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Abstract

In this technical report the theoretical foundations of the
model-based testing tool RT-Tester are presented. RT-Tester
is an industrial strength tool which automatically generates
test cases and the associated test data from models speci-
fying concurrent reactive systems in different concrete for-
malisms which may also involve clocks and dense time. RT-
Tester is applied in industrial test campaigns for embed-
ded systems testing in the automotive, railway and avionic
domains. The paper is written from the tool builders’ per-
spective and explains the typical components that should be
present in model-based testing tools: it is described how
various modeling formalisms can be supported by means
of different parser front-ends transforming concrete models
into a uniform internal abstract syntax representation. Test
cases are derived automatically from this representation;
additionally user-defined test objectives can be supplied us-
ing a subset of LTL specifications. The initial test case de-
scription is symbolic in the sense that only formal specifica-
tions of computations suitable for testing an objective have
to be provided. Symbolic test cases represent constraint
satisfaction problems (CSPs), and their solutions result in
concrete test cases with explicit timed sequences of input
vectors. An SMT solver is used for solving CSPs which is
complemented by a simulator and techniques for model re-
duction and abstract interpretation, in order to speed up the
solution process.

1. Introduction

Model-Based Testing. Automated Model-based testing
(MBT) has received much attention in recent years, both
in academia and in industry. This interest has been stim-
ulated by the success of model-driven development in gen-

eral, by the improved understanding of testing and formal
verification as complementary activities, and by the avail-
ability of efficient tool support. Indeed, when compared
to conventional testing approaches, MBT has proven to in-
crease both quality and efficiency of test campaigns; we
name [15] as one example where quantitative evaluation re-
sults have been given. In this report the term model-based
testing is used in the following, most comprehensive, sense:
the behavior of the system under test (SUT) is specified by
a model elaborated in the same style as a model serving for
development purposes. Optionally, the SUT model can be
paired with an environment model restricting the possible
interactions of the environment with the SUT. A symbolic
test case generator analyzes the model and specifies sym-
bolic test cases as logical formulae identifying model com-
putations suitable for a certain test purpose. Constrained
by the transition relations of SUT and environment model,
a solver computes concrete model computations which are
witnesses of the symbolic test cases. The inputs to the SUT
obtained from these computations are used in the test execu-
tion to stimulate the SUT. The SUT behavior observed dur-
ing the test execution is compared against the expected SUT
behavior specified in the original model. Both stimulation
sequences and test oracles, i. e., checkers of SUT behavior,
are automatically transformed into test procedures execut-
ing the concrete test cases in a model-in-the-loop, software-
in-the-loop, or hardware-in-the-loop configuration.

Observe that this notion of MBT differs from “weaker”
ones where MBT is just associated with some technique of
graphical test case descriptions. According to the MBT
paradigm described here, the focus of test engineers is
shifted from test data elaboration and test procedure pro-
gramming to modeling. The effort invested into specifying
the SUT model results in a return of investment, because
test procedures are generated automatically and debugging
deviations of observed against expected behavior is consid-



erably facilitated because the observed test executions can
be “replayed” against the model. Moreover, V&V processes
and certification are facilitated because test cases can be au-
tomatically traced against the model which in turn reflects
the complete set of system requirements.

RT-Tester. In this paper the formal foundations of the
model-based test case and test data generation component
of the RT-Tester test automation tool are described. RT-
Tester supports all test levels from module testing to sys-
tem integration testing and provides different tool compo-
nents for manual test procedure development, automated
test case, test data and test procedure generation (this is the
focus of this paper), as well as management functions for
large test campaigns. The typical application scope cov-
ers (potentially safety-critical) embedded real-time systems
involving concurrency, time constraints, discrete control de-
cisions as well as integer and floating point data and calcu-
lations. While the tool has been used in industry for over 10
years and has been qualified for avionic systems under test
according to the standard [25], the results presented here re-
fer to new functionality that has been validated during the
last 2 years in various projects from the transportation do-
mains and are now made available to the public.

The presentation is structured according to the tool
builders’ perspective: we describe the ingredients that, ac-
cording to our experience, should be present in industrial-
strength test automation tools, in order to cope with test
models of the sizes typically encountered when testing em-
bedded real-time systems in the automotive, avionic or rail-
way domains.

Tool Components and Their Interaction. Our starting
point is a concrete test model describing the expected be-
haviour of the system under test (SUT) and, optionally, the
behaviour of the operational environment to be simulated in
test executions by the testing environment (TE) (see Fig. 1).
The goal is to derive a set of model computations, that is, se-
quences 〈σ0, σ1, . . .〉 of time stamps, interface and internal
state valuations σi that are concrete instances of test cases
specifying which computations are suitable for testing vari-
ous behavioural aspects of the SUT. Our concept of models
also comprises computer programs, typically represented
by per-function/method control flow graphs annotated by
statements and conditional expressions.

It is our expectation that the ongoing discussions about
suitable modelling formalisms for reactive systems – from
UML via process algebras to synchronous languages – will
not converge to a single preferred formalism in the near fu-
ture. As a consequence it is important to separate the test
case and test data generation algorithms from the concrete
formalism. This is achieved for the RT-Tester tool as fol-
lows: (1) Models developed in a specific formalism are

transformed into some textual representation supported by
the CASE tool (usually XMI format). (2) A parser front
end reads the model text and creates an intermediate model
representation (IMR) of the abstract syntax. (3) A transition
relation generator creates the initial state and transition re-
lation of the model as first order logic predicates referring
to pre-and post-states. (4) Model transformers create ad-
ditional reduced, abstracted or equivalent model represen-
tations which are useful to speed up the test case and test
data generation process. (5) A constraint generator cre-
ates first order formulas representing test cases built accord-
ing to a given strategy. (6) A satisfiability modulo theory
(SMT) solver calculates solutions of the test case constraints
in compliance with the transition relation. This results in
concrete computation fragments yielding the time stamps
and inputs to the SUT to be used in the test procedure im-
plementing the test case (and possibly other test cases as
well). (7) An interpreter simulating the model in compli-
ance with the transition relation is used to investigate con-
crete model executions continuing the computation frag-
ments calculated by the SMT solver or, alternatively, creat-
ing new computations based on environment simulation and
random data selection. (8) Finally, the test procedure gen-
erator creates executable test procedures as required by the
test execution environment by mapping the computations
derived before into time-controlled commands sending in-
put data to the SUT and by creating test oracles from the
SUT model portion checking SUT reactions on the fly, in
dependency of the stimuli received before from the TE.

