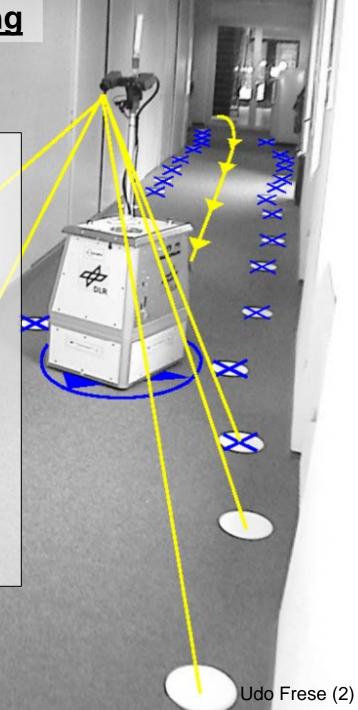
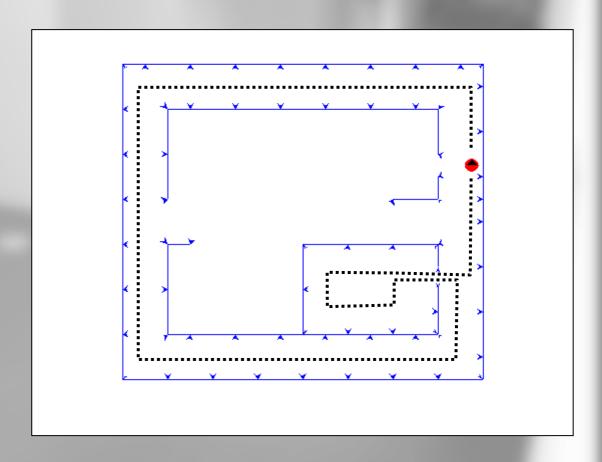
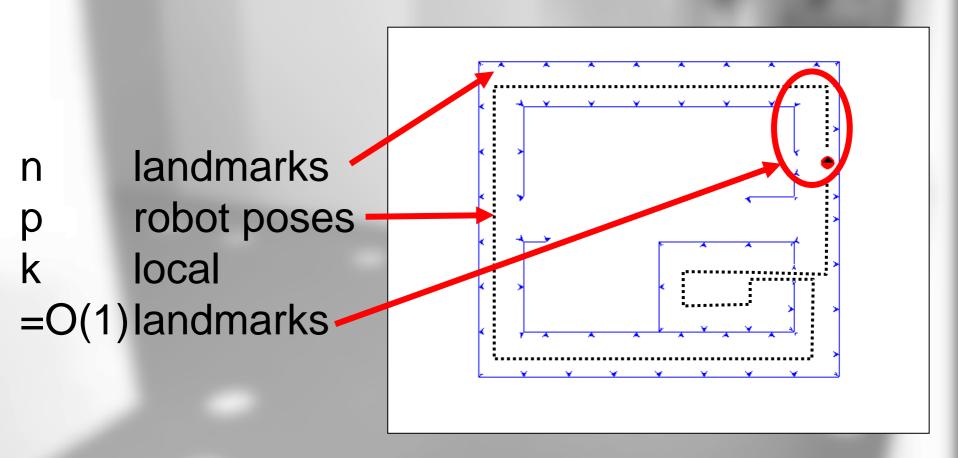
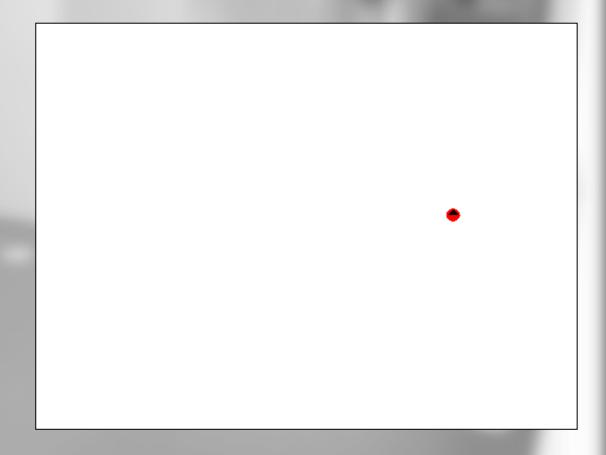


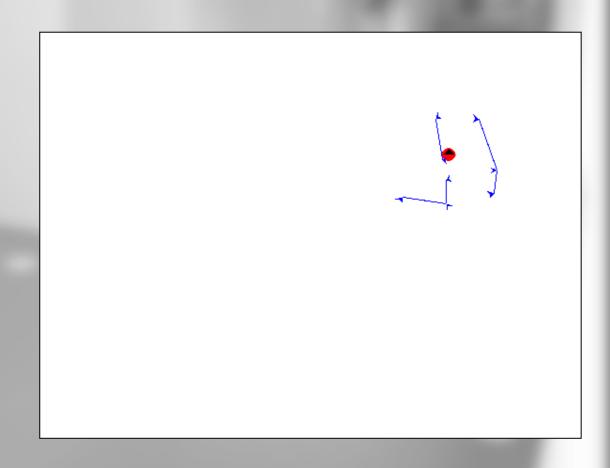
- continuously estimate a map from sensor data
- input (yellow):
 - landmark observations
 - odometry
- output (blue):
 - landmark positions
 - robot pose

