as functional and
behavioral correctness with respect to given specifications,
stability in boundary situations and robustness against il-
legal environment behavior. These objectives induce test
strategies aiming at exercising specific portions of existing
specifications or additional requirements elaborated by the
testing specialists. As a consequence the implementation of
strategies in test suites requires the construction of input
sequences “driving” the SUT into states corresponding to
certain specification locations. For complex hybrid systems
this task typically involves (1) the traversal of graphs rep-
resenting abstracted specification structure like control lo-
cations, transitions and abstract labels, (2) the symbolic in-
terpretation of conditions, invariants, flows and actions and
(3) the generation and solution of constraints derived from
the guard conditions to be fulfilled in order to exercise cer-
tain portions of the specification on the SUT. For TDIOHS
the sub-task (2) is simplified because flow conditions and
invariants do not appear explicitly in the specification.

This article mainly contributes to the first and third sub-
task: With respect to (3), we focus on constraint solving
problems (CSPs) involving real-valued variables. Intuitively
speaking, CSPs specify the multi-dimensional sets S ⊆ R

n

from where input data to the SUT should be selected, in
order to stimulate a certain SUT execution path suggested
by the selected test strategy. The SAT solving methods for
Boolean problems and solvers for integral-valued CSPs are
obviously not sufficient when real valued variables and, in
particular, non-linear CSPs are involved. Moreover, they
do not possess “natural” extensions for solving real-valued
CSPs. Therefore we advocate the application of interval
analysis, where CSPs are solved by approximating the so-
lution sets by unions of non-intersecting intervals I ⊂ R

n,
where n is the number of free variables involved in the CSP.
These collections of intervals are called pavings of the con-
straint solution set S ⊆ R

n. This approach is supported by
providing modified versions of arithmetic and set operations
working on and resulting in intervals or unions thereof.

In many applications of interval analysis – for example, when
approximating the volume of an n-dimensional set specified
by a CSP – pavings have to be refined until they completely
cover (approximation from outside) or fill (approximation
from inside) the solution set with sufficient precision. Per-
forming this task with the most basic algorithms of inter-
val analysis – the so-called regular subpavings – generally
requires exponential time. Therefore additional algorithms
with polynomial complexity have been provided (the con-
tractors), in order to narrow the discrepancy between solu-
tion sets and approximating intervals, so that regular sub-
pavings only have to be applied as “last resort” during the
final approximation steps.

For the purpose of test generation, however, CSPs have an-
other quality which leads to further complexity reductions:
It generally suffices to select a small number of elements
x ∈ S (in most cases just one) from the solution set of
a CSP. These x are used as inputs to the SUT at certain
points in time t during the test execution (t may be a com-
ponent of the solution vector x). As a consequence, it is
possible to stop the paving process as soon as a sufficient

number of solutions x ∈ S have been found. This approach
can be further optimized by noting that for the purpose of
test generation, CSPs c are typically constructed from con-
juncts, c ≡ c1 ∧ . . . ∧ cn, each ci involving a much smaller
number of free variables than c. The ci correspond, for ex-
ample, to guard conditions of specific transitions or state
invariants/flow conditions to be ensured or violated on pur-
pose by the means of state changes provoked by the test
environment. In these situations, interval analysis suggests
to apply finite sub-solvers φi for providing interval approx-
imations of each ci-solution set and find a suitable way of
integrating the partial solutions into the global one covering
S. Keeping in mind that complete approximations of S are
not required we devise an algorithm which identifies only a
limited number of intervals I(ci) ⊆ S(ci) and then propa-
gates the I(ci) to the other cj , with the purpose of stopping
all further approximations of S(ci) if I(ci) is already compat-
ible with all other cj . If this is not the case, the algorithm
can learn which edges of I(ci) are incompatible with one or
more other constraints cj : It is useless to further refine the
paving of S(ci) with any intervals J(ci) sharing edges with
I(ci) which are already known to be in conflict with cj . If
some of the variables xi are not real-valued but integral num-
bers, the paving process is restricted in these dimensions i
to edges containing at least one integral number. This pro-
cess is combined with forward-backward interval constraint
propagation which turns out to be a very powerful general-
purpose2 contractor.

For handling sub-task (1) described above, the constraint
solving techniques are combined with a symbolic test case
generator selecting paths through the transition graph of a
given TDIOHS according to a given strategy. This allows to
encapsulate all tasks concerning test coverage in a separate
layer. This layer also applies learning strategies by avoid-
ing to re-select sequences of symbolic transitions which are
infeasible because no inputs making the associated guard
evaluations true can be constructed.

1.1 Overview
Section 2 introduces the basic notions about testing, time-
discrete input-output hybrid systems and interval analysis.
Section 3 introduces the formal notion of a symbolic test
case and describes several test strategies suitable for pur-
suing different quality objectives. In Section 4, a frame-
work for test case/test data generation systems is intro-
duced, where all the relevant components cooperating for
this purpose, together with basic interfaces and interaction
principles have been identified. Sections 5 and 6 contain
the main results of this paper, where the symbolic test case
generator is specified and our new solvers for typical con-
straints induced by coverage goals for hybrid specification
are described. Section 7 contains the conclusions and de-
scribes work in progress beyond the scope of this paper.

1.2 Related Work
Our TDIOHS differ from Henzinger’s hybrid automata (HA)
introduced in [11] mainly by the fact that TDIOHS do not
model invariants and flow conditions in an explicit way. The
discussion of TDIOHS in Section 2.2 will show that they

2Specialized, potentially more powerful, contractors exist for
restricted types of constraints, such as linear CSPs.



basically represent time-discrete dynamical control systems
where all flow conditions have been handled beforehand, us-
ing discretized solutions. Our TDIOHS were motivated by
similar ideas as the rectangular hybrid automata introduced
in [12].

For practical applications it is useful to apply variants of
TDIOHS allowing for hierarchic decomposition of control
modes into new “lower-level” TDIOHS refining the respec-
tive modes. Examples of hierarchic HA approaches have
been given in [2] and [4], the latter integrating them as a
profile into the Unified Modeling Language UML2.0. In the
context of the present paper it suffices to present the al-
gorithms involved for the flat original version of HA: Their
application to hierarchic specifications is practically imple-
mented by introducing a specific strategy in the sense of
Section 3 (this is our preferred approach), or, alternatively,
by flattening the specification to a non-hierarchic represen-
tation [9].

A formal basis for testing has been initially established in the
context of finite-state machines [5] and process algebras [10]
without time. The main results showed that test strategies
existed for establishing semantic equivalence or some refine-
ment relation between the SUT and its specification. These
results could be extended to timed I/O automata [18]. In
contrast to this, test generation for the purpose of proving
equivalence between SUT and its specification is no longer
possible if more general HA are involved. This follows from
undecidability results given in [12]. As a consequence, it
seems both desirable to elaborate test strategies which are
promising to uncover at least certain types of failures (Sec-
tion 3) and, alternatively, to restrict the class of HA which
are admissible as controller models, so that more decidabil-
ity results are available (see, for example, [12]).

The design of the symbolic test case generator described
in Section 5 has been influenced by the novel solutions for
graph traversal with the objective of implementing specific
strategies or, equivalently, coverage criteria suggested in [6].

The definitions and results from interval analysis used in this
paper are based on [13, 14]. Interval analysis has been fre-
quently applied in combination with abstract interpretation
for various aspects of static software analysis; see, for ex-
ample, [7]. Several authors have investigated more general
geometric forms (polyhedra) than n-dimensional intervals
for the purpose of model checking for hybrid systems, see
[3] for an example from the field of reachability analysis.

A rather comprehensive description of testing terminology
can be found in [17]; the technical terms required for this
paper are introduced in Section 2.1.

2. CONCEPTS AND TERMINOLOGY
2.1 Testing Terminology
A typical hybrid systems control scenario is depicted in Fig-
ure 1: The controller – this may also consist of a network of
cooperating computers – interacts with the physical environ-
ment to be controlled (also called equipment under control
(EUC)) by monitoring observables (y1, . . . , yk) and affect-
ing EUC behavior by means of controls (u1, . . . , um). The
required behavior of the physical system can be changed

Controller

Controlled System
(Equipment Under
Control EUC)

(u1,...,um)
EUC controls

(y1,...,yk)
EUC observables

(x1,...,xn)
EUC internal state

(z1,...,zq)

Controller
internal state

User Output
(v1,...,vp)

User Controls

Figure 1: Controller and equipment under control.