Related Work of the Authors. As of today, RT-Tester
supports high-level modeling formalisms Timed CSP
(Communicating Sequential Processes [26, 18]), UML 2.0
with composite structures, interfaces, classes and state ma-
chines extended by clocks (timers), interpreted according
to Harel’s Statecharts in the semantics presented in [10],
Matlab-Simulink/Stateflow [16] and Timed Moore Au-
tomata [15]. These formalisms are currently applied in
industrial projects. For testing on program code level re-
search on testing C programs with full data type support
(pointers, arrays, structures, unions, type casts) is per-
formed [21, 22, 19]. The combination of SMT solving and
abstract interpretation has been published in [23].

Related Work of Other Research Groups. Our UML
2.0-based modelling formalism follows closely Harel’s
Statecharts in the semantics presented in [10] with syn-
chronous execution of enabled transitions in parallel com-
ponents, but does not support the event concept of State-
charts and does not allow AND states. The timer concept
used is that of timed automata [5, pp. 265].

The problem of deciding the satisfiability of logical (first
order) formulas where propositions may be constraints of
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Figure 1. Components of the RT-Tester test case/test data generator.

certain background theories is commonly referred to as
the Satisfiability Modulo Theories (SMT) problem. SMT
solvers have been developed for numerous theories and
combinations thereof. In recent years SMT solvers have
become important tools for software verification [24].

To find the right stimuli for covering new parts of our
model we incorporate an SMT solver to solve constraint
formulas that may contain linear and non-linear terms in-
cluding modular integer arithmetic as well as bit-vector
operations. Like most other state-of-the-art SMT solvers
[13, 3, 14] solving these kind of formulas our SMT solver,
SONOLAR, is based on the bit-blasting approach that trans-
lates an SMT formula to a purely propositional formula and
lets an SAT solver decide the satisfiability. Various exten-
sions to pure bit blasting have been proposed. [4] explores
the generation of over- and under-approximations of bit vec-
tor formulas to speed up the decision procedure and [2]
extends this concept to the domain of floating-point arith-
metic. [30] does not bitblast the whole formula, instead
so called modules are used for complex arithmetic opera-
tions to reason on the word-level. In addition, sophisticated
word- and bit-level rewritings have been developed to sim-
plify formulas [13].

Although our solver doesn’t directly use approximations
and modules it was ranked second in the division for solv-
ing closed quantifier-free formulas over fixed-size bitvec-
tors (QF BV) at the Satisfiability Modulo Theories Compe-
tition (SMT COMP 2010).

Our abstract interpretation approach is inspired by
Cousot’s work [7, 6] and uses facts from interval analy-
sis [12] which have been abstracted to more general lattices
in Section 5.

While our test generation approach relies on constraint
solvers to find test-input-data, search-based testing tech-
niques use randomized methods guided by optimization
goals. In [1] the use of random testing, adaptive random
testing and genetic algorithms for use in model-based black-
box testing of real-time systems is investigated. To this end,
the test-environment is modeled in UML/MARTE while the
design of the SUT is not modeled at all, since all test data
are derived from the possible environment behavior. An en-
vironment simulator is derived from the model that interacts
with the SUT and provides the inputs selected by one of the
strategies. The environment model also serves as a test ora-
cle that reports errors as soon as unexpected reactions from
the SUT are observed. This and similar approaches are eas-
ier to implement than the methods described in this paper,
because there is no need to encode the transition relation of
the model and to provide a constraint solver, since concrete
test data is found by randomized model interpretations. We
suspect, however, that the methods described in [1] do not
scale up to handle industrial-scale systems, where the con-
current nature of the SUT requires to consider the time-
dependent interaction between several components, and the
construction of a single large product automaton from the
many smaller ones describing component behavior is infea-
sible. To our best knowledge there is no work on using
search based testing on synchronous parallel real-time sys-
tems in order to achieve a high degree of SUT coverage, let
alone to find test input data to symbolic test-cases.

The solutions presented here have been implemented in
the RT-Tester test automation tool which provides an al-
ternative to TRON [17, 8] which supports timed automata
test models and is also fit for industrial-strength applica-



tion. RT-Tester also competes with the Conformiq Tool
Suite [28], but focuses stronger on embedded systems test-
ing with hard real-time constraints.

2. Abstract Syntax Representation and Transi-
tion Relation

Abstract Syntax. RT-Tester supports formalisms whose
models consist of hierarchic components using shared inter-
faces, and where behavior is described by means of hierar-
chic state machines, together with an expression and action
syntax supporting conditional statements and assignments.
Any concrete modeling formalism consisting of these ingre-
dients can be incorporated into the tool by adding a parser
front end to transform concrete models into the abstract syn-
tax representation described in the following paragraphs.

Model components c ∈ C are arranged in hierarchic
manner, so that a partial function pC : C 6→ C mapping
each component but the root cr to its parent is defined. The
domain of the function is dom pC = C − {cr}. Each com-
ponent may declare variables, and hierarchic scope rules
are applied in name resolution. Interfaces between test en-
vironment and system under test as well as global model
variables are declared on the level of cr. All variables are
typed. When parsing the model the scope rules are applied
to all expressions and unique variable symbol names are
used from then on. Therefore we can assume for the re-
mainder of this section that all variable names are unique
and taken from a symbol set V with pairwise disjoint sub-
sets I,O, T ⊂ V denoting TE → SUT inputs, SUT → TE
outputs and timers, respectively. Function

dC : C → P(C); dC(c) 7→ {c′ ∈ C | pC(c′) = c}

defines the direct descendants of a component. Leaf com-
ponents c satisfy dC(c) = ∅. Each leaf is associated with
a state machine s ∈ SM , where SM denotes the set of
all state machines which are part of the model. Function
sc : C 6→ SM ; dom sc = {c ∈ C | dC(c) = ∅} associates
component leaves with state machines.

State machines s ∈ SM are composed of locations (also
called control states) ` ∈ L(s) and transitions

τ = (`, p, g, α, `′) ∈ Σ(s) ⊆ L(s)× P ×G×A× L(s)

connecting source and target locations ` and `′, respectively.
Value p ∈ P = N0 denotes the priority of the transition
(0 is the best priority) and is used to enforce determinism
for state machines specifying SUT behaviour. Transition
component g ∈ Bexpr(V ) denotes the guard condition of τ
which is a Boolean expression over symbols from V . For
timer symbols t ∈ T occurring in g we only allow Boolean
conditions elapsed(t, c) with constants c. Intuitively speak-
ing, elapsed(t, c) evaluates to true if at least c time units
have passed since t’s most recent reset.