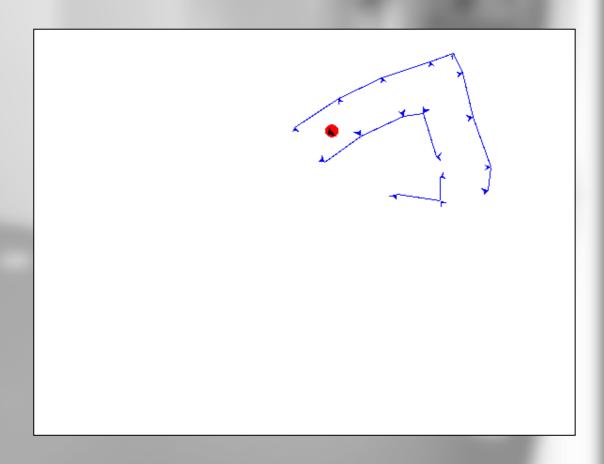


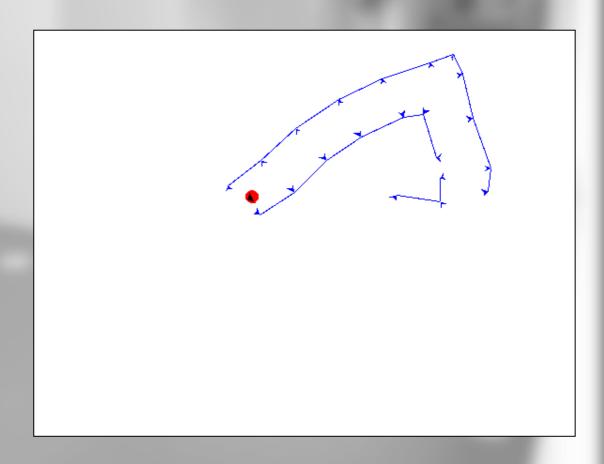


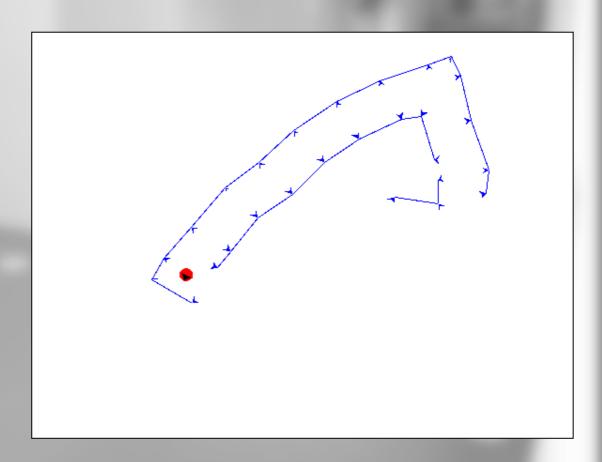


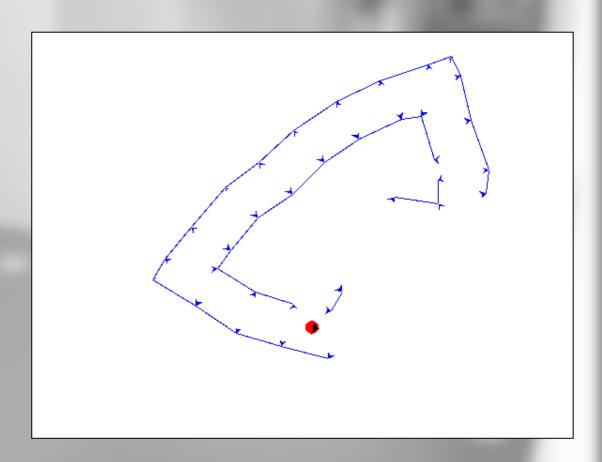


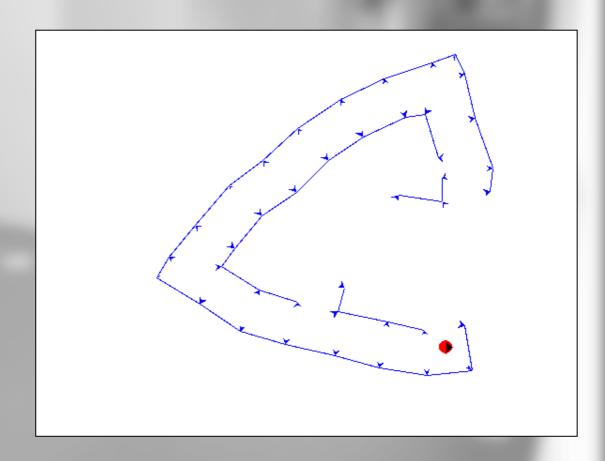


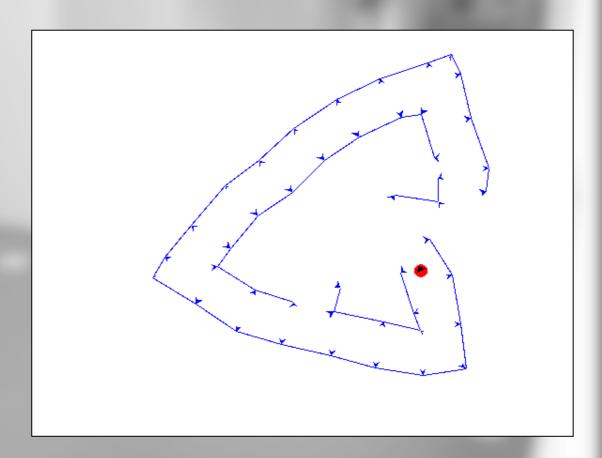


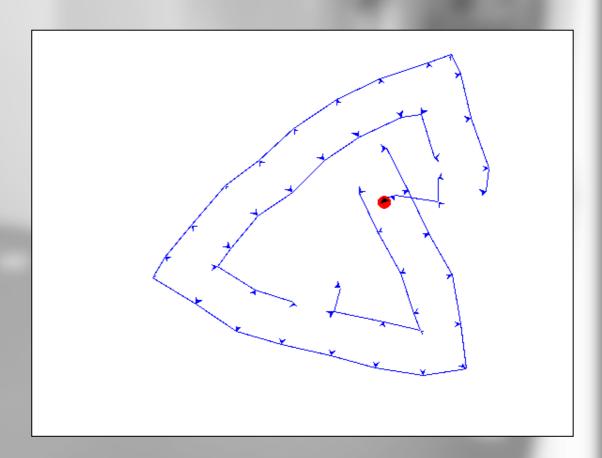


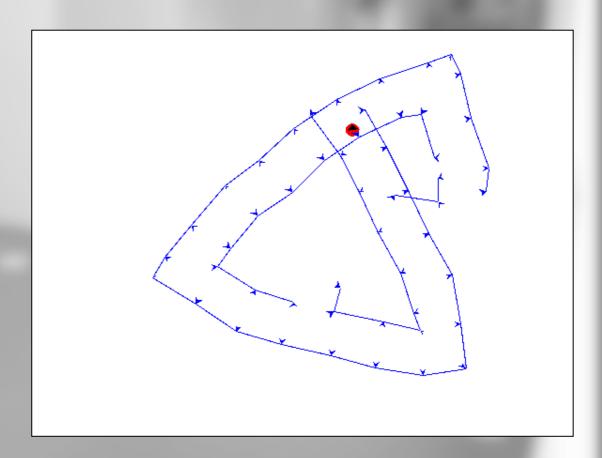


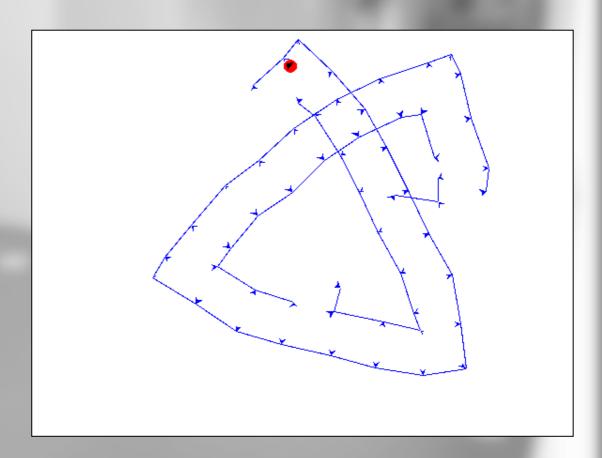


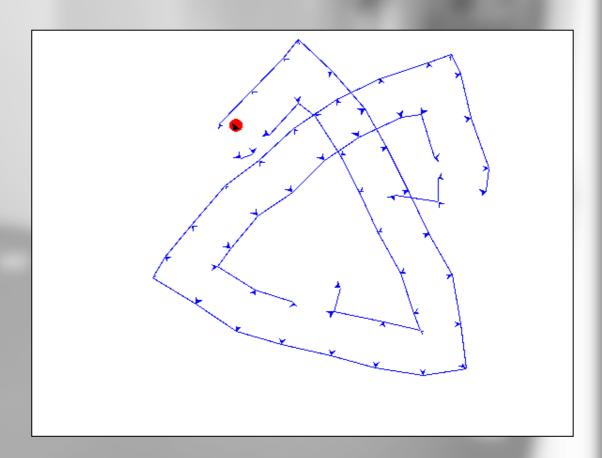


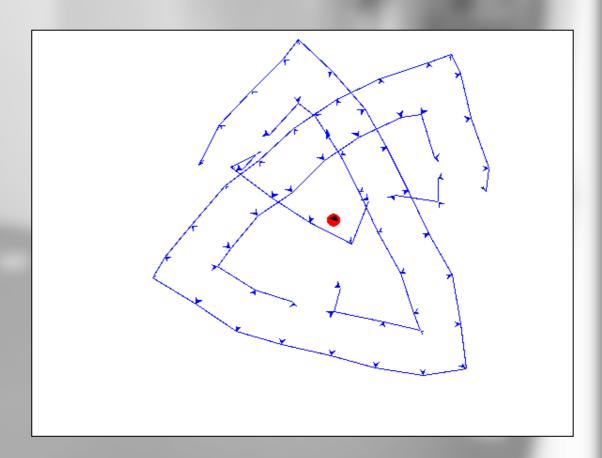