Controller

(u1,...,um)
EUC controls

(y1,...,yk)
Simulated EUC observables

(w1,...,wl)
TE internal state

Test Equipment (TE)

(z1,...,zq)
Controller
internal state

Simulated user controls
(v1,...,vp)

User Output

Figure 2: Controller and test equipment replacing
real operational environment.

through the user – or another computer interacting with the
controller – by changing the user control inputs (v1, . . . , vp).
The controller outputs status data to the user. All inter-
face data ui, yi, vi as well as the user output may involve
both discrete and analog values, the latter transmitted to
the EUC by means of actuators performing digital/analog
(D/A) conversion and received from the EUC using sensors
and A/D converters.

For testing hybrid control systems in an automated way
it is necessary that the test equipment (TE) replaces the
complete operational environment of the controller which is
now denoted as system under test (SUT) (Figure 2): The
TE simulates user inputs (v1, . . . , vp) and EUC behavior
(y1, . . . , yk) as far as visible to the SUT and monitors SUT
actions on its EUC outputs (u1, . . . , um) and user output in-
terfaces, for the purpose of checking compliance of the SUT
with its specified behavior. For black box testing these are
the only interfaces which can be accessed by the TE. If a por-
tion of the internal SUT state (z1, . . . , zq) can be observed
or manipulated this is called grey box testing.

Testing is performed in order to ensure – or, at least, in-
crease the confidence – that a software-based product com-
plies with a set of given quality criteria. Software quality
criteria are defined for example in ISO/IEC 9126 [1]; typical
characteristics – so-called quality attributes – are functional
correctness, reliability, usability, efficiency, maintainability



and portability. For a particular SUT specific quality ob-
jectives apply, this results in a selection and prioritization
of the associated attributes. In order to identify tests which
are particularly useful to uncover product deficiencies violat-
ing the aspired quality goals, test strategies are elaborated,
defining the test levels and the test case design techniques to
be used in the test campaign. Test levels define the portions
of the SUT – for example, the complete system, sub-systems,
modules – which are exercised during the test by stimulating
its input interfaces and monitoring its outputs. Examples
are system integration tests, software integration tests and
module tests. Test case design techniques deal with the de-
velopment of (timed sequences of) input data to the SUT
and the specification of the expected SUT reactions to these
inputs. A test case may be regarded as a partial specification
of the SUT suitable for checking a particular well-defined ob-
jective or requirement. Depending on the test case design
technique, a test case may already specify the concrete SUT
pre-state from where the test objective can be checked, the
inputs driving the SUT into this pre-state, the consecutive
inputs and expected SUT outputs and the associated tim-
ing requirements and admissible post-states. Alternatively,
a test case may be represented by more abstract specifi-
cations and the determination of concrete test data is per-
formed in an additional refinement step. One or more test
cases are executed in suitable causal ordering within a test
procedure which describes the concrete actions for their ex-
ecution. For automated testing, procedures are executable
programs running on the test equipment. In particular, test
procedures contain all the mechanisms – for example, driver
calls and data conversion routines – to generate the test data
and check concrete SUT output against expected results, as
specified in the associated test cases.

2.2 Hybrid Systems
A time–discrete input–output hybrid system (TDIOHS) is a
tuple H = (Loc, Init, V, I,O, T rans) where

• Loc is a finite set whose elements are called locations,

• V is a finite set of (discrete and continuous) variables,

• I , O ⊆ V are sets of input and output variables, re-
spectively, with I ∩O = ∅,

• Guard is the set of all quantifier–free predicates over
V ,

• Init : Loc → Guard is a function mapping locations
to predicates,

• Assign is the set of all pairs (~x,~t) where ~x = (x1, x2, . . .)
is the vector of all variables in V − I (a.k.a. controlled

variables) and ~t = (t1, t2, . . .) ∈ T |V −I| in which T is
the set of all terms over V ,

• Trans ⊆ Loc × Guard × Assign × Loc is the set of
transitions.

• Labels = {λ ∈ Guard × Assign | ∃l1, l2 ∈ Loc :
(l1, λ, l2) ∈ Trans} is the set of transition labels.

Let val ∈ dom|V | be a valuation of all variables occur-
ring in H, and let the value of v ∈ V and of the term t

over V under val be denoted by val(v) and val(t), respec-
tively. A run of a TDIOHS H is an infinite sequence of pairs
〈(l1, val1), (l2, val2), . . .〉 of locations and valuations which
satisfies the following properties:

1. val1(Init(l1)) = true,

2. ∀i ∈ N ∃(l, g, (~x,~t), l′) ∈ Trans : l = li, l
′ = li+1,

vali(g) = true, vali+1(x1) = vali(t1), . . ., vali+1(x|V −I|) =
vali(t|V −I|).

The TDIOHS H is called deterministic if in every possible
run 〈(l1, val1), (l2, val2), . . .〉 of H only one transition is en-
abled at a time:

∀i ∈ N; (li, g, a, l), (li, g
′, a′, l′) ∈ Trans :

vali(g) = true ∧ vali(g
′) = true =⇒

(li, g, a, l) = (li, g
′, a′, l′)

A k–bounded run is a run of a fixed length k ∈ N, i.e. the se-
quence of location-valuation pairs 〈p1, . . . , pk〉 is finite. The
set of all k–bounded runs of H is denoted by Run(H, k).

Let V (~t) denote the set of variables from V referenced in ~t
and Stable(~x,~t) denote the variable components xi of vector
~x whose values are unaffected by the associated assignment
term ti in any valuation (so ti ≡ xi). An input location
l1 ∈ LocI ⊆ Loc is specified by the requirement that every
transition entering l1 only executes assignments where input
variables are copied to local variables xi ∈ V − (I ∪O), that
is,

LocI = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :

V (~t) ⊆ I ∧O ⊆ Stable(~x,~t) }

An output location l1 ∈ LocO ⊆ L is characterized by the
requirement that all transitions entering this state perform
only assignments from local to output variables:

LocO = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :
V (~t) ⊆ V − (I ∪O) ⊆ Stable(~x,~t) }

An internal processing location l1 ∈ LocP ⊆ Loc is charac-
terized by the requirement that entry assignments may only
read from and write to local variables:

LocP = { l1 ∈ Loc | ∀(l0, g, (~x,~t), l1) ∈ Trans :
V (~t) ⊆ V − (I ∪O) ∧O ⊆ Stable(~x,~t) }

A TDIOHS is called I/O safe if it possesses no other loca-
tions apart from input, processing and output locations, and
the free variables of all guards are members of V − I . These
conditions imply that input changes during processing steps
are disregarded by the system: Only when a new input loca-
tion is entered the new input valuations are copied to local
variables, and are used by guards and assignment terms.

Two runs r = 〈(li, vali)|i ∈ N〉 and r′ = 〈(l′i, val
′
i)|i ∈ N〉 of

I/O safe TDIOHS are called I/O equivalent if they receive
the same sequence of input data in their input locations, pro-
duce the same output sequences in their respective output
locations and have an identical interleaving of these inputs
and outputs:

r ∼ r′ ≡ r|(LocI ∪ LocO) = r′|(LocI ∪ LocO)
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Figure 3: Simplification of conjunctive guards.

In this definition r|M with M ⊆ Loc denotes the restriction
of run r to the subsequence of all pairs (l, val) with l ∈M .

I/O safe TDIOHS can be re-structured in several ways pre-
serving the possible runs of original and transformed sys-
tem up to I/O equivalence. For the purpose of this paper,
we illustrate this property by the following lemmas, con-
cerning the simplification of guards by means of additional
states and transitions. The transformation characterized by
Lemma 1 is illustrated in Figure 3.