Transition component α ∈ A = P(V × Expr(V )) de-
notes a set of value assignments to variables in V , according
to expressions from Expr(V ). For a pair a = (v, e) ∈ α,
var(a) =def v and expr(a) =def e denote the projections
on variable and expression, respectively. For timer symbols
t ∈ T only resets (t, reset) are allowed. A transition with-
out accompanying assignments is associated with an empty
set α = ∅. Function

ωs : L(s)→ P(Σ(s)); ` 7→ {(`, p, g, α, `′) ∈ Σ(s) | ` = `}

maps locations to their outgoing transitions. Locations are
associated with (possibly empty) do actions, entry and exit
actions; these are captured by the mappings

dos : L(s)→ A, ens : L(s)→ A, exs : L(s)→ A,

For the top-level location s of state machine s we require
ens = ∅, exs = ∅, but do-actions on the level of s are
allowed.

Control states can be decomposed hierarchically as OR-
states.The state machine s itself is identified with the top-
level OR-state containing all other locations as subordinate
control states. Function ps : (L(s) − {s}) → L(s) maps
lower-level control states to their parent locations. pns (`)
denotes the n-fold application of ps to `, with p0s(`) = `.

ds : L(s)→ P(L(s)); ds(`) 7→ {`′ ∈ L(s)−{s} | ps(`′) = `}

defines the direct descendants of a location `. Leaf loca-
tions are called basic control states; BCS(s) =def {` ∈
L(s) | ds(`) = ∅} denotes the set of leaves belonging to
state machine s. To identify a hierarchy of locations, we
introduce a recursive set definition

ζs(`, `
′) =def {`} ∪
(if ` = `′ ∨ ` = s then ∅ else ζs(ps(`), `

′) endif)

and use notation `..`′ =def ζs(`, `
′).

On each control state decomposition into sub-ordinate
locations exactly one start location has to be identified.
Start locations are basic control states with no incoming and
exactly one outgoing transition which is unguarded. Func-
tion start : (L(s) − BCS(s)) → L(s) maps higher-level
control states to their direct descendants’ start locations.
The target control state of the transition leaving a start loca-
tion is called the initial location.

Given two locations `1, `2 ∈ L(s), the least common
ancestor is the “closest” location containing both `1 and `2
as descendants. Function

lca : L(s)× L(s)→ L(s);
(`1, `2) 7→ pns (`1) where
n = min{m ∈ N0 | pms (`1) ∈ (`1..s) ∩ (`2..s)}

defines this in a formal way.



Model State and State Transitions. Using the ab-
stract syntax introduced above, consider a model M =
(C, SM, pC , sc) with components c ∈ C in hierarchic or-
der specified by pC whose leaves are associated with state
machines s ∈ SM = {s1, . . . , sn} as specified by function
sc. The state of a model execution is specified by (1) the ac-
tive basic configuration, that is, the vector (`1, . . . , `n), `i ∈
BCS(si) of basic locations where the state machines which
are part of the model currently reside in, (2) the current val-
uation of all variables from V , and (3) the current time t̂ of
the execution. We consider basic control states as Boolean
variables ` : B, with exactly one location per state ma-
chine s evaluating to true, indicating that s currently re-
sides in this location. Following [5] we describe transi-
tion relations relating pre- and post-states by means of first
order predicates over unprimed and primed symbols from
BCS ∪ V ∪ {t̂}, where BCS =def

⋃
s∈SM BCS(s). The

unprimed symbols refer to the symbol value in the pre-state,
and the primed symbols to post-state values.

State Invariant. Invariant

Inv ≡def (∀s ∈ SM : XOR`∈BCS(s)`)∧(∀v ∈ V : v ∈ Dv)

states that each state machine must be in exactly one ba-
sic control state during each step of a model execution.
Moreover, all variables v assume values in their domain Dv

which is usually expressed as a range of values from a given
super-type. This invariant will be added to all transition
specifications below.

Initial State. Each model execution starts in a state where
(1) all inputs to SUT have arbitrary values within their de-
fined range, (2) all other variables are initialised by their
default values, and (3) all state machines s are in their top-
most start locations whose parent is the state machines s
itself. Formally,

Init ≡def Inv ∧
(∀v ∈ V − I : v = default(v)) ∧ (∀s ∈ SM : start(s))

Effect of Value Assignments. Given a specification of
value assignments α = {a1, . . . , ak} ∈ A, the effect of
α is characterised by predicate

ε(α) ≡def
(∀a ∈ α ∧ var(a) ∈ V − T : var(a)′ = expr(a)) ∧
(∀a ∈ α ∧ var(a) ∈ T : var(a)′ = t̂ )

In predicate ε(α) every variable symbol occurring on the
left-hand side of an assignment in α gets a new post-state
var(a)′. With the exception of timer variables, the new

value is defined by the assignment expression expr(a) eval-
uated in the pre-state. Timer variables t ∈ T store the cur-
rent value of the model execution time, so that the valua-
tion of a guard condition elapsed(t, c) can be performed by
evaluation of t̂ − t ≥ c. If α = ∅ then ε(α) = true by
construction. The write set of a value assignment α is de-
fined as the set of variables that are written to by α, that is,
W (α) =def {var(a) | a ∈ α}.

If a variable v is addressed in more than one assign-
ment, say, (v, e1) and (v, e2) and e1, e2 have different val-
uations in the pre-state, a racing condition occurrs which is
reflected by the fact that ε(α) = false, that is, the value
assignments are infeasible. Therefore models with racing
conditions are illegal.

Trigger Conditions for State Machine Transitions.
Given state machine s, a transition τ = (`0, p, g, α, `1) ∈
Σ(s) will be triggered if (1) its source location or one of
its subordinate control states is part of the basic configu-
ration currently active, (2) its guard condition evaluates to
true in the current model state, (3) no higher-priority tran-
sition emanating from the same location is enabled and (4)
no higher-level transition of the location under considera-
tion is enabled. This is captured formally by

triggers(`0, p, g, α, `1) ≡def
(∃`0 ∈ BCS(s) : `0 ∧ `0 ∈ `0..s) ∧
g ∧ (∀(`0, p, g, α, `1) ∈ ωs(`0) : p ≥ p ∨ ¬g) ∧
(∀` ∈ ps(`0)..s : ∀(`, p, g, α, `1) ∈ ωs(`) : ¬g)

Effect of State Machine Transitions. Suppose transition
τ = (`0, p, g, α, `1) between state machine locations will be
triggered. Assume further that `0 is the active basic control
state equal to or subordinate to `0. Formally,

`0 ∈ BCS(s) ∧ `0 ∧ `0 ∈ `0..s

The following predicate specifies the effect of τ ’s execution.