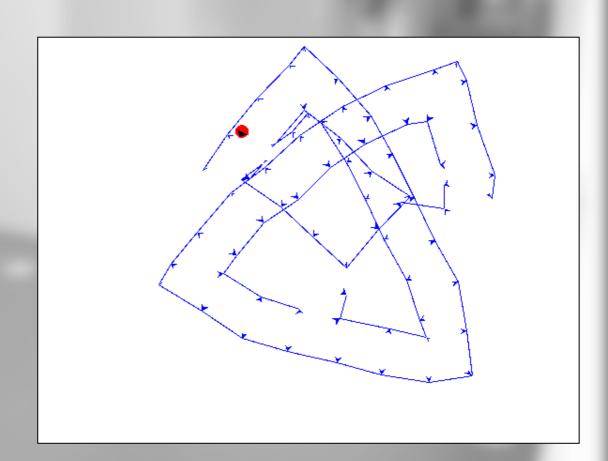






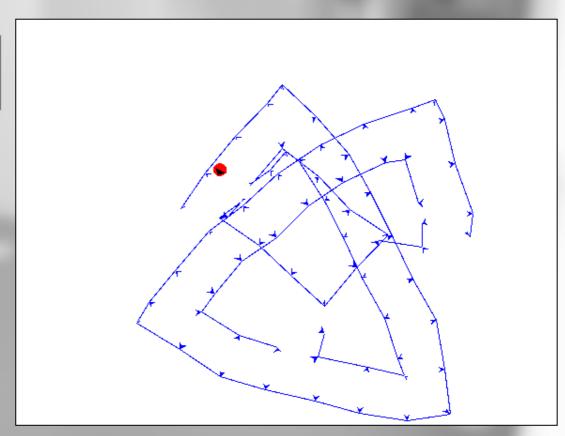


problem: accumulated error



SLAM Uncertainty 1

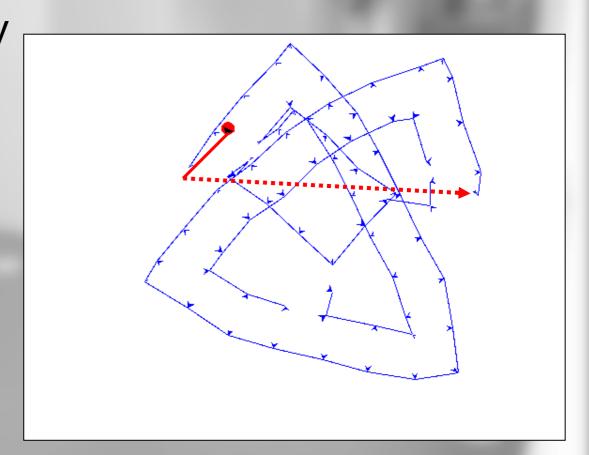
 accumulated error affects position not shape



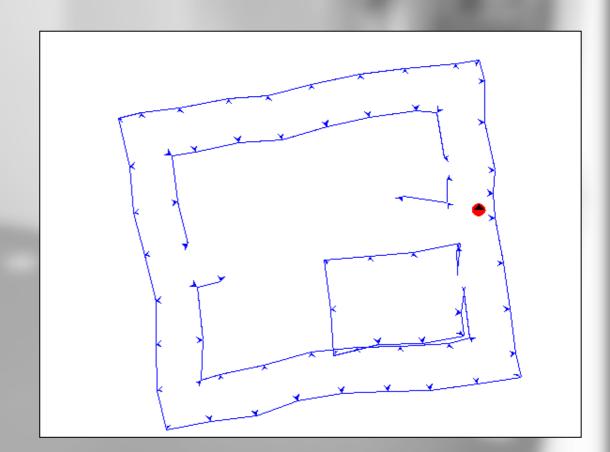
"Certainty of Relations despite Uncertainty of Positions"

[1] U. Frese (2006), A Discussion of Simultaneous Localization and Mapping. In Autonomous Robots, 20 (1), pp. 25–42