Lemma 1. Let ε = (~x, ~x) denote the stable assignment
which does not change any local variables or outputs. Given
TDIOHS H1 and transition τ0 = (l0, g1∧g2, a, l1) ∈ Trans(H1),
construct a new TDIOHS H2 by setting

1. LocP (H2) = LocP (H1)∪{l0,1, l0,2, l0,3}, where l0,1, l0,2, l0,3

are fresh location identifiers,

2. Trans(H2) = (Trans(H1) − T1) ∪ T2, where

T1 = {(l, g, b, l′) ∈ Trans(H1) | l = l0}
T2 = {(l0, g1, ε, l0,1), (l0,1, g2, a, l1), (l0,1,¬g2, ε, l0,3),

(l0,¬g1, ε, l0,2), (l0,2, g2, ε, l0,3), (l0,2,¬g2, ε, l0,3)} ∪
{(l0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}} ∪
{(l0,3, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}}

which are the only changes from H1 to H2. Then H1 and
H2 perform I/O-equivalent runs.

Proof. Locations l0,1, l0,2, l0,3 are valid processing loca-
tions, since the only transitions entering them do not change
any variable values. Moreover, since H1 is I/O safe, guard
g1 ∧ g2 does not refer to input variables, so that the guards
g1, g2,¬g1,¬g2 used in the new transitions of H2 have free
variables in V − I , too.

Let r1 be a run of H1. We will construct an I/O-equivalent
run of H2. To this end, we decompose r1 into segments,

r1 = u1
1 ⌢ w1

1 ⌢ u2
1 ⌢ w2

1 ⌢ . . .

such that the ui
1 do not visit location l0, whereas the seg-

ments wj
1 = 〈 (l0, v

j
0), (m

j , zj) 〉 start in location l0 and
perform transitions into any post-location of l0. In particu-
lar, l1 is such a possible post-location m, and it is possible

that several consecutive wj
1, w

j+1

1 , . . . occur in r1 if the post-
location of mj is again l0. Our goal is to construct segments
wj

2 such that

r2 = u1
1 ⌢ w1

2 ⌢ u2
1 ⌢ w2

2 ⌢ . . .

is I/O-equivalent to r1: Since u1
1 does not visit location l0,

it can be performed by H2 as well. It remains to show
the existence of w1

2 such that u1
1 ⌢ w1

1 leaves H1 in the
same state as u1

1 ⌢ w1
2 leaves H2. This existence is shown

independently of the position j of wj
2, so that the equivalence

r1 ∼ r2 follows by induction. In order to construct the wj
2,

distinguish 4 cases regarding the valuation vj
0(g1 ∧ g2) ≡

vj
0(g1) ∧ v

j
0(g2):

Case 1: vj
0(g1) = true = vj

0(g2). Set

w1
2 = 〈 (l0, v0), (l0,1, v0), (m

j , zj) 〉

It remains to show that u1
1 ⌢ w1

2 is a run of H2. By con-
struction of T2 and since vj

0(g1) = true, (l0, g1, ε, l0,1) is the
only possible transition from state (l0, v0) in H2. Since as-
signment ε does not change any local or output variables,
v0 is also a possible valuation in post-location l0,1 (which
is realized by keeping the inputs stable while the transition
is performed). As a consequence, the same guards evaluat-
ing to true in state (l0, v0) remain true in state (l0,1, v0).
Therefore g2 also evaluates to true in l0,1, so transition
(l0,1, g2, a, l1) is enabled in state (l0,1, v0) of H2. Again by
construction of T2, all other transitions enabled in H1 in
state (l0, v0) are enabled in H2 with new pre-state (l1,0, v0)
but identical assignments and post-locations. Since inputs
to H2 can be freely chosen, (mj , zj) is a possible post-state
of (l0,1, v0) in H2.

The analogous argument applies to Case 2: vj
0(g1) = true =

¬vj
0(g2) – set

w1
2 = 〈 (l0, v0), (l0,1, v0), (l0,3, v0), (m

j , zj) 〉

and Case 3: vj
0(g1) = false = ¬vj

0(g2) – set

w1
2 = 〈 (l0, v0), (l0,2, v0), (l0,3, v0), (m

j , zj) 〉

and Case 4: vj
0(g1) = false = vj

0(g2) (set w1
2 as in Case 3).

Conversely, we will now consider runs r2 of H2 structured as
described above, and construct equivalent runs r1 ∈ Run(H1).
To this end, we consider the possible transitions in H2 start-
ing from location l0. The possible cases have been identified
already above, and we proceed in the same order.

Case 1: vj
0(g1) = true = vj

0(g2) and

wj
2 = 〈 (l0, v0), (l0,1, v0,1), (m

j , zj) 〉

where m is a location which exists both in H1 and H2.
Since (l0, g1, ε, l0,1) is the only possible transition from state
(l0, v0) in H2 and ε does not change local variables and out-
puts, valuations v0 and v0,1 may only differ with respect to
input variables, that is, v0|(V − I) = v0,1|(V − I). Since
guards of I/O-safe TDIOHS never depend on input variable
valuations, we get an equivalent run r′2 ∼ r2 if wj

2 in r2 is
exchanged by

wj′

2 = 〈 (l0, v0,1), (l0,1, v0,1), (m
j , zj) 〉



Now construct an equivalent run r1 by setting

wj
1 = 〈 (l0, v0,1), (m

j , zj) 〉

Again the construction of T2 implies that any state tran-
sition from (l0,1, v0,1) to (mj , zj) in H2 has an equivalent
H1-transition from (l0, v0,1), ending in the same target state
(mj , zj).

The other cases are handled in an analogous way:
For Case 2, vj

0(g1) = true = ¬vj
0(g2), use

wj′

2 = 〈 (l0, v
′
0,1), (l0,1, v0,3), (l0,3, v0,3), (m

j , zj) 〉, for Case 3,

vj
0(g1) = false = ¬vj

0(g2) and Case 4, vj
0(g1) = false =

vj
0(g2) use wj′

2 = 〈 (l0, v0,3), (l0,2, v0,3), (l0,3, v0,3), (m
j , zj) 〉.

This completes the proof of the lemma.

An analogous lemma holds for disjunctive guard composi-
tion (see Figure 4):

Lemma 2. Let ε = (~x, ~x) denote the stable assignment
which does not change any local variables or outputs. Given
TDIOHS H1 and transition τ0 = (l0, g1∨g2, a, l1) ∈ Trans(H1),
construct a new TDIOHS H2 by setting

1. LocP (H2) = LocP (H1)∪{l0,1, l
′
0,1, l

′′
0,1}, where l0,1, l

′
0,1, l

′′
0,1

are fresh location identifiers,

2. Trans(H2) = (Trans(H1) − T1) ∪ T2, where

T1 = {(l, g, b, l′) ∈ Trans(H1) | l = l0}
T2 = {(l0,¬g1, ε, l0,1), (l0, g1, ε, l

′′
0,1), (l0,1,¬g2, ε, l

′
0,1),

(l0,1, g2, ε, l
′′
0,1), (l

′′
0,1, true, a, l1)} ∪

{(l′0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}} ∪
{(l′′0,1, g, b,m) | (l0, g, b,m) ∈ Trans1 − {τ0}}

which are the only changes from H1 to H2. Then H1 and
H2 perform I/O-equivalent runs.

Proof. In analogy to the proof of Lemma 1.

Remarks. The following remarks aim at clarifying the type
of “real-world” systems which can be suitably modeled as
TDIOHS:

1. The variable model for input and output matches well
for systems reading from and writing to interfaces with
shared variable character. Examples are (a) shared
memory interfaces of software processes communicat-
ing with other tasks on the same computer, (b) hard-
ware I/O via DMA and (c) hardware I/O via dual-
ported RAM interface boards.

2. Racing conditions between environment writing to in-
put variables which are read simultaneously by the sys-
tem are avoided by introducing ring buffers accessed
in shared memory, DMA or dual-ported RAM.

3. TDIOHS with dedicated input and output locations
are realized by the widely used “main loop” program-
ming model for sequential reactive controllers: The
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Figure 4: Simplification of disjunctive guards.

program body consists of an infinite control loop whose
body is structured into the (a) input phase which copies
input data from shared memory etc. to local variables,
(b) processing phase which only operates on local vari-
ables, so that instable inputs during that phase are
ignored and outputs remain stable as well, and (c)
output phase where values of certain local variables
are copied to the associated output variables. Observe
that this programming model is also intrinsic to pro-
grammable logic controllers (PLCs).