ε(`0, p, g, α, `1) ≡def
(∀` ∈ (`0..lca(`0, `1))− lca(`0, `1) : ε(exs(`))) ∧
(∀` ∈ lca(`0, `1)..s : ε(dos(`))) ∧ ε(α) ∧
(∀` ∈ (`1..lca(`0, `1))− lca(`0, `1) : ε(ens(`))) ∧
((ds(`1) = ∅ ∧ `′1) ∨ (ds(`1) 6= ∅ ∧ ιs(`1)))

Informally speaking, the effect is as follows: (1) All exit
actions from `0 up to, but excluding the least common an-
cestor (see definition of lca in Section 2) of `0 and `1 are
executed. (2) All do actions of the locations starting with
least common ancestor of `0 and `1 and ending at s are ex-
ecuted. (3) The action α associated with τ is executed. (4)
The entry actions associated with `1 up to, but excluding the
least common ancestor of `0 and `1 are executed. (5) If `1
is a basic control state then it becomes part of the new basic



configuration, otherwise the initial locations of `1’s subor-
dinate control states are visited and associated actions are
executed in the way specified by recursive predicate ιs(`1):

ιs(`) ≡def
let `0 = start(`), (`0, p0, g0, α0, `1) ∈ Σ(s) in
ε(α0) ∧ ε(ens(`1)) ∧ ((ds(`1) = ∅ ∧ `′1) ∨

(ds(`1) 6= ∅ ∧ ιs(`1)))
endlet

The write set W (τ) associated with transition τ is derived
from the effect ε(τ) of the transition as follows:

W (τ) =def (
⋃

`∈(`0..lca(`0,`1))−lca(`0,`1)W (exs(`))) ∪
(
⋃

`∈lca(`0,`1)..sW (dos(`))) ∪W (α) ∪W (ens(`1)) ∪
(if ds(`1) = ∅ then ∅ else νs(`1) endif)

with recursive set definition

νs(`) =def
let `0 = start(`), (`0, p0, g0, α0, `1) ∈ Σ(s) in
W (α0) ∪W (ens(`1)) ∪

(if ds(`1) = ∅ then ∅ else νs(`1))
endlet

Transition Relation. For generating test cases with as-
sociated test data, the behaviour of a model is encoded
by means of a transition relation Φ associating pre-states
of locations, variables and current time with post states.
The transition relation distinguishes between discrete tran-
sitions ΦD and timed transitions (also called delay transi-
tions) ΦT allowing the model execution time t̂ to advance
and inputs to change while the basic configuration, inter-
nal and output variables remain frozen. Discrete transitions
take place whenever at least one state machine has an en-
abled transition or a do action needs to be executed. This
condition is captured as predicate triggerD. Timed transi-
tions occur when ¬triggerD holds in the pre-state. After
each transition the invariant shall still hold, that is, each
state machine is in a well-defined basic control state and
all inputs have values in their admissible range. These con-
siderations induce the following structure for the transition
relation:

Φ ≡def ((triggerD ∧ ΦD) ∨ (¬triggerD ∧ ΦT )) ∧ Inv′

Predicate triggerD is defined as follows:

triggerD ≡def (∃s ∈ SM, τ ∈ Σ(s) : triggers(τ)) ∨
(∃s ∈ SM, `0 ∈ BCS(s), ` ∈ `0..s,

(v, e) ∈ dos(`) : `0 ∧ v 6= e)

To understand the second term in this disjunction, con-
sider a do action {(v1, e1), . . . , (vk, ek)} which is associ-
ated with active basic control state `0 or with one of `0’s an-
cestors. This do action only leads to a discrete transition if

at least one of the current values of left-hand side variables
vi differs from the current valuation of the associated right-
hand side expression ei, that is, if the precondition vi 6= ei
holds.

A variable v is written to during a discrete state transition
if a state machine s taking part in the transition performs
an action writing to v. This happens if either (1) s fires a
transition accompanied by actions writing to v, or (2) from a
certain level of the control state hierarchy on, no transitions
on these levels can fire, but one of the do-actions executed
in that case writes to v. Formally, this is expressed by

written(v) ≡def
(∃s ∈ SM, τ ∈ Σ(s) : trigger(τ) ∧ v ∈W (τ)) ∨
(∃s ∈ SM, `0 ∈ BCS(s), `1 ∈ `0..s :
`0 ∧ (∀` ∈ `1..s, τ ∈ ωs(`) : ¬trigger(τ)) ∧

v ∈
⋃

`∈`1..sW (dos(`)))

Now, if a discrete transition is enabled its effects may be
described as follows:

ΦD ≡def (t̂′ = t̂) ∧ (∀v ∈ I : v′ = v) ∧
(∀s ∈ SM, τ ∈ Σ(s) : trigger(τ)⇒ ε(τ)) ∧

(∀s ∈ SM, `0 ∈ BCS(s) :
(`0 ∧ ∀` ∈ `0..s, τ ∈ ωs(`) : ¬trigger(τ))⇒

(∀` ∈ `0..s : ε(dos(`)))) ∧
(∀v ∈ V − I : written(v) ∨ v′ = v)

(1) The current model execution time t̂ remains un-
changed. (2) All input variable values remain unchanged.
(3) For every state machine possessing an enabled transition
τ , the transition’s effect as specified by ε(τ) becomes visi-
ble in the post-state. (4) If none of the transitions emanating
from the active basic control state `0 or any of its ancestor
locations can fire, all do actions associated with any loca-
tion in `0..s are executed. (5) All variables which are not in
the write set of any executed transition or do action retain
their old values (case ¬written(v)).

Delay transitions ΦT are formally characterized as fol-
lows:

ΦT ≡def (t̂′ > t̂) ∧ (∀s ∈ SM, ` ∈ BCS(s) : `′ ⇔ `) ∧
(∀v ∈ V − I : v′ = v) ∧
(∀s ∈ SM, (`0, p, g, α, `1) ∈ Σ(s) :

(∃g ∈ Bexpr, t ∈ T, c ∈ N : g ≡ g ∧ elapsed(t, c))⇒
(t̂′ ≤ c+ t ∨ t̂ ≥ c+ t))

(1) The model execution time is advanced. (2) Inputs may
change for the post-state of the delay transition, but all other
variables and basic control states remain unchanged. (3)
The admissible time shift is limited by the point in time
when the next timer will elapse. More precisely, (a) when-
ever a timer t is still running (so elapsed(t, c) = false or,
equivalently, t̂ < c+ t) the time may advance at most as far
as the point in time where t will elapse, that is, c+ t. Equiv-
alently, the new model execution time value t̂′ shall satisfy



t̂′ ≤ c+ t. (b) Alternatively, t may have already elapsed be-
fore the delay transition is executed, that is, before current
time t̂. This is characterised by condition t̂ ≥ c+ t. In that
case, timer t does not restrict the amount of time t̂′ may be
advanced.

