
Turn Indicator Model Overview

Jan Peleska1, Florian Lapschies1, Helge Löding2, Peer Smuda3, Hermann
Schmid3, Elena Vorobev1, and Cornelia Zahlten2

1 Department of Mathematics and Computer Science
University of Bremen, Germany

{jp,elenav,florian}@informatik.uni-bremen.de
2 Verified Systems International GmbH, Bremen, Germany

{hloeding,cmz}@verified.de
3 Daimler AG, Stuttgart, Germany

{peer.smuda,hermann.s.schmid}@daimler.com

System Interface. In Fig. 1 the interface between system under test (SUT)
and testing environment (TE) is shown. Due to the state-based nature of the
hardware interfaces (discretes, periodic CAN or LIN bus messages repeatedly
sending state information) the modeling formalism handles interfaces as shared
variables.

The TE can stimulate the SUT via all interfaces affecting the turn indication
functionality in the operational environment: in CentralLockingRM ∈ {0, 1, 2}
denotes the remote control for opening and closing cars by means of the central
locking system. Signal in CrashEvent ∈ {0, 1} activates a crash impact simulator,
and in EmSwitch ∈ {0, 1} simulates the “not pressed”/“pressed” status of the
emergency flash switch on the dashboard. Signal in IgnSwitch ∈ {0, 6} denotes
the current status of the ignition switch, and in TurnIndLvr ∈ {0, 2} the status
of the turn indicator lever. In special-purpose vehicles (SPV), such as taxis or
police cars, additional redundant interfaces for activation of emergency flashing
and turn indicators exist (e. g., in EmSwitchSPV ∈ {0, 1}). Observe that these
redundant interfaces may be in contradicting states, so that the control soft-
ware has to perform a priority-dependent resolution of conflicts. Inputs to the
SUT marked by OPTION specify different variants of vehicle style and equip-
ments, each affecting the behavior of the turn indication functions. In contrast
to the other input interfaces to the SUT, options remain stable during execution
of a test procedure, since their change requires a reset of the automotive con-
trollers, accompanied by a procedure for loading new option parameters. If the
TE component does not contain any behavioral specifications, the test generator
will create arbitrary timed sequences of input vectors suitable to reach the test
goals, only observing the range specifications associated with each input signal.
This may lead to unrealistic tests. Therefore the TE may be decomposed into
concurrent components (typically called simulations) whose behavior describe
the admissible (potentially non-deterministic) interaction of the SUT environ-
ment on some or all interfaces. The test generator interprets these simulations as
additional constraints, so that only sequences of input vectors are created, whose
restrictions to the input signals controlled by TE components comply with the
transition relations of these simulations.



SUT outputs are captured in the SignalsOut interface (Fig. 1 shows only a
subset of them). The indicator lights are powered by the SUT via interfaces
pwmRatio FL ∈ {0, 120}, . . . where, for example, FL stands for “forward left”
and RL for “rear right”. The TE measures the percentage of the observed power
output generated by the lamp controllers, in comparison with the expected value,
100% denoting exact identity. System integration testing is performed in grey
box style: apart from the SUT outputs observable by end users, the TE also
monitors bus messages produced by the cooperating controllers performing the
turn indication service. Message tim EFS ∈ {0, 1}, for example, denotes a single
bit in the CAN message sent from a central controller to the peripheral con-
trollers in order to indicate whether the emergency flash switch indicator on the
dashboard should be activated, and tim FL ∈ {0, 1} is the on/off command to
the controller managing the forward-left indicator light.

TestEnvironment SystemUnderTestSignalsOut SignalsOut

SignalsIn SignalsIn

<<interface,TE2SUT>>
SignalsIn

in_CentralLockingRM: int
in_CrashEvent: int
in_EmSwitch: int
in_EmSwitchHighPrio: int
in_EmSwitchLowPrio: int
in_EmSwitchSPV: int
in_IgnSwitch: int
in_TheftAlarm: int
in_TurnIndLvr: int
in_TurnIndLvrSPV: int
OPTION_Country: int
OPTION_Trailer: int
OPTION_VehicleStyle: int

<<interface,SUT2TE>>
SignalsOut

oc_FlashCmdLock: int
oc_FlashCmdUnlock: int
pwmRatio_FL: int
pwmRatio_FR: int
pwmRatio_RL: int
pwmRatio_RR: int
pwmRatio_SM_FL: int
pwmRatio_SM_FR: int
pwmRatio_SM_RL: int
pwmRatio_SM_RR: int
pwmRatio_EFS: int
pwmRatio_TL: int
pwmRatio_TR: int
tim_EFS: int
tim_FL: int
tim_FR: int
tim_RL: int
tim_RR: int
tim_SM_FL: int
tim_SM_FR: int
tm_SM_RL: int
...

Sunday, May 22, 2011

Fig. 1. Interface between test environment and system under test.