- closing a loop by re-identifying a landmark
- "bending" the map

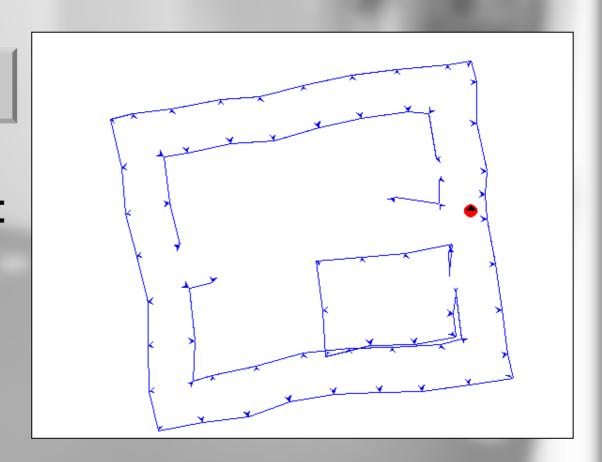


 implicitly done by proper statistical evaluation



SLAM Uncertainty 2

 closing the loop: single measurement drastically reduces the overall error



- optimal solution:

 (nonlinear) least
 square estimation
 following C.F. Gauss
- nonlinear maximum likelihood estimation
- linear equation system
- problem: computation time

Algorithm	Quality	Storage	Computation time		
Max. Likel.	optimal	n+kp	(n+p) ³		
EKF	linear	n ²	n ²		
CEKF	linear	n ^{3/2}	k ²	kn ^{3/2}	
Treemap	nonlin.	kn	k ²	k³ log n	kn

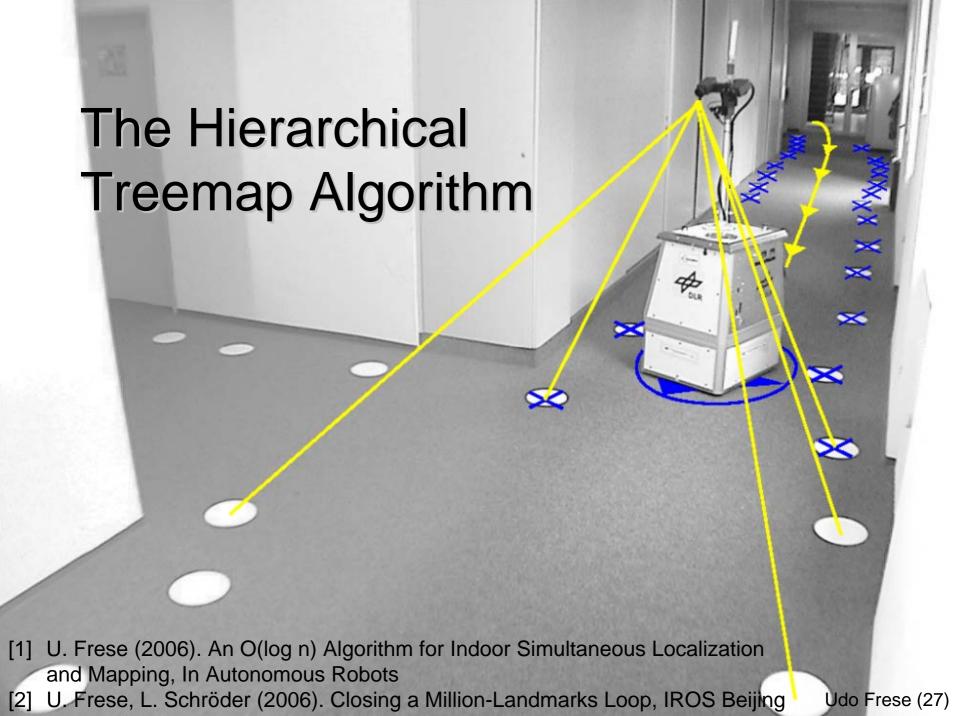
n landmarks (725) p robot poses (3297) k local landmarks (15) same region

global

				_	-
Algorithm	Quality	Storage	Computation time		
Max. Likel.	optimal	n+kp	(n+p) ³		
EKF	linear	n ²	n ²		
CEKF	linear	n ^{3/2}	k ²	kn ^{3/2}	
Treemap	nonlin.	kn	k ²	k³ log n	kn
n landmarks (725) p robot poses (3297) k local landmarks (15)				Theoretical Highlight —— Practical	Highlight —

Quality	Storage	Computation time		
optimal	n+kp	(n+p) ³		
linear	n ²	n ²		
linear	n ^{3/2}	k ²	kn ^{3/2}	
nonlin.	kn	k ²	k³log n kn	
	optimal linear linear	optimal n+kp linear n² linear n ^{3/2}	optimal n+kp linear n² linear n³/2 k²	

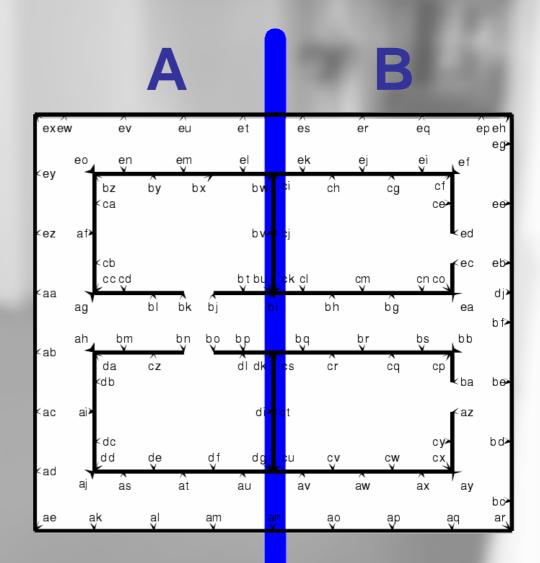
- n landmarks (725)
- p robot poses (3297)
- k local landmarks (15)