3. Symbolic Test Cases and Concrete Test Data

In MBT test cases may be expressed as logical con-
straints identifying model computations which are suitable
to investigate a given test objective. We use the term sym-
bolic test cases for these constraints to emphasize that at
this stage no concrete test data to stimulate a model compu-
tation satisfying them exists. As external representation of
these constraints we use LTL formulas [5] of the type Fφ,
where the free variables in φ are model variables, basic state
machine control states (interpreted as Booleans, true indi-
cating that the machines currently resides in this location),
and model execution time. The utilization of the finally op-
erator F is motivated by the fact that to test a given objec-
tive, a computation prefix may have to be executed in order
to reach a model state from where φ can be fulfilled. Typ-
ical model coverage criteria (see [29] for a comprehensive
overview of these criteria) may easily be expressed as LTL
formulas.

Example 1. To cover a state machine transition τ leaving
a hierarchic control state `, constraints can be expressed in
the form F((

∨
i(`i∧ψi))∧φ1), where φ1 denotes the guard

condition of τ , each `i is a basic control state sub-ordinate
to `, so that the system resides in a basic control state from
where τ can fire, and each ψi specifies the conditions such
that – if the system resides in `i – no higher-priority transi-
tion will fire instead of τ . �

More complex test cases involve formulas φ referring
to control states of more than one component and/or using
temporal operators.

Example 2. The following example refers to the model
of turn indication functionality in vehicles which is avail-
able under [20]. In order to ensure that the turn in-
dicator lever (in TurnIndLvr) has priority over the addi-
tional turn indication and emergency flashing interfaces
in TurnIndLvrSPV, in EmSwitchSPV available in special
purpose vehicles, formula

F(pr Decision = 4 ∧ lre FlashCmd ∈ {1, 2} ∧
lres FlashCmd = 0 ∧
((pr Decision = 4 ∧ lre FlashCmd ∈ {1, 2}) U
(pr Decision = 4 ∧ lre FlashCmd ∈ {1, 2} ∧

lres FlashCmd > 0 ∧
lres FlashCmd 6= lre FlashCmd)))

represents a suitable test case: pr Decision is an output
of the priority handling function, and its value 4 indicates
that left/right or emergency flashing have priority. Variable

lre FlashCmd is an output of the normal and emergency
flashing function handling the standard interfaces, and its
value 1 or 2 indicates that left or right flashing is active.
Variable lres FlashCmd is an output of the corresponding
function handling the SPV interfaces. The formula speci-
fies computations reaching a system state where left or right
flashing is active when the SPV interfaces are still passive,
and later – while left or right flashing is still performed –
the SPV interface is brought into a contradictory state. �

Since test cases need to be realized by finite model com-
putation fragments, symbolic test cases are internally repre-
sented as so-called bounded model checking instances

tc(c,G) ≡def

c−1∧
i=0

Φ(σi, σi+1) ∧G(σ0, . . . , σc) (1)

In this formula σ0 represents the current model state and
Φ the transition relation, so any solution of 1 is a valid
model computation fragment of length c. The test ob-
jective φ is encoded in G(σ0, . . . , σc). For Example 1,
G(σ0, . . . , σc) = G(σc) = ((

∨
i(`i(σc) ∧ ψi(σc))) ∧

φ1(σc)). Intuitively speaking, tc(c,G) tries to solve Fφ
within c computation steps, starting in model pre-state σ0.

To solve constraints of type 1 a solver is used which is
described in the next section.

4. SMT Solver

Since our SMT solver follows the bit blasting approach,
variables are encoded as fixed-width bit vectors, where the
bit widths are given by the associated data types. Arithmetic
and logical operations on these variables are transformed
to Boolean constraints that encode the exact relationship of
input and output bits. This allows us to have bit-precise
results in the presence of modular arithmetic.

To this end the SMT formula is first transformed to a di-
rected acyclic formula graph, where each single arithmetic
and logical operation is represented as a single node. Struc-
tural hashing ensures that structurally identical terms are
shared among expressions. On this formula graph a se-
ries of word-level simplifications like the evaluation of con-
stant expressions, normalizations and term rewriting is per-
formed. This word-level formula graph is then transformed
to a bit-level, purely propositional And-Inverter Graph
(AIG). AIGs are commonly used among recent bit vec-
tor SMT solvers for synthesising propositional formulas
[13, 3, 14]. AIGs represent propositional formulas as di-
rected acyclic graphs (DAGs), where nodes are proposi-
tional variables or two-input AND-gates and edges may
be optionally inverted. These AIG nodes are structurally
hashed, too, and allow us to perform simplifications on bit
level.



Although a number of competitive SAT solvers accept
AIGs as input [27, 11], most SAT solvers require the in-
put to be in CNF. To generate the CNF, for each node of
the AIG a boolean variable is introduced. Each node with
possibly inverted inputs n⇔ in1 ∧ in2 is then translated to
(¬n∨in1)∧(¬n∨in2)∧(n∨¬in1∨¬in2). For each root of
the AIG an additional unit clause containing the associated
variable asserts the corresponding boolean formula to be ei-
ther true or false, respectively. See [9] for more information
on logic synthesis using AIGs.

Many modern SAT solvers have the capability to be
called incrementally. This technique allows us to add
clauses between solver runs and to add unit clauses that
are only valid for one run (so-called assumptions). The
SAT solver can then re-use conflict clauses learned in pre-
vious runs to speed up the following ones.

As described in Section 3 the SMT solver needs to find a
solution to the formula tc ≡ (

∧c−1
i=0 Φ(σi, σi+1)) ∧ G(σc),

consisting of the c-fold unrolled transition relation and a
disjunction of goals of version c. As the solver tries to find
a solution with successively larger c, each try with the next
larger c adds a transition constraint Φ(σc, σc+1) to tc and re-
places G(σc) with G(σc+1). The additional transition con-
straint can simply be added to the SAT solver in an incre-
mental fashion. However, with most SAT solvers it is not
possible to remove all clauses making up G(σc) before the
next run. Therefore, the root of the AIG representingG(σc)
is added as an assumption when solving Φ(σc−1, σc) and
is replaced by a new assumption enabling G(σc+1) when
solving Φ(σc, σc+1). The clauses of previous goals are still
in the SAT solver’s clause database, but since they are rela-
tively few compared to the ones stemming from the transi-
tion relation, this does not lead to a noticeable slowdown.