4. TDIOHS are also well-suited for modeling sequential
functions f or methods or systems thereof (“function
call trees”), where the functions operate on both dis-
crete and floating point variables and may call sub-
functions which are considered as being part of the
testing environment (so-called function stubs): When
f is called and input parameters are passed on the
function stack f is in its initial input location. If f
reads from global variables which may by asynchronously
manipulated by the environment, this is usually done
by copying the global data xg to local variables xl ,
while parallel write access to xg is blocked, for exam-
ple, by using semaphores. Obviously, this corresponds
to an input location, too. If f returns while pass-
ing a return value over the stack and writing to refer-
ence parameters or global variables this corresponds to
an output location. When f calls a sub-function in a
statement like z = h(y); this is represented by an out-
put location passing y to the called function, followed
by an input location where the function return of h is
written to z.

5. Time information provided by the clock of a computer
system is modeled as a (discrete or real-valued) input
variable. Since guards are arbitrary Boolean expres-
sions, timeout conditions can be expressed, but the
clock values are refreshed only at discrete points in
time, namely at input locations.



6. The internal processing parts of I/O safe TDIOHS can
be easily decomposed while preserving equivalence: If
an assignment x1 := x2 + x3 is re-structured into two
consecutive ones, say x1 := x2 and x1 := x1 + x3,
introducing a new location for this purpose, the new
TDIOHS will produce equivalent runs because the xi

are local variables, and therefore their valuation can-
not be changed by inputs during internal processing
steps.

7. The definition of input and output locations used in
this paper differs from the concept of timed I/O au-
tomata used in [18]. The main reason for this is that we
do not consider atomic actions which have to be syn-
chronized in communications between the system and
its environment. For the types of systems described
above our concept represents a very realistic model:
The environment may change inputs to the system at
any time without being blocked, since I/O is based on
shared variables. The system however, will detect the
input change only if it is stable at least until the next
input location has been reached. Otherwise the input
value is simply ignored.

2.3 Interval Analysis
For any pair of (possibly real) numbers a and b, we identify
the interval [a, b] as {x ∈ R | a ≤ x ≤ b}. If either of a or b do
not belong to the interval then the corresponding “[” sign or
“]” would be replaced by “(” sign or “)”, respectively. In the
sequel we use the letters I, J, Ii, ... to represent an interval
in R. A box In ⊆ R

n is a Cartesian product of n intervals
in R. For simplicity, we might use I, J, ... to represent an
n-dimensional box as well.

Interval operations. Given two intervals [a, b] and [c, d], and

a binary operation op, we define the interval operation
◦
op

over these two intervals as [a, b]
◦
op [c, d] = {x op y | x ∈

[a, b], y ∈ [c, d]}. Likewise for unary operations we define:
◦
op ([a, b]) = {op(x) | x ∈ [a, b]}. As a result [a, b]

◦
· [c, d] =

[minS,maxS] where S = {a · c, a · d, b · c, b · d}; also [a, b]
◦
+

[c, d] = [a+c, b+d] and [a, b]
◦
− [c, d] = [a−d, b−c], for a proof

of these cases see [13]. Defining the interval function like this
might also cause partially defined functions, for instance in
case of division, if 0 occurs in the divisor interval then the
interval operation would no longer be total. In these cases
we would exclude the elements which cause incompleteness,
form the interval and then compute the interval operation.

Given a term t we identify its interval extension
◦
t as a term

in which all the operations are replaced by their interval
extension.

A test over R
n is an n-tuple predicate, i.e. a Boolean-valued

function from R
n to B = {0, 1}. We say a test is 1 over an

interval [a, b], if for all x ∈ [a, b] the value of the predicate is
1. In other words the predicate holds over [a, b].

A subpaving of a box I is a union of (some of) its non-
intersecting (possibly connected in the borders) non-empty
subboxes. A bisector of a box I = [a1, b1] × ... × [ai, bi] ×
... × [an, bn] is a subbox J of it whose jth interval for some
1 ≤ j ≤ n is either [(aj +bj)/2, bj ] or [aj , (aj +bj)/2] and for
all 1 ≤ k 6= j ≤ n its kth interval is [ak, bk]. Now we define

the set BI of bisectors of I , the union of the sets Bi, which
are recursively defined as follows: B0 = {I} and for each
i ∈ N: Bi+1 is the set of bisectors over Bi. A subpaving of
I is called regular if it is a subset of BI .

Having a CSP c represented by c =
Vn

i=1
ci, where each ci

has less free variables than c and has a solution set S(ci),
a finite sub-solver φi for ci is a finite algorithm to compute
new intervals for some variables in ci where other variables
in ci are known, in such a way that the resulting subbox is
yet a subset of S(ci). For example let c = (x ≤ 1 ∧ x = ey),
then from the first constraint we can deduce that x ≤ 1.
Now let ci be x = ey; this results in x > 0. Hence from this
constraint and the previous one we obtain a new interval for
x which is (0, 1].

Given a constraint c and a box I , contracting c means re-
placing I with a smaller subbox J such that the solution set
S is still a subset of J , i.e. S ⊆ J ⊂ I . A contractor for c is
any operator that can contract it.

3. TEST CASES AND STRATEGIES
A symbolic test case for TDIOHS H is a finite sequence of
transitions 〈t1, . . . tk〉 with ti = (li, gi, ai, l

′
i) ∈ Trans satis-

fying l1 ∈ Init and l′i = li+1 for i = 1, . . . , k−1. A symbolic
test case is feasible if valuations can be found, turning the
test case into a k-bounded run of H, that is,

∃val1, . . . , valk ∈ dom|V | :
r = 〈(l1, val1), . . . , (lk, valk)〉 ∈ Run(H, k) ∧
val1(g1) = . . . = valk(gk) = true

Note that the initialisation condition for runs also implies
that val1(Init(l1)) = true. Further observe that for deter-
ministic H this enforces the execution of transitions ti while
for nondeterministic TDIOHS, this only offers the “chance”
for their execution.

In the run r, sequence 〈(vali|I) | i = 1, . . . , k〉 is called the
test (input) data and sequence 〈(vali|O) | i = 1, . . . , k〉 is
called the expected result. In these expressions, (f |X) de-
notes function domain restriction to elements from X.

A test strategy specifies a collection of symbolic test cases.
Numerous test strategies aiming at different quality objec-
tives exist. The strategies aiming at behavioral equivalence
between the SUT and its specification – most notably, the
well-known W method and variants thereof [5, 18] – are
of considerable theoretical value, but cannot be completely
covered in most practical test campaigns, since the number
of test cases required to prove behavioral correctness is ex-
tremely high for non-trivial sizes of the SUT state space.
Alternative strategies aim at

• Requirements coverage: High-level requirements are
identified by application experts as collections of sym-
bolic test cases covering specific locations and tran-
sition sequences. The associated test suite ensures
that each requirement has been exercised at least once
within the suite.

• Structural coverage: Test case selection is driven by
objectives to cover as many states, transitions or paths
of the TDIOHS specification as possible.



• Absence of specific failure types: Based on given fault
models, test cases with the capability to uncover the
failure types of interest are constructed. For exam-
ple, all implemented transitions with correctly speci-
fied guard conditions and assignments, but incorrect
target locations, represent a well-defined failure class.
A suitable strategy for this class would be based on
testing characterization traces as described in [5].

• Uniform statistical test case distribution: In this strat-
egy (see [6]) symbolic test cases are constructed using
a randomized strategy ensuring that a uniform cover-
age of all branches is achieved: Since different tran-
sitions t1, t2 may possess different numbers of subse-
quent transition paths, just exercising t1 and t2 with
the same frequency does not ensure a uniform distri-
bution of visited transitions on their respective path
subtrees.