First-Level SUT Decomposition. Fig. 2 shows the functional decomposition
of the SUT functionality. Component NormalAndEmerFlashing controls left/right
turn indication, emergency flashing and the dependencies between both func-



tions (see below). Component OpenCloseFlashing models the indicator-related
reactions to opening and closing vehicles with the central locking system. Crash-
Flashing models indications triggered by the crash impact controller. TheftFlash-
ing controls reactions triggered by the theft alarm system. These functions inter-
act with each other, as shown in the interface dependencies depicted in Fig. 2:
the occurrence of a crash, for example, affects the emergency flash function, and
opening a car de-activates a theft alarm. The local decisions of the above com-
ponents are fed into the priority handling component where conflicts between
indication-related commands are resolved: if, for example, the central locking
system is activated while emergency flashing is active, the open/close flashing
patterns (one time for open, 3 times for close) are not generated; instead, emer-
gency flashing continues. Similarly, switching of the emergency switch has no
effect if the high-priority emergency interface (in EmSwitchHighPrio ∈ {0, 1}) is
still active. Priority handling outputs the function to be performed and relays the
left-hand/right-hand/both sides flashing information to the components OnOff-
Duration and AffectedLamps. The former determines the durations for switching
lights on and off, respectively, during one flashing period. These durations de-
pend both on the status of the ignition switch and the function to be performed.
The latter specifies which lamps and dashboard indications have to participate in
the flashing cycles. This depends on the OPTION VehicleStyle which determines,
for example, the existence of side marker lamps (interfaces pwmRatio SM FL,
FR, RL, RR), and on the OPTION Trailer which indicates the existence of a
trailer coupling, so that the trailer turn indication lamps (pwmRatio TL, TR)
have to be activated. Moreover, the affected lamps and indications depend on
the function to be performed: open-close flashing, for example, affects indication
lamps on both sides, but the emergency flash switch indicator (pwmRatio EFS)
is not activated, while this indicator is affected by emergency, crash and theft
flashing. The MessageHandling component transmits duration and identification
of affected lamps and indicators on a bus and synchronizes the flash cycles by
re-transmission of this message at the beginning of each flashing cycle. Finally,
component lamp control comprises all output control functions, each function
controlling the flashing cycles of a single lamp or dashboard indicator.

Behavioral Semantics. Model components behave and interact according to
a concurrent synchronous real-time semantics, which is close to Harel’s original
micro-step semantics of Statecharts [1]. Each leaf component of the model is
associated with a hierarchic state machine. At each step starting in some model
pre-state σ0, all components possessing enabled state machine transitions pro-
cess them in a synchronous manner, using σ0 as the pre-state. The writes of all
state machine transitions affect the post-state σ1 of the micro-step. Two con-
current components trying to write different values to the same variable in the
same micro-step cause a racing condition which is reflected by deadlock of the
transition relation and – in contrast to interleaving semantics – considered as
a modeling error. Micro-steps are discrete transitions performed in zero time.
Inputs to the SUT remain unchanged between discrete transitions. If the system



is in a stable state, that is, all state machine transitions are disabled, time passes
in a delay transition, while the system state remains stable. The delay must not
exceed the next point in time when a discrete transition becomes enabled, due
to timeout condition. At the end of a delay transition, new inputs to the SUT
may be placed on each interface. The distinction between discrete and delay
transitions is quite common in concurrent real-time formalisms, and it is also
applied to interleaving semantics, as, for example, in Timed Automata [2]. The
detailed formal specification of the semantic interpretation of the model is also
published on the web site given above.

Deployment and Signal Mapping. In order to support re-use, the model
introduced in this section only specifies a functional decomposition. Its deploy-
ment on a distributed system of automotive controllers, the network topology,
and the concrete interfaces implementing the logical ones shown in the model,
depend on the vehicle production series. Even the observability of signals may
vary between series, due to different increments in the test equipment. For this
reason, model interfaces are mapped to concrete ones by means of a signal map:
this map associates concrete signal names which may be written to or read from
in the TE with the abstract signals occurring in the model and – in case of SUT
outputs – specify their acceptable tolerances.

During test executions, the complete SUT model runs on the test engine
against the SUT, in order to detect discrepancies between expected and ob-
served behavior on the fly. During this back-to-back execution, all observable
SUT outputs are checked against the expected ones calculated according to the
model. To this end, all state machines in the SUT-portion of the model are trans-
formed into separate tasks by a model-to-text generator. Depending on the TE
infrastructure, these tasks can be distributed on several CPU cores and TE com-
puters. As a consequence, every observable SUT output is continuously checked
against its expected value. Values which are not observable are calculated by
the corresponding model components and passed on to other components con-
suming these values, so that they can proceed their computations without the
availability of the corresponding value produced by the SUT.

References

1. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Transactions
on Software Engineering and Methodology 5(4), 293–333 (October 1996)

2. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata. Theoret-
ical Computer Science 254(1-2), 225–257 (March 2001)



IgnSwitchBusRouting

NormalAndEmerFlashing OpenCloseFlashing CrashFlashing TheftFlashing

PriorityHandling

OnOffDuration MessageHandling AffectedLamps

LampControl

Sunday, May 22, 2011

Fig. 2. First-level decomposition of system under test.