5. Abstract Interpretation

5.1 Lattices and Galois Connections

Recall that a binary relationv on a set L is called a (par-
tial) order if v is reflexive, transitive and anti-symmetric.
An element y ∈ L is called an upper bound of X ⊆ L if
x v y holds for all x ∈ X . The lower bound of a set is
defined dually. An upper bound y′ of X is called a least
upper bound of X and denoted by tX if y′ v y holds for
all upper bounds y of X . Dually, the greatest lower bound
uX of a set X is defined.

An ordered set (L,v) is called a complete lattice, if uX
and tX exist for all subsets X ⊆ L. Lattice L has a largest
element (or top) denoted by > =def tL and a smallest el-
ement (or bottom) denoted by ⊥ =def uL. Least upper
bounds and greatest lower bounds induce binary operations
t,u : L × L → L by defining x t y =def t{x, y} (the
join of x and y) and x u y =def u{x, y} (the meet of x and

y), respectively. If the join and meet are well-defined for an
ordered set (L,v) but tX,uX do not exist for all X ⊆ L
then (L,v) is called an (incomplete) lattice.

Given any set M , the power set lattice LP (M) over M
is defined by LP (M) = (P(M),⊆) with meet ∩ and join
∪.

From the collection of canonic ways to construct new
lattices from existing ones (L,v), (L1,v1), (L2,v2), we
need (1) cross products (L1 × L2,v′) where the partial
order is defined by (x1, x2) v′ (y1, y2) if and only if
x1 v1 y1 ∧ x2 v2 y2 and (2) partial function spaces
(V 6→ L,v′) where f v′ g for f, g ∈ V 6→ L if and
only if dom f ⊆ dom g ∧ (∀x ∈ dom f : f(x) v g(x)).
Mappings φ : (L1,v1) → (L2,v2) between ordered sets
are called monotone if x v1 y implies φ(x) v2 φ(y) for all
x, y ∈ L.

A Galois connection (GC) between lattices (L1,v1

), (L2,v2) is a tuple of mappings B : (L1,v1)→ (L2,v2

) (called right) and C : (L2,v2) → (L1,v1) (called left)
such that aB v2 b ⇔ a v1 b

C for all a ∈ L1, b ∈ L2.
This defining property implies that Galois connections are
monotone in both directions.

Given data types D0, . . . , Dn, and abstracting lat-
tices L(Di), i = 0, . . . , n such that Galois connections
LP (Di)

C
←−−→
B
L(Di) exist for all i, there is a natural way to

lift n-ary functions f : D1× . . . Dn → D0 to operations on
the abstracting lattices by setting

[f ] : L(D1)× . . .× L(Dn)→ L(D0);

(a1, . . . , an) 7→ {f(x1, . . . , xn) | xi ∈ aiC, i = 1, . . . , n}B

Apart from the power set lattice introduced above we
will utilise in the descriptions below a Boolean lattice
L(B) = ({⊥, 0, 1,>}) with ⊥ v 0, 1 v > and 0, 1 in-
comparable. This lattice allows to lift predicates regarded
as Boolean functions φ(x1, . . . , xn) ∈ B with free vari-
ables xi ∈ Di to three-valued logic predicates over ab-
stracted variables ai ∈ L(Di) using the above lifting pro-
cedure for n-ary functions: [φ](a1, . . . , an) ∈ L(B) eval-
uates to 1, if φ(x1, . . . , xn) holds for all (x1, . . . , xn) ∈
a1

C × . . .× anC, to 0, if φ(x1, . . . , xn) is always false and
to > if φ(x1, . . . , xn) = 1 for some (x1, . . . , xn) and = 0
for others.

Finally we use interval lattices for abstracting integral
and floating point variables: L(Z) = (IZ,⊆) specifies
the set of integer intervals with subset relation as partial
order, meet defined by ∩ and join by the interval hull
[x, x] t [y, y] =def [min(x, y),max(x, y)]. The bottom
element is ⊥ = ∅, and top is > = [−∞,∞]. For in-
terval lattices the general lifting procedure specified above
specialises to simple representation for arithmetic opera-
tions [12]; as, for example

[x, x][+][y, y] = [x+ y, x+ y]
[x, x][−][y, y] = [x− y, x− y]



Interval lattices over floating point types are defined
analogously. The problems of modular arithmetic are not
considered in this paper, though our interval arithmetic li-
brary supports detection of over- and underflows. In the
models referenced in Section ??, however, these mecha-
nisms are not relevant, because the units utilised for the re-
spective variables ensure that over- and underflows cannot
occur. Therefore the idealised lattice view on integral and
floating point data types described here is appropriate for
these models.

Consider a constraint satisfaction problem (CSP)
φ(x1, . . . , xn) = 1 with boundary conditions xi ∈ Xi ⊆
Di, i = 1, . . . , n, and denote its solution set by S ⊆
X1 × . . . ×Xn. If the CSP is not trivially solved by every
(x1, . . . , xn) ∈ X1 × . . . × Xn, then [φ](X1

B, . . . Xn
B)

will evaluate to >. A contractor for this CSP is an oper-
ator C(φ;X1

B, . . . Xn
B) returning a vector a1, . . . , an of

lattice elements such that ai v Xi
B, i = 1, . . . , n and

S ⊂ a1
C × . . . × an

C ⊆ X1 × . . . × Xn. This means
thatC yields a potentially better, that is, smaller approxima-
tion of the solution set S than the original Cartesian product
X1 × . . . × Xn. For interval lattices we have natural con-
tractors for arithmetic constraints, for example in L(Z),

C<(x < y; [x, x], [y, y]) =def
([x,min(x, y − 1)], [max(x+ 1, y), y])

Analogous contractors can be defined for atomic constraints
involving ≤, >,≥ and conjunctions or disjunctions thereof.

5.2 Abstract Interpretation Goals

We use abstract interpretation to investigate possible so-
lutions of the CSPs specifying test cases as introduced in
Section 3, that is, logical formulas

tc ≡def

c−1∧
i=0

Φ(σi, σi+1) ∧G(σc)

where Φ denotes the model transition relation, σ0 is the cur-
rent system state from where the model exploration should
start and c is an unknown integer which should be min-
imised. G(σc) specifies the firing condition of the test case,
or, more practically, the disjunction of all test case firing
conditions still to be covered. The abstract interpretation
has three main goals: (1) indicate lower bounds c0 > 0 so
that no solution of tc exists for c < c0, (2) indicate neces-
sary conditions φ(σ0, . . . , σc) to be fulfilled by every pos-
sible solution of tc and (3) execute significantly faster than
the SMT solver, so that the execution time of the abstract
interpretation plus that of the SMT solver operating with
the knowledge c ≥ c0 ∧ φ(σ0, . . . , σc) is smaller than the
execution time required by the SMT solver without this ad-
ditional knowledge.