To illustrate the test case and test data generation concepts
in this paper, we focus on the Modified Condition / Deci-
sion Coverage (MCDC). Quoting the standard [16], MCDC
demands that ‘Every point of entry and exit in the program
has been invoked at least once, every condition in a deci-
sion in the program has taken all possible outcomes at least
once, every decision in the program has taken all possible
outcomes at least once, and each condition in a decision
has been shown to independently affect that decision’s out-
come. A condition is shown independently to affect a deci-
sion’s outcome by varying just that condition while holding
fixed all other possible conditions.’ Obviously, MCDC is a
structural coverage strategy, but it also covers aspects re-
lated to fault models: Tests driven by the MCDC strategy
are likely to uncover faults where – due to an erroneous
guard implementation – the wrong transition is taken from
a given location. MCDC is required by the standard [16]
to be achieved when testing avionic software with highest
criticality level.

Given an arbitrary TDIOHS H, the transformations speci-
fied in Lemma 1 and 2 can be repeatedly applied until trans-
formation reaches a fixed point. The resulting equivalent
TDIOHS H′ only contains atomic guard conditions, and
MCDC coverage is equivalent to covering each transition
of H′. Observe that MCDC coverage is a useful coverage
goal both for structural software (e. g. module) testing and
specification-based testing, and that the concepts described
here apply to both testing areas: In the former case, the
TDIOHS models the control flow graph of the software to
be tested, whereas in the latter case the TDIOHS represents
the specification model. In both situations it is advisable to
cover different valuations of guard conditions as prescribed
by the MCDC coverage goal.

Further observe that MCDC is not the same as multiple
condition coverage defined in [15]: The latter requires that
all possible combinations of conditions should be exercised
by a test; these combinations do also include some that do
not affect the decision’s outcome: For example, if statement
if (A and B) requires test cases resulting in all four com-
binations of A, not(A), B, not(B), whereas MCDC only
requires combinations (1) A and B, (2) not(A) and B arbi-
trary, (3) A and not(B): Since C/C++ compilers do not
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Figure 5: Generic architecture for test automation
systems.

evaluate B if not(A) holds, B does not affect the decision’s
outcome if A is already false.

4. A FRAMEWORK FOR AUTOMATED TEST
GENERATION

For the construction of test cases and associated concrete
data which are suitable for testing hybrid systems, numer-
ous techniques and associated algorithms have to be com-
bined. In order to keep the number of associated software
components manageable we suggest a basic test automation
framework that allows to “allocate” concrete solutions – that
is, programmed algorithms – on specific components of the
framework and specifies the required interfaces to other com-
ponents. This framework is shown in Figure 5.

The task of the symbolic test case generator is to implement
the objectives of a given strategy in an abstract manner.
To this end, it associates a coverage goal with the strategy
and traverses an abstraction of the specification model in
order to identify a collection of symbolic test cases sufficient
to yield the required coverage. For TDIOHS the model ab-
straction consists of the transition graph of the hybrid sys-
tem, where each guard g and assignment a of a transition
(l0, g, a, l1) has been replaced by the label λ identifying the
guard/assignment pair (g, a).

The lower layer of the framework is represented by the con-
straint solver. Its task is to generate the concrete input
data to the SUT turning a given symbolic test case into an
executable bounded run, or otherwise to signal infeasibility
of this test case. It is advisable to enforce a separation of
concerns, so that the solver only knows about constraints,
without having to observe their origin as paths through the
abstracted transition graph of a TDIOHS. To this end, the
constraint generator is responsible for collecting the guard
conditions to be fulfilled in order to cover (parts of) the
traces suggested by the test case generator. For this task
the effects of assignments on variable valuations and, con-
sequently, guard conditions has to be taken into account.
These effects are calculated by the symbolic interpreter per-
forming abstract interpretation of assignment expressions
and term-replacements in guards.

In our tool implementation the symbolic interpreter sup-
ports three interpretation modes:

1. For a given sequence of concrete input values the in-
terpreter calculates the concrete assignments, guard



evaluations and outputs. This mode is used to vali-
date concrete input/output traces against logic asser-
tions (trace logic or temporal logic) and to determine
the path covered by concrete input data sets suggested
by the testing specialists.

2. For a given sequence of intervals for each input vari-
able the interpretation is performed using the interval
arithmetic version of each operator and mathematical
function, as sketched in Section 2.3. This mode is used
by the solver for contracting interval vectors known to
represent supersets of constraint solutions. The mode
is offered in both directions along a trace, as is required
by the forward-backward constraint propagation used
as the main contraction mechanism (Section 6).

3. In the abstract interpretation mode all input sequences
on variables x ∈ I are represented by abstract symbol
sequences x1, x2, . . . and the interpreter only performs
term replacement as specified by the assignments.

The solution constructed by the constraint solver consists
of a sequence of interval vectors I0, I1, . . ., associating an
interval of possible values for each input variable and input
situation of the symbolic test case. The refinement generator
selects concrete values from these vectors, which results in
a sequence of concrete input valuations val1(x), val2(x), . . .
for each input variable x.

5. SYMBOLIC TEST CASE GENERATION
As sketched in Section 4, test case and test data generation
is performed by means of two interacting components oper-
ating on different levels of abstraction. In this section, we
describe the upper layer, the symbolic test case generator,
whose task it is to select symbolic test cases according to the
underlying strategy. These test cases are delegated to the
solver for generation of concrete test data. The solver’s feed-
back about infeasibility of (suffixes of) an abstract test case
is used within the test case generation layer for learning to
avoid these infeasible paths in future generations. Since test-
ing always deals with bounded runs, test cases are initially
generated with a fixed maximal length k. If the strategic
goals cannot be met while observing this bound, k is in-
creased and longer symbolic test cases are generated along
“directions” where feasible paths may still exist. These con-
cepts will be illustrated now for the MCDC coverage strat-
egy introduced in Section 3. Application of this strategy is
prepared by repeated application of the TDIOHS transfor-
mations specified in Lemma 1 and 2, so that the resulting
TDIOHS H is still equivalent to the initial one but only pos-
sesses atomic (that is, non-conjunctive and non-disjunctive)
guard conditions. As a result, achieving MCDC coverage is
equivalent to exercising each transition of H.

The central data structure used in the symbolic test case
generator is the symbolic test case tree (STCT) which cap-
tures (feasible and infeasible) bounded-length paths through
the transition graph of the TDIOHS H under consideration.
The nodes of an STCT correspond to locations l of H but
are augmented by a number n, so that (l, n) is a unique node
identifier in the tree. This is necessary since an H-location
may occur several times in the tree if it is reachable by more
than one path through the transition graph. Figures 6 and 7
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Figure 6: Symbolic TDIOHS representation
(Init(l) = false for all l 6= l1).

show an TDIOHS transition graph and its associated STCT
for bounded maximal path length k = 5.

Given a TDIOHS H = (Loc, Init, V, I,O, T rans), we intro-
duce the associated STCT Stctk of length k by means of an
algorithm which also shows how to extend Stctk into some
Stctk+k′ if the original tree is insufficient to reach the cover-
age goals. Let “−” a fresh location symbol not contained in
Loc and τ0 a fresh transition symbol. Then the components
of an STCT are defined for k = 0, 1, 2, . . . as

Stctk = (Nk, Ek, Lk, φk, ψk, σk, πk, ρk)

which are typed as follows:

Nk ⊆ {(−, 0)} ∪ (Loc× N)
Ek ⊆ Nk × Labels×Nk

Lk ⊆ Nk

φk : {τ0} ∪ Trans→ N∗
k

ψk : Nk → {τ0} ∪ Trans
σk : Loc→ N

πk : Nk → Nk

ρk : Nk → Trans∗

Components Nk and Ek denote the sets of nodes and edges,
respectively, and Lk contains the leaves of the tree. The
mappings φk, ψk, σk, πk, ρk represent auxiliary data struc-
tures used for symbolic test case generation and learning
about infeasible paths: Function φk maps transitions t to
the list of nodes (l, n) in Stctk having t as target node. For
example, transition (l5, h, l6) in the TDIOHS of Figure 6 is
mapped to