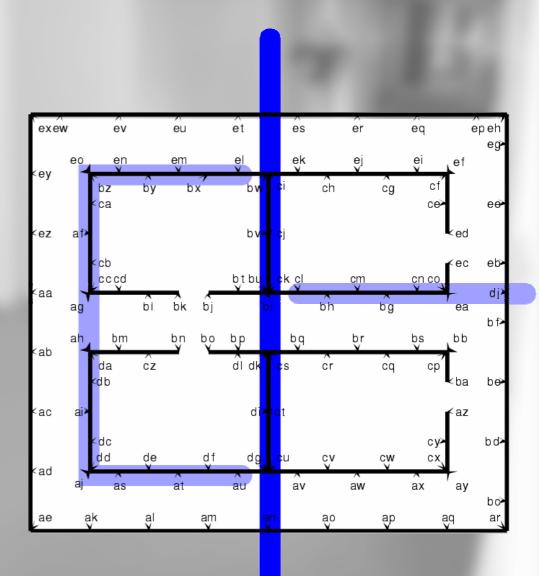


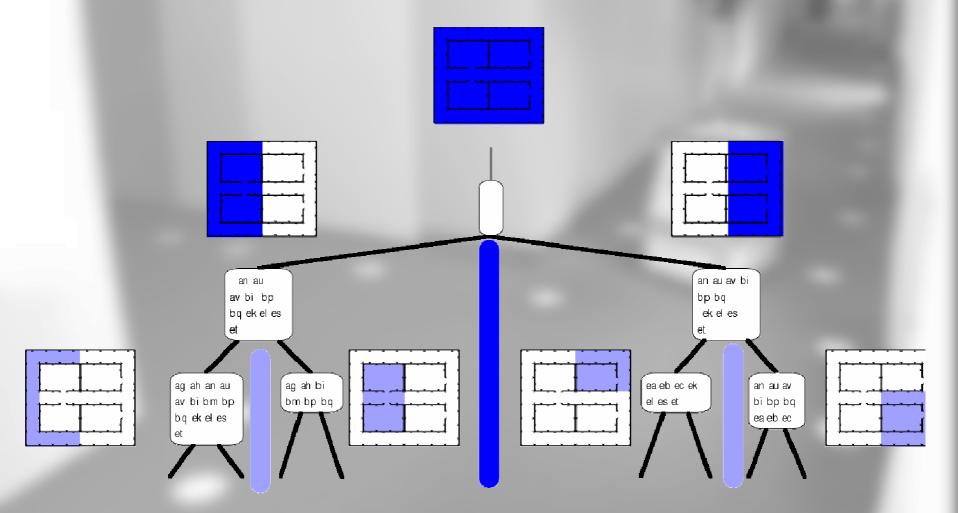
The Hierarchical Treemap Algorithm

- General idea
- Probabilistic propagation along the tree
- Linearization, integration, marginalization, sparsification
- Bookkeeping and hierarchical tree partitioning
- Closing a million-landmarks loop

- If the robot is in part A, what is the information needed about B?
- Only the marginal distribution of landmarks observable from A conditioned on observations in B.