More formally, the SMT solver investigates sets of states

U0 = {σ0}, Ui+1 = {σi+1 | ∃σi ∈ Ui : Φ(σi, σi+1)}

and checks the goal ∃σi ∈ Ui : G(σi), i = 1, 2, . . .. Ob-
serve that theUi are elements of the power set latticeLP (S)
over the concrete state space S. Since S is too large to be
investigated in a speedy manner we define an abstraction of
S as a cross product of lattices resulting in another lattice

L(S) =def L(Dx1)× . . .× L(Dxn)×
L(Dv1)× . . .× L(Dvm)×
LP (Locs1)× . . .× LP (Locsp)× IR+

where xi ∈ I denote the input variables, vj ∈ L ∪ O the
internal model variables and outputs, LP (Locsq ) denotes
the power set lattice over basic control states of state ma-
chine sq and IR+ is the interval lattice over non-negative
reals. We assume that Galois connections are available for
the data type abstractions LP (Dw)

C
←−−→
B
L(Dw). Then a GC

LP (S)
C
←−−→
B
L(S) is readily defined by setting for any subset

S0 ⊆ S

S0
B =def ({σ(x1) | σ ∈ S0}B, . . . , {σ(xn) | σ ∈ S0}B,
{σ(v1) | σ ∈ S0}B, . . . , {σ(vm) | σ ∈ S0}B,
{`1 ∈ BCS(s1) | ∃σ ∈ S0 : σ(`1)}, . . . ,

{`p ∈ BCS(sp) | ∃σ ∈ S0 : σ(`p)},
[min{σ(t̂) | σ ∈ S0},max{σ(t̂) | σ ∈ S0}])

and for any a ∈ L(S)

(a1, . . . , an, b1, . . . , bm, e1, . . . , ep, [t, t])
C

=def
{σ ∈ S |

∧n
i=1 σ(xi) ∈ aiC ∧

∧m
i=1 σ(vi) ∈ biC ∧

(∃(`1, . . . , `p) ∈ e1 × . . .× ep :
∧p

i=1 σ(`i)) ∧
σ(t̂) ∈ [t, t] ∧ Inv(σ)}

To fulfil the objectives (1) and (2) defined above, the ab-
stract interpretation algorithm specified in the next section
starts on initial state A0 =def U0

B ∈ L(S) and computes
elements A1, . . . , Ar ∈ L(S) such that

∀i ∈ 0 . . . , r : 1 v [Φ](Ai, Ai+1) ∧ Ui ⊆ Ai
C

Moreover, it returns c0 > 0 such that ∀i = 0, . . . , c0 − 1 :
[G](Ai) = 0. Since Ui ⊆ Ai

C, [G](Ai) = 0 implies that
no solution of G can be found in Ui. Therefore the transi-
tion relation has to be unrolled at least c0 times by the SMT
solver in order to find a solution of tc. Moreover, since ev-
ery solution 〈σ0, . . . , σc0 , . . . , σr〉 of tc satisfies σi ∈ Ai

C,
we can extract bounding information about possible loca-
tions and variable values in each σi and pass this on as nec-
essary conditions to the solver. Finally, the abstract inter-
pretation algorithm ensures that the Ai are computed very
fast, andAi

C can be derived with hardly any overhead from
Ai; therefore the prerequisites for goal number (3) above
are fulfilled.



5.3 Abstract Interpretation Algorithm

For the timed state machines introduced in Section 2
the abstract interpretation algorithm operates as specified
in Fig. 2. Function exploreGoal() is invoked on the cur-
rent concrete system state σ, so {σ} = U0 in the nota-
tion introduced in the previous section, and the assignment
σA := {σ}B creates A0 = σA. In each loop cycle an
abstract interpretation step is performed by means of pro-
cedure call absInt(σA, σ′A), creating a new abstract state
Ai = σ′A.

Now the strongest necessary condition that can be de-
rived from the fact that Ui ⊆ Ai

C is added as a conjunct
to Boolean output expression β: At first, the possible ba-
sic control states where each state machine can reside in are
added to β. After that the calculated variable limits appli-
cable in the ith transition are added as further restrictions.

Next it is checked whether there is a chance of solving
the test case goal in step i. This is the case if the abstracted
goal [G] evaluates to 1 (then it is guaranteed that the goal
will be met in step i) or to >. This information is stored in
Boolean output array r. The algorithm explores a maximum
of c transitions emanating from σ. The number c0 > 0 spec-
ified above and to be returned by the function is therefore
the minimal index for which r[i] is 1.

Note that it is not always useful to pass the maximal in-
formation about necessary conditions to the SMT solver, es-
pecially if some conditions are redundant to the information
directly derivable from the transition relation. If, for exam-
ple, the transition relation implies that some variable v does
not change during a certain transition step (i.e.,vi+1 = vi)
then bounding information like vi+1 ∈ [v, v] is redundant
to the information already available. Therefore the current
version of the algorithm only passes the information about
possible locations in each transition step to the solver.

Fig. 5 shows the basic structure of the abstract inter-
preter: if the trigger condition for discrete transitions evalu-
ates to 1 in the current abstract state σA then only an abstract
interpretation of possible discrete transitions takes place. If
[triggerD](σA) is guaranteed to be false, only a delay can
occur. In that case, function absIntTime() (Fig. 4) calculates
the boundaries of the new execution time stamp t̂, and the
abstractions of all input values x are set to their maximal
ranges Dx

B ∈ L(Dx). If [triggerD](σA) evaluates to >,
both discrete and delay transitions have to be taken into ac-
count and, consequently, the potential post-state is the max-
imum σ1