φ5(l5, h, l6) = 〈(l6, 2), (l6, 4), (l6, 6), (l6, 8), (l6, 10)〉

in the STCT of Figure 7. If the test case generator learns
about the infeasibility of a path from the root of Stctk to the
node (l, n) then this node is deleted from φk(t) and the nodes
from all continuation paths of (l, n) are removed from the
respective images under φk. ψk maps a node (l, n) of Stctk
to the transition of H whose corresponding edge in Stctk
ends at (l, n). σk keeps track of the counters n = σ(l) to be
associated with H-locations l when inserting them as nodes
(l, n) into the tree. πk maps nodes to their parent nodes. ρk

maps a node (l, n) to the symbolic test case derived from the



Stctk path starting at the root and ending at (l, n). These
data structures are initialized as (recall that ε denotes the
trivial assignment which does not change anything)

N0 = {(−, 0)} ∪ (Loc× {1})
E0 = {((−, 0), Init(l′), ε, (l′, 1)) | l′ ∈ Loc}
L0 = N0 − {(−, 0)}
φ0 = {τ0 7→ 〈(l, 1) | l ∈ Loc〉}
ψ0 = {x 7→ τ0 | x ∈ N0}
σ0 = {l 7→ 2 | l ∈ Loc}
π0 = {(−, 0) 7→ (−, 0)} ∪ {(l, 1) 7→ (−, 0) | l ∈ Loc}
ρ0 = {x 7→ 〈 〉 | x ∈ N0}

Let STCT denote the type of an STCT as induced by the
component types introduced above. Algorithm expandStct ()
inputs an existing STCT and changes it by expanding each
leaf for one transition step, if a corresponding transition
exists in H and if the test case associated with the path from
the root to this leaf has not yet been marked as infeasible.

functionexpandStct (inout stct : STCT ) : B begin
let (N,E,L, φ, ψ, σ, π, ρ) = stct in begin
retval := false;
forall (l, n) ∈ {x ∈ L | φ(ψ(x)) 6= 〈 〉} do

forall (λ, l′) ∈ {(a, b) | (l, a, b) ∈ Trans} do
retval := true;
n′ := σ(l′);
N := N ∪ {(l′, n′)};
E := E ∪ {((l, n), λ, (l′, n′))};
L := (L− {(l, n)}) ∪ {(l′, n′)};
φ := φ⊕ {(l, λ, l′) 7→ φ(l, λ, l′) ⌢ 〈(l′, n′)〉};
ψ := ψ ⊕ {(l′, n′) 7→ (l, λ, l′)};
σ := σ ⊕ {l′ 7→ n′ + 1};
π := π ⊕ {(l′, n′) 7→ (l, n)};
ρ := ρ⊕ {(l′, n′) 7→ ρ(l, n) ⌢ 〈(l, λ, l′)〉};

enddo
enddo
expandStct := retval;

endlet
end

In this algorithm ⊕ denotes the functional overriding opera-
tor defined by (f⊕{x 7→ y})(z) = if z = x then y elsef(z).
Expanding the STCT by k > 0 steps is simply performed
by k-fold invocation of expandStct():

functionexpandStctBy (inout stct : STCT ;
in k : N) : B begin

i := 0;
while (i < k ∧ expandStct(stct)) do
i := i+ 1;

enddo
expandStctBy := (0 < i);

end

The complete symbolic test case generation algorithm spec-
ified in function generateStc below references two generic
functions encapsulating the strategy-dependent part of the
generation algorithm: select() inputs the current state of the
STCT and the set C of all nodes in the tree which already
have been covered by previously generated test cases and re-
turns a “suggestion” for the next STCT node to be covered.
If, according to the underlying strategy, no more nodes need
to be reached or the paths to the remaining nodes are in-
feasible, the function returns the root node (−, 0). For the
MCDC coverage used in our example strategy, select() is

instantiated by a function which selects paths in the STCT
containing edges ((l, n), λ, (l′, n′)) whose associated transi-
tions (l, λ, l′) in H have not yet been covered at all:

function select(in stct : STCT ;
in C : P(Loc× N)) : (Loc× N) begin

let (N,E,L, φ,ψ, σ, π, ρ) = stct in begin
T := {ψ(x) | x ∈ C};
U := {u ∈ Trans− T | φ(u) 6= 〈 〉};
if T = Trans ∨ U = ∅ then

select := (−, 0);
else

let t ∈ U in begin
select = head(φ(t));

endlet
endif

endlet
end

Function covered() is the second generic function referenced
by the generation algorithm below: It evaluates the TDIOHS
structure, the STCT and the STCT nodes covered so far and
returns true if the strategy-specific coverage goals have been
reached. For MCDC coverage, covered() just checks whether
the edges ((l, n), λ, (l′, n′)) covered so far in the STCT cor-
respond to all transitions (l, λ, l′) in H:

function covered (H : TDIOHS; stct : STCT ;
C : P(Loc× N)) : B begin

let (N,E,L, φ, ψ, σ, π, ρ) = stct in begin
covered := (Trans = {ψ(x) | x ∈ C});

endlet
end

As shown below, the constraint solver is invoked by the gen-
erator by passing a symbolic test case tc = 〈t1, . . . , tp〉 as in-
put parameter. The solver returns the length q ∈ {0, . . . , p}
of the test case prefix which was feasible. For q < p, the
target STCT node corresponding to the first infeasible tran-
sition tq+1 and its subordinate STCT subtree are marked
as infeasible. This task is performed by the – strategy-
independent – algorithm infeasible() which inputs the STCT
and the target node associated with tq+1. Infeasibility is
recorded in the STCT data structure by removing STCT
nodes from the image sequences of transitions tq+1, . . . , tp
under φ.

procedure infeasible(inout stct : STCT ;
in x : N) begin

let (N,E,L, φ, ψ, σ, π, ρ) = stct in begin
t := ψ(x);
φ := φ⊕ {t 7→ φ(t) − x};
forall (x, λ, x′) ∈ E do

infeasible(stct, x′);
enddo

endlet
end

In the algorithm above, φ(t)−x denotes the operation which
removes element x from sequence φ(t).

Now we are ready to present the complete generation algo-
rithm. Function generateStc() initializes the STCT stct and
the set C of covered nodes. The proper generation algorithm
is performed within a loop that terminates when the cover-
age goals have been reached or when no further expansions



of the STCT are possible or acceptable. For a given STCT
version of maximal depth i ·k (i is the number of expansions
which have been performed so far) the algorithm proceeds
by selecting a new tree node x and generating the associated
symbolic test case ρ(x) which is passed to the solver. If at
least a prefix of ρ(x) was feasible, the associated nodes are
marked as covered by adding them to C. The target node
of the first infeasible transition in ρ(x) (if any) is passed to
procedure infeasible() which takes care of removing the in-
feasible STCT nodes from the range of φ. When the select()
operation returns (−, 0) this means that either the coverage
goal has been reached or the STCT has to be expanded.

function generateStc : B begin
stct := (N0, E0, L0, φ0, ψ0, σ0, π0, ρ0);
i := 0; C := ∅
while ¬covered (H,stct, C) ∧ i < maxExpansions

∧ expandStctBy (stct, k) do
i := i+ 1;
x := select(stct, C);
while x 6= (−, 0) do
m := solve(ρ(x));
n := #ρ(x);
if 0 < m then
C := C ∪ {πp(x) | p = n−m,n−m+ 1, . . . , n};

endif
if m < n then

infeasible(stct, πn−m−1(x));
endif
x := select(stct, C);

enddo
enddo
generateStc := covered (H,stct,C);

end

In this algorithm πp(x) denotes the p-fold application of the
parent function π, starting at π0(x) = x, so πp(x) is the pth

predecessor of x.

A complementary algorithm which is not shown here, is ap-
plied after the STCT has been expanded to a pre-defined
maximal depth and some transitions ti still remain to be
covered: In this situation, a new tree containing all “re-
versed” paths from the target location l∗ of ti as root to the
initial location of the TDIOHS represented by the leaves of
the tree is incrementally constructed by backward breadth-
first search, starting at l∗. A transition ti can be identified
as unreachable if this tree cannot be further expanded and
each path in the tree contains an infeasible node.