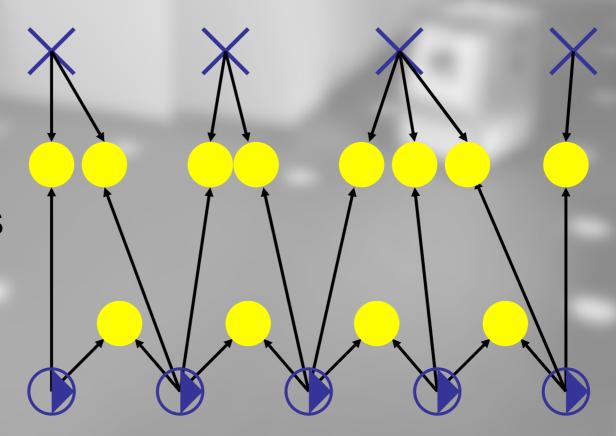




landmarks

landmarkobservations

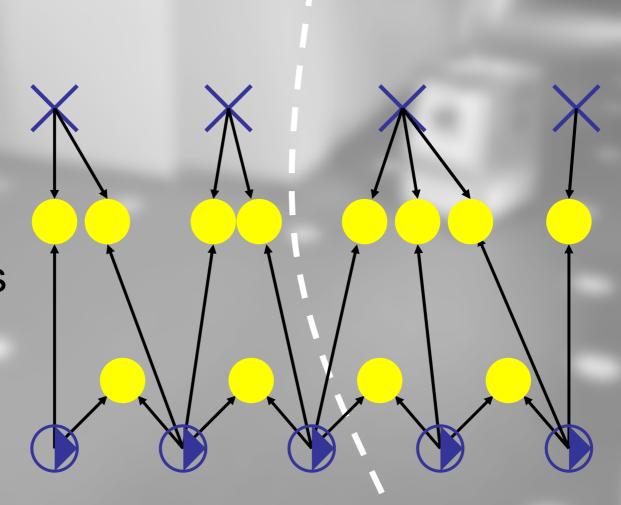
odometry robot poses

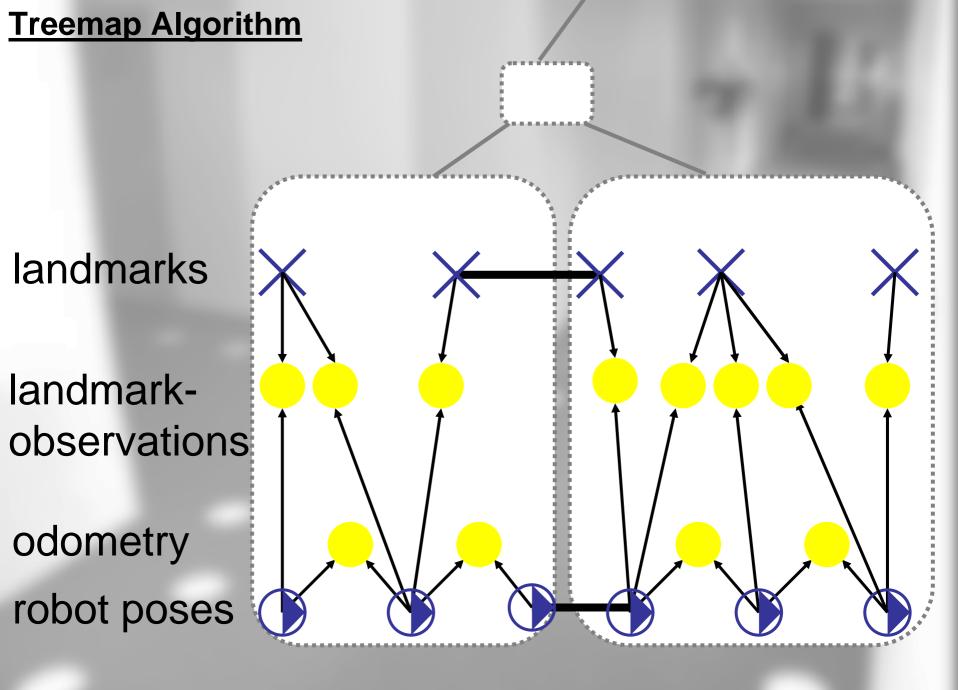


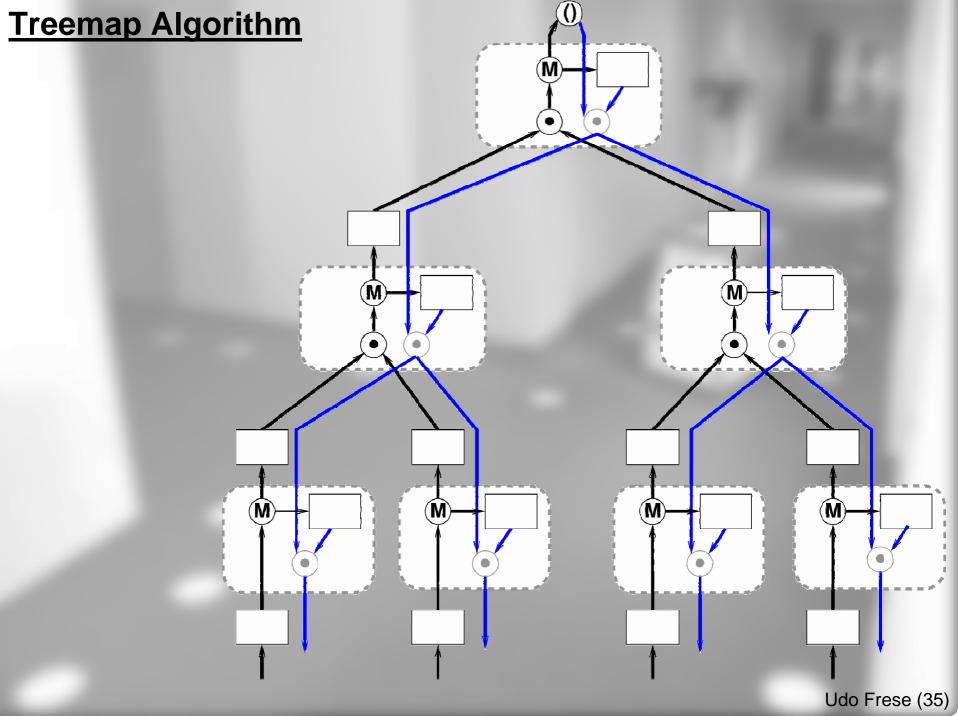
landmarks

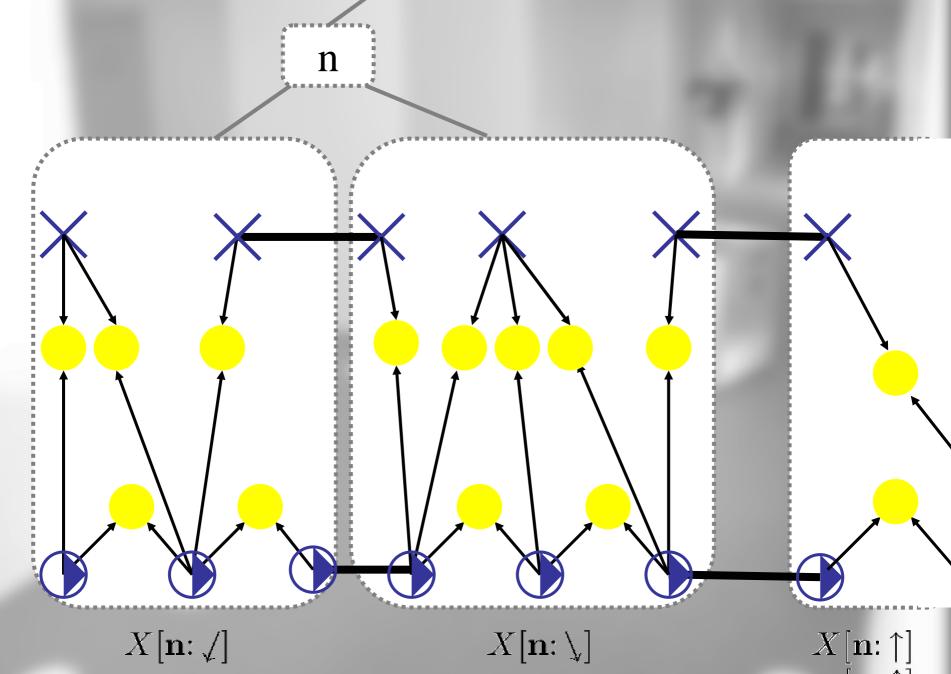
landmarkobservations