A t σ2
A of the post-states resulting from these two

transition types.
The abstract interpretation of a discrete transition is

specified in Fig. 5. A a partial auxiliary function ζ : V 6→⋃
w∈V L(Dw) is used for intermediate recordings of assign-

ments to abstracted variables. For each basic control state
`0 a state machine may potentially reside in, all emanating

function exploreGoal(σ : S, G : BExpr, c : N,out β : BExpr) : Z
begin
i := 1; σA := {σ}B; β := 1; r := −1;
while i ≤ c do

absInt(σA, σ′
A);

foreach s ∈ SM do β := β ∧ (
∨
`∈σ′

A
(`s

A
) `i); enddo

β := β ∧ t̂i ∈ σ′
A(t̂) ∧ (

∧
x∈I xi ∈ σ′

A(x)) ∧ (
∧
v∈L∪O vi ∈ σ′

A(v));
if (1 v [G](σ′

A)) then r := i; break; endif
σA := σ′

A; i := i+ 1;
enddo
exploreGoal := r;

end

Figure 2. Top-level procedure of the state
space exploration by means of abstract inter-
pretation. Sets I, L,O denote input, local and
output variables, respectively.

procedure absInt(σA : L(S),out σ′
A : L(S))

begin
if [triggerD](σA) = 1 then

absIntDisc(σA, σ′
A);

elseif [triggerD](σA) = 0 then
σ′
A := σA ⊕ {t̂ 7→ absIntTime(σA)} ⊕ {x 7→ DxB | x ∈ I};

else
absIntDisc(σA, σ1

A);
σ2
A := σA ⊕ {t̂ 7→ absIntTime(σA)} ⊕ {x 7→ DxB | x ∈ I};
σ′
A := σ1

A t σ
2
A;

endif
end

Figure 3. Single step abstract interpreter.

function absIntTime(σA : L(S)) : IR+

begin
limit :=∞;
foreach i ∈ {1, . . . , p} do

smLimit := σA(t̂);

foreach `0 ∈ σA(ei) do
locLimit :=∞;
foreach ` ∈ `0..si, (`, g, a, `′) ∈ ωsi (`) do

if (∃g′, t, x : g ≡ (t̂ ≥ x+ t ∧ g′)) ∧ [g′](σA) = 1 then

m := σA(x) + σA(t);
if m < locLimit then locLimit := m; endif

endif
enddo
if locLimit > smLimit then smLimit := locLimit; endif

enddo
if smLimit < limit then limit := smLimit; endif

enddo
absIntTime := [σA(t̂) + ε, limit];

end

Figure 4. Function calculating the maximal
time interval associated with a delay transi-
tion.



procedure absIntDisc(σA : L(S),out σ′
A : L(S))

begin
ζ := ∅; (q1, . . . , qp) := (∅, . . . ,∅);
foreach i ∈ {1, . . . , p} do

foreach `0 ∈ σA(ei) do
leave := 0;
foreach ` ∈ `0..si, τ ∈ ωsi (`), τ ordered by priority do

if 1 v [triggersi (τ)](σA) then
σ1
A := σ;
C(triggersi (τ), σ

1
A);

absIntTransEffect(σ1
A, τ, ζ, qi);

if 1 = [triggersi (τ)](σA) then leave := 1; break; endif

endif
enddo
if ¬leave then
σ2
A := σ;
C(

∧
`∈`0..si, τ∈ωsi

(`) ¬triggersi (τ), σ
2
A);

absIntDoEffect(σA, `0, ζ, qi);
endif

enddo
enddo
σ′
A := σA ⊕ {ei 7→ qi | i = 1, . . . , p} ⊕
{w 7→ ζ(w) | w ∈ dom ζ};

end

Figure 5. Discrete transition abstract inter-
preter.

transitions from `0 and its higher-level locations are inves-
tigated. If a transition τ may fire, that is, if its abstracted
trigger condition triggersi(τ) evaluates to 1 or > in the pre-
state σA, a copy σ1

A of the pre-state is first contracted, using
the knowledge that triggersi(τ) must have evaluated to 1 in
order to get the effect of τ .

This effect on the abstracted state space is calculated by
procedure absIntTransEffect() which records these results
by changing ζ: Suppose the effect of τ (see detailed defi-
nition of ε(τ) in Section 2) comprises a value assignment
w := expr;. If w is not yet in the domain of ζ, this means
that it is the first potential write to w during this abstracted
discrete transition. Therefore ζ’s domain is extended by
setting ζ := ζ ⊕ {w 7→ [expr](σ1

A)};, where [expr] is the
lifted version of the assignment’s right-hand side expres-
sion. The abstract expression evaluation is performed on
the contracted abstract state σ1

A. If w is already in dom ζ,
this means that another transition might also write to w. In
order to approximate the discrete transition effects in a con-
servative manner, we build the join of both potential effects,
that is, we set ζ := ζ⊕{w 7→ ζ(w)t [expr](σ1

A)};. Finally,
absIntTransEffect() adds the target basic control state asso-
ciated with τ to the set qi of potential target locations.

If none of the transitions emanating from a location
in `0..si is guaranteed to fire, that is, triggersi(τ) =
> ∨ 0 for all of these τ and therefore leave = 0, the
do actions associated with the locations in `0..si may

be executed. Their effect on the abstract state space
is calculated by absIntDoEffect() which works similar to
absIntTransEffect(), but adds the source location `0 to qi
and operates on a copy of the source state contracted with
the knowledge that all transition triggers must have evalu-
ated to 0, in order to get the effect of these do-actions.

At the end of procedure absIntDisc(), the abstracted
write effects are all joined for each affected variable w in
ζ(w). Moreover, all basic control states which may poten-
tially be visited by each state machine si as a result of this
discrete transition are stored in the respective sets qi, lead-
ing to the new location abstractions for each si in the new
abstract valuation σ′A. This join of potential write results
and target locations ensures that all potential concrete tar-
get states contained in Ui+1 are really contained in σ′A

C.

6. Conclusion

We have described 3 of the basic methods applied by the
RT-Tester test case and test data generator, in order to con-
struct concrete test data for symbolic test cases represented
as constraint satisfaction problems: (1) the model behav-
ior is encoded by means of a transition relation, (2) a SMT
solver determines solutions of the CSP induced by symbolic
test cases, and (3) the solution process is sped up by means
of abstract interpretation. In [23] performance evaluations
are discussed, in particular with respect to the acceleration
gained from abstract interpretation. Further performance
data will be published in [20].

The following methods will be considered in future revi-
sions of this technical report:

• Non-chronological backtracking supported by abstract
interpretation is used to find suitable model states from
where complex test goals may be reached more easily,
in order to speed up the test data generation process.

• For a given set of test goals the model may be re-
duced using cone-of-influence calculation techniques,
so that only components affecting the reachability of
the goals under consideration remain in the reduced
model. This leads to smaller transition relations, which
in turn speeds up the constraint solution process.

• For exploring the model state space random simulation
techniques may be used in order to find more suitable
model states from where the SMT solver may reach
certain goals more easily.
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