6. SOLVERS FOR HYBRID CONTROL CON-
STRAINTS

Aiming at test case generation, i.e. checking feasibility of
a symbolic test case 〈t1, . . . tk〉 with ti = (li, gi, (~x,~ti), l

′
i) ∈

Trans and, if so, generating appropriate test input data, our
constraint solver addresses satisfiability of non-linear arith-
metic constraints over real-valued variables plus Boolean
variables for encoding the control flow. If the ti are con-
cretely given (i.e., not symbolically characterized through a
predicate), test case generation amounts to finding a satis-
fying solution to the arithmetic constraint
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Figure 7: Symbolic test case tree.

Existence of an interval subpaving I : Vk → I, where Vk =
{xi | x ∈ V, i ∈ N≤k}, satisfying this constraint in the sense
that

I |= Init(l1)[~x1/~x] (1)

I |= gi[~xi/~x] for each i < k (2)

I(xi+1) ⊇
◦
ti,x [~xi/~x](I) for each i < k and

each assignment (x, ti,x),
(3)

is a necessary and —if point intervals are admitted— suffi-
cient condition for real-valued satisfiability of the above con-

straint. Here,
◦
t denotes the interval lifting of term t, i.e. t

with all operators lifted to their interval extension, and con-
straint satisfaction for the guards and the init condition is in

the strong sense, i.e. I |= t1 ≤ t2 iff sup
◦
t1 (I) ≤ inf

◦
t2 (I),

etc. Extracting the valuations vali ∈ dom|V | for every step i
from the computed interval solution I works as follows. For
every i < k and for every input variable x ∈ I we choose
an arbitrary3 value vali(x) ∈ I(xi). The same is done for
the initial values of all controlled variables x ∈ V − I , i.e.
we select val0(x) ∈ I(x0) arbitrarily. For 1 < i ≤ k we
then calculate the values vali(x) of the controlled variables
x ∈ V − I from their respective terms ti−1,x. Please note
that every instance xi of a controlled variable x is defined by
exactly one term ti−1,x and every term ti−1,x contains (al-
ready assigned) variables xi−1 only. Obviously, combining
the respective locations and valuations yields a k-bounded
run 〈(l1, val1), . . . , (lk, valk)〉.

An interval solution fulfilling conditions (1) to (3) can be
established by a split-and-prune algorithm, as described be-
low. Such an algorithm is guaranteed to find a solution
provided there is one which interpretes all variables by non-
point intervals, and often also succeeds otherwise. The lat-
ter is achieved by exploiting the structure of the problem,
namely that the values of non-input variables in some step
i are functional images (mediated through assignments) of
those of the variables in steps j < i. Thus, it makes sense

3Test strategies may refine this choice deterministically, e.g.
selecting either the mean value or some border value of
I(xi).



to organize the search for a satisfying interval solution as a
(non-chronological) backtrack search nesting splits in tem-
porally forward direction of the transition sequence, while
applying constraint propagation through contractors in ar-
bitrary sequence and temporal direction.

The algorithm operates on a rewriting of the constraints to
a form resembling three-address code, i.e. applies auxiliary
variables in a such a way that it has to process a conjunction
of constraints of the forms

bound ::= var ≥ rational const | var > rational const
| var < rational const | var ≤ rational const

triplet ::= var = var bop var
pair ::= var = uop var

only, where

bop ::= + | − | ∗ | / | . . .
uop ::= − | sin | exp | . . .

Observe that these syntactic restrictions require the intro-
duction of additional variables and conjuncts if compar-
isons between variables occur in the original constraint: For
z, w ∈ V , a constraint z < w is transformed into three con-
juncts, each using three-address code representation with
the syntactical restrictions as specified above, by introduc-
ing a slack variable s and an auxiliary variable h:

s > 0 ∧ h = w − z ∧ h = s

The algorithm then starts from the initial, unconstrained in-
terval assignment I(vi) = [min dom vi,max dom vi] for each
vi ∈ Vk and iterates the following steps:

1. Initialization: All bounds x ∼ c from the constraint,
with ∼ ∈ {≥, >,<,≤}, are pushed onto an initially
empty implication queue, which is the central data
structure mediating the constraint propagation pro-
cess and permitting learning from failed branches in
the search tree.

A set C of currently unresolved triplets and pairs is
filled with those triplets u = v op w and pairs u =
op v which are not satisfied in the sense of (3), i.e.

which violate I(u) ⊇ I(v)
◦
op I(w) or I(u) ⊇

◦
op

I(v), respectively.

2. Interval constraint propagation: A bound x ∼ c is
retrieved from the implication queue and applied to
the current interval valuation I by intersecting I with
the models of the bound, thus replacing I with I′ =
I ⊕ [x 7→ I(x) ∩ {x ∈ R | x ∼ c}].

If I′(x) 6= I(x) then the algorithm visits all triplets
and pairs containing x. For each such triplet or pair, it
applies the corresponding contractors (including those
originating from the possible reshufflings) over and
over until no further interval narrowing is achieved.4

The resulting new, i.e. narrowed, bounds are pushed
onto the implication queue.

If the contractors yield an empty interval for some
of the entailed variables then we proceed with con-
flict analysis in step 4. Otherwise, we remove or add

4In practice, one stops as soon as the changes become neg-
ligible.

the current triplet u = v op w or the current pair
u = op v within the set C of unresolved constraints,
depending on whether it is satisfied in the sense of

u ⊇ v
◦
op w (or u ⊇

◦
op v, resp.), corresponding to

condition (3).

We proceed with step 2 iff the implication queue is
non-empty. We are done if both the implication queue
and C are empty, having constructed a satisfying as-
signment in the sense of conditions (1) to (3).

3. Splitting: If C is non-empty then we take some triplet
u = v op w or pair u = op v from C and split the
interval assignment, provided that it is not a point–
interval, of some of its right-hand variables by pushing
a bound tighter than the bounds assigned by I, e.g. a
bisecting bound, to the implication queue and proceed
at step 2. We do not store the converse of that bound
as a possible backtracking point, since an appropriate
assertion will in case of conflict be generated by the
conflict analysis scheme explained in step 4.

For the sake of efficiency, we give preference to triplets
or pairs containing input variables and to splitting
these when selecting the triplet or pair and the variable
to be split.

4. Conflict analysis and backjumping: In order to be able
to tell reasons for conflicts (i.e., empty interval valu-
ations) encountered, our solver maintains an implica-
tion graph akin to that known from propositional SAT
solving (e.g., [19]): all asserted bounds are recorded
in a stack-like data structure which is unwound upon
backtracking when the bounds are retracted. Within
the stack, each bound not originating from a split, i.e.
each bound a originating from a contraction, comes
equipped with pointers to its antecedents. The an-
tecedent of a bound a is a triplet, pair or conflict clause
c containing the variable v plus a set of bounds for the
other free variables of c which triggered the contraction
a.

By following the antecedents of a conflicting assign-
ment, a reason for the conflict can be obtained: rea-
sons correspond to cuts in the antecedent graph, and
such reasons can be “learned” for pruning the future
search space by adding a conflict clause containing the
disjunction of the negations of the bounds in the rea-
son. We use the unique implication point technique
[19] to derive a conflict clause which is general in that
it contains few bounds and which is asserting upon
backjumping to the last split level contributing to the
conflict, i.e. upon undoing all splits and contractions
younger than the chronologically youngest split among
the antecedents of the conflict.

An example of our conflict analysis scheme is depicted in
Fig. 8. Let x2 − 2y ≤ 100 be a fragment of a formula to
be solved. The decomposition of this fragment into triplets,
pairs and bounds c1, . . . , c4 and already learned conflict clauses
cc1, cc2 are shown on the left. Assume x ≥ −2 and y ≥ 4
have been asserted on split levels k1 and k2, and we are en-
tering a new split level k3 > max(k1, k2) by asserting x ≤ 3.
The resulting implication graph, ending in a conflict on h2,
is shown on the right. Edges relate implications to their an-
tecedents, dashed ellipses indicate the propagating clauses.