odometry robot poses





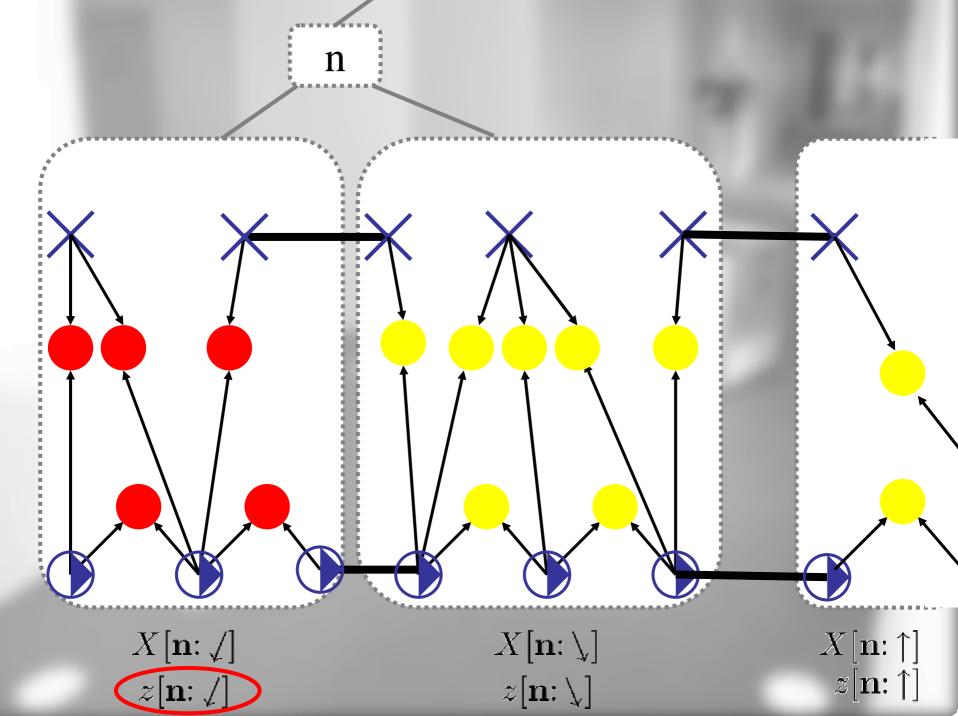


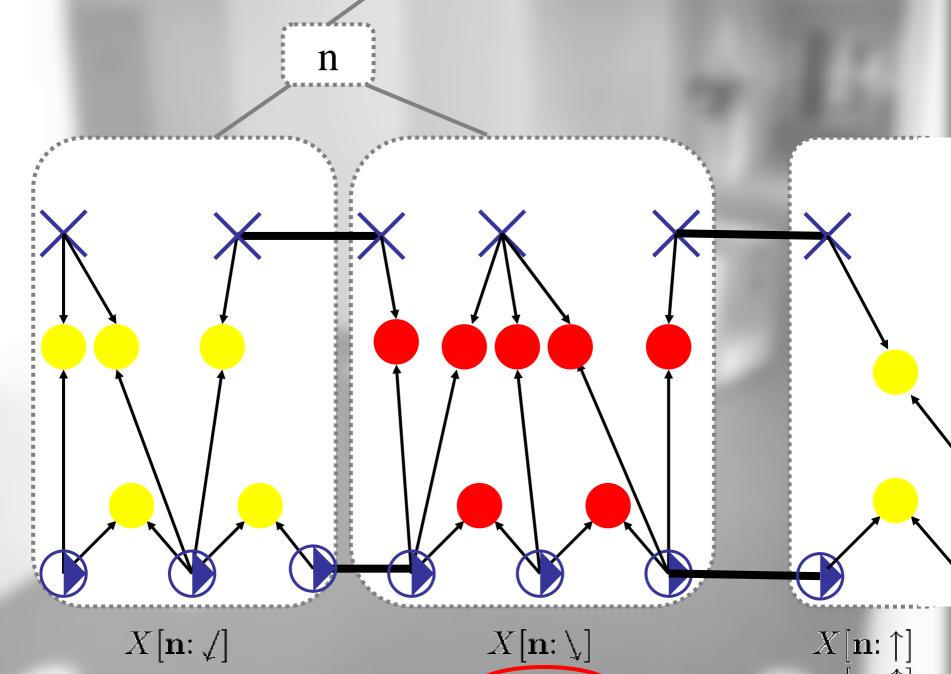


 $z[\mathbf{n}; \not \rfloor]$

 $z[\mathbf{n}: \mathbf{n}]$

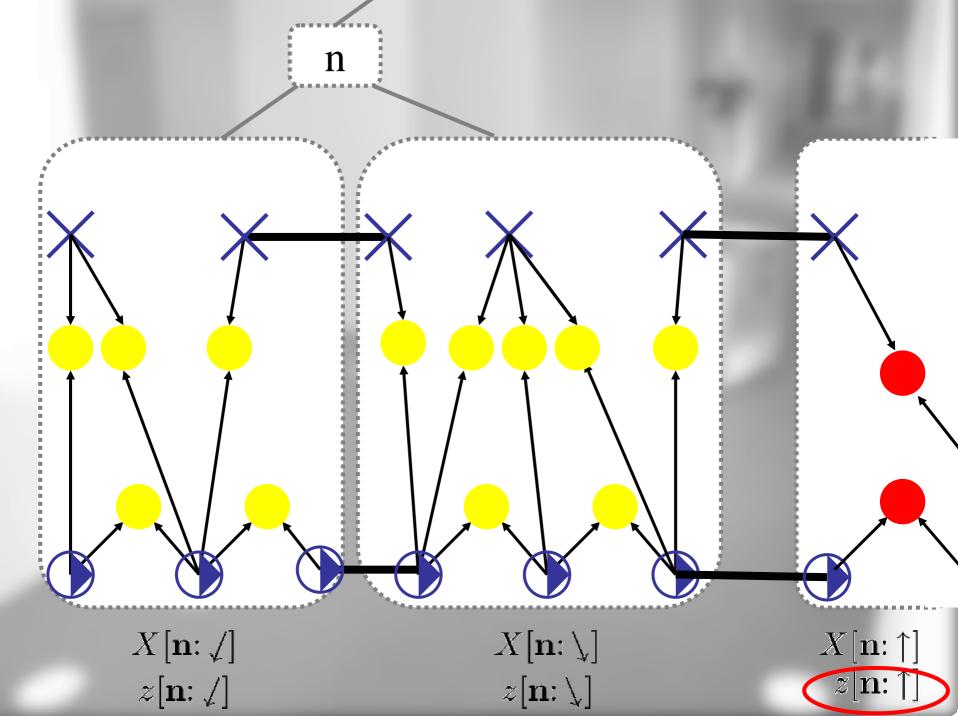
 $\begin{array}{c} X[\mathbf{n}:\uparrow] \\ z[\mathbf{n}:\uparrow] \end{array}$