(h2 = −2 · y)∧c2 :

(h3 = h1 + h2)∧c3 :

(h3 ≤ 100)∧c4 :

(x > 4 ∨ y ≤ 0 ∨ z > 2)cc1 : ∧

(z ≤ 0.1 ∨ h3 ≥ 6.2)∧cc2 :

h3 ≥ 6.2

x ≤ 3

h2 ≤ −8

h2 ≥ −2.8

h1 ≤ 9

cc1 cc2

c1

c3

z > 2

c2

(h1 = x · x)c1 :

y ≥ 4

x ≥ −2

Figure 8: Conflict analysis

Following the implication chains from the conflict yields the
conflict clause ¬(x ≥ −2) ∨ ¬(x ≤ 3) ∨ ¬(y ≥ 4) which
becomes unit after backjumping to split level max(k1, k2),
then propagating x > 3.

Note that, in contrast to (generalized) nogood learning as
known from CSP, we are not confined to learning forbid-
den combinations of value assignments in the search space,
which here would amount to learning disjunctions of inter-
val disequations x 6∈ I with x being a problem variable and
I an interval. Instead, our algorithm may learn arbitrary
combinations of bounds over both problem and auxiliary
variables, which has proven to be extremely powerful upon
benchmarks (cf. [8], where the detailed algorithm can be
found). The enormous speedups obtained from learning
bounds x ∼ c rather than nogood intervals x 6∈ I can be
traced back to the stronger pruning of the search space:
while a nogood x 6∈ I would only prevent a future visit to
any subinterval of I , a bound x ≥ c, for example, blocks
visits to any interval whose left endpoint is at least c, no
matter how it is otherwise located relative to the current
interval valuation I(x). The number of visits to conflicting
interval assignments thus avoided is exponential in the num-
ber of variables in the problem, thus providing speedups in
the range of up to a million on constraint problems with
just some thousands of variables, reflecting a corresponding
pruning in the search space [8, Sect. 5].

7. CONCLUSIONS AND ONGOING WORK
We have presented methods and algorithms for automated
test case and test data generation of time-discrete input-
output hybrid systems (TDIOHS). For separation of con-
cerns, the methods applied are structured into two layers:
(1) The upper layer consists of the symbolic test case gener-
ator selecting test cases according to various test coverage
strategies. Symbolic test cases are sequences of transitions
which have to be checked with respect to feasibility by con-
structing concrete input data for the system under test. This
task is delegated to (2) the constraint solver representing the
lower layer of this test automation system architecture. The
solver constructs input data using techniques from interval
analysis. The well-known complexity problems to be en-
countered when applying regular subpavings to constraint
solving problems in a straight-forward way are avoided by

• decomposing the global constraint problem into a se-
quence of conjunctive local constraints – each conjunct
associated with a transition guard of the symbolic test
case – and by applying subpaving techniques only to
these local constraints usually possessing fewer free
variables than the global one,

• using forward-backward interval constraint propaga-
tion as a very powerful contractor.

The algorithmic performance on both layers is further op-
timized by learning to avoid symbolic transition sequences
whose prefixes are already known to be infeasible (upper
layer) and to avoid interval solutions for local constraints
which are known to be in conflict with other local constraints
to be satisfied for the same symbolic test case (lower layer).

The “real-world systems” where these test generation tech-
niques can be applied are

• Discrete dynamical systems. Reactive control systems
with a single-task main loop structure processing both
discrete and analogue data on a discrete time basis
typically synchronized with main loop cycles of con-
stant duration ∆t. For these systems, time-continuous
evolutions have to be pre-processed, so that flow con-
ditions specified by differential equations can be calcu-
lated in each main loop cycle as discrete ∆t integration
steps ~xn+1 = F (∆t, ~xn, ~yn, ~un) where ~xn denotes the
internal SUT state, ~yn the feed-back from the equip-
ment under control and ~un the user controls, evaluated
at main loop cycle n which is performed in time inter-
val [n · ∆t, (n+ 1) · ∆t], n = 0, 1, . . .

• Sequential modules and libraries performing control
algorithms involving Boolean, integer and real arith-
metics.

For SUT comprising several parallel interacting agents it is
useful to introduce a parallel operator on TDIOHS. This
is performed in analogy to parallel hybrid automata as ex-
plained in [11], but without utilization of synchronous events
shared between parallel agents. For more complex testing
applications it is also useful to model the test equipment as
a separate TDIOHS running in parallel and interacting with
the SUT. This permits to specify test execution techniques
for non-deterministic SUT: If, after having performed a pre-
fix of a pre-planned transition sequence, the SUT reacts with
an unexpected output y, the test equipment can “change
track” to another test case execution coinciding with the
prefix but continuing with y. This technique, however, re-
quires that the test data for different symbolic test cases has
been prepared in advance, since constraint solving cannot
be performed in hard real-time. Moreover, switching be-
tween suitable test case candidates may require an amount
of back-tracking which also impairs hard real-time perfor-
mance. Non-determinism frequently arises in case of SUT
consisting of parallel agents, where each agent is locally de-
terministic but the SUT behavior at its output interface may
appear non-deterministic due to scheduling effects.

The techniques presented in this article have been imple-
mented in a test automation tool which is currently applied
for testing embedded systems from the avionics and the rail-
way domains. For practical application, the tool needs a
collection of other solver components whose description is
outside the scope of this paper, but which are also currently
implemented or already integrated into the tool, in order to
allow for a wider range of test applications. For example,



• specialized solvers are currently implemented for han-
dling linear constraint problems (Gauss elimination for
regular linear equations, Simplex method for linear in-
equations),

• non-linear constraints possessing isolated single-point
solutions are solved using optimization techniques,

• input constraints for string variables may be speci-
fied using regular expressions; the constraints are in-
ternally handled by means of the finite state machine
encodings associated with each regular expression.

For several of these solvers interval versions exist (see [14,
Chapters 4 and 5]), so that they can be applied within the
same interval analysis setting as described in this article.

The symbolic test case generation algorithm generateStc()
specified in Section 5 requires that the solver returns the
maximal length of the test case prefix for which input data
could be generated in order to make the associated transi-
tion sequence feasible. Currently, this is trivially realized by
dropping the constraint associated with the last transition
guard of the symbolic test case and trying to solve the re-
duced constraint, as soon as the full conjunction turns out to
be infeasible. In order to make this “roll-back” mechanism
more efficient, an undo-stack is currently being developed,
so that the impact of each local constraint cn on the restric-
tion of a potential solution interval I and on the choice of a
bisections can be undone as soon as the full global constraint
Vn

i=1
ci turns out to be infeasible.

In addition to the MCDC test coverage strategy described
in this paper, additional strategies are currently integrated
into the tool:

• After having reached MCDC coverage, additional test
cases are constructed in order to reach a uniform statis-
tical distribution of paths through the transition graph
representing the system under test. To this end, we
follow the approach described in [6].

• Based on the results from [6], a time-discrete version
of the W method is implemented by extending the
symbolic test case tree in such a way that the char-
acterization set of each location is still contained in
the tree [18]. For systems with small state spaces (for
example, PLCs), the location set of the TDIOHS is
expanded, thereby encoding state variable valuations
directly within the locations. This allows to apply the
W method directly on the transition graph and STCT
structures, without having to take different variable
values into account.

• The interval vector solutions produced by the con-
straint solver can be used in order to generate several
input data sets for the same symbolic test case. This is
useful in order to exercise identical paths through the
transition graph with different test data, in particular,
in order to try out boundary values.

A further aspect not covered in this article concerns hier-
archic TDIOHS, where locations may be refined by sub-
TDIOHS, following the concept of OR-states in Statecharts.

This aspect has been implemented by managing a hierarchy
of TDIOHS specifications, linked with each other by means
of references from locations to subordinate TDIOHS. The
same technique is applied when dealing with higher-level for-
malisms like HybridUML [4], where transitions are labeled
by Boolean methods acting as guards and void methods act-
ing as actions. These methods are compiled into a control
flow graph representation, where edges correspond to if-else
conditions and nodes contain sequences of assignments using
3-address-code5. As a consequence, control flow graphs are
just special cases of TDIOHS, and the internal model rep-
resentation labels TDIOHS transitions representing State-
charts with references to TDIOHS representing the Boolean
guard method and the associated action, respectively.
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