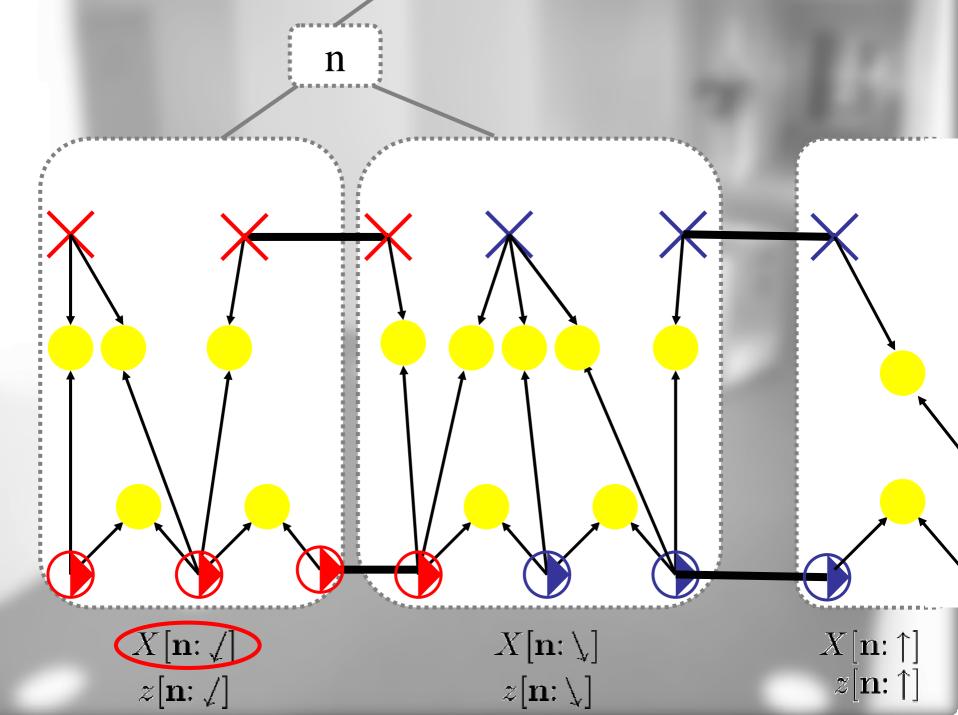


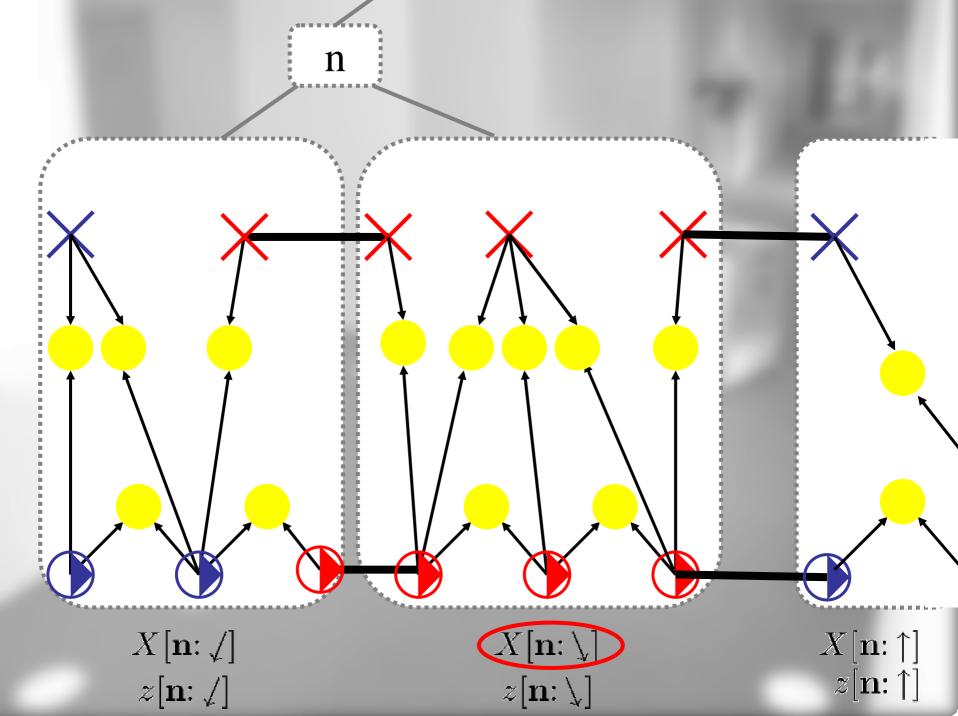


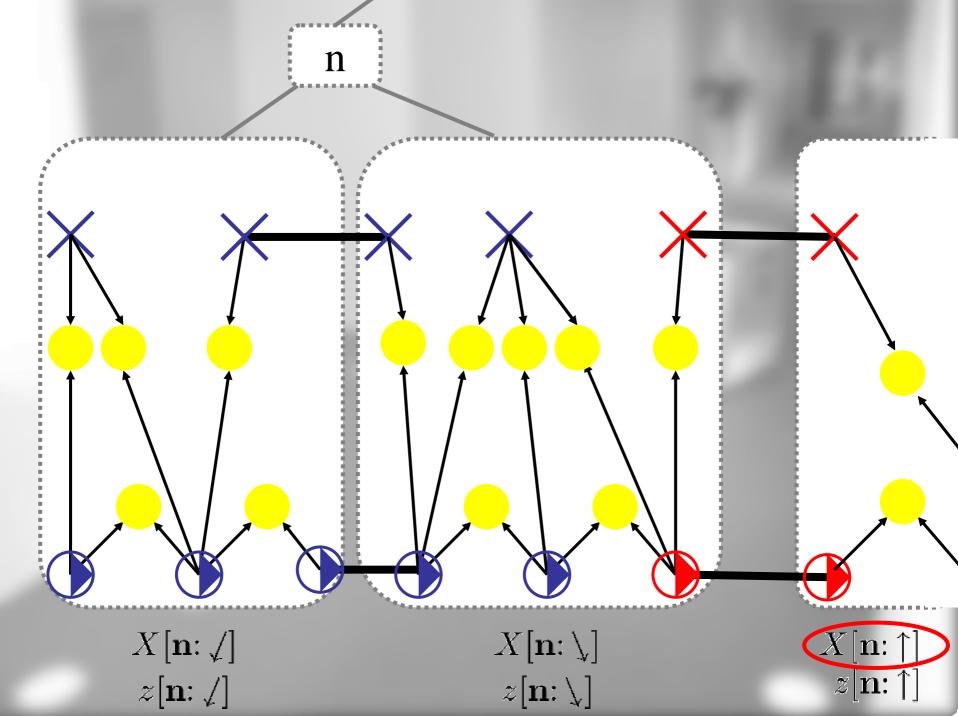
 $z[\mathbf{n}; \not \rfloor]$

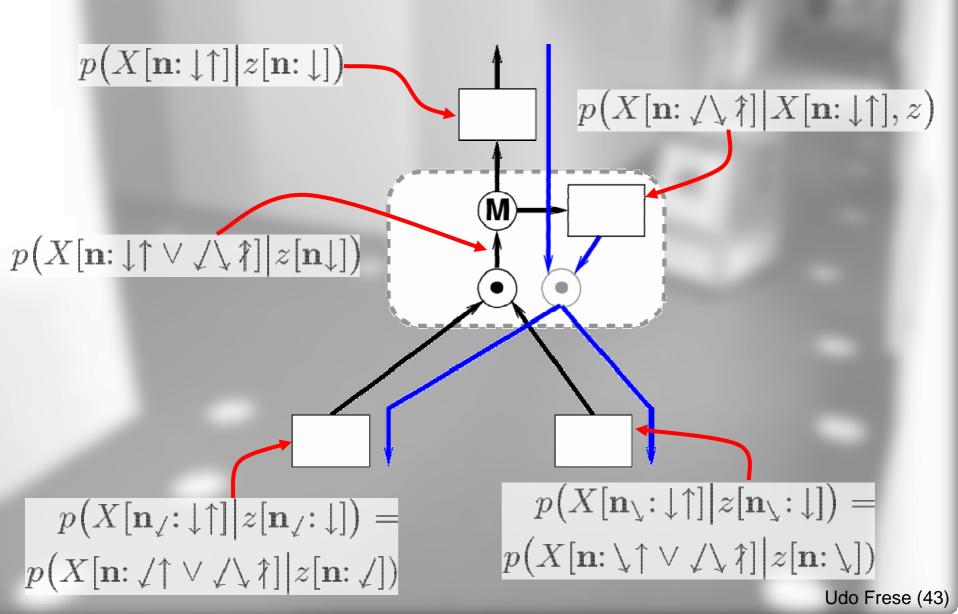
 $\begin{array}{c} X[\mathbf{n}:\uparrow] \\ z[\mathbf{n}:\uparrow] \end{array}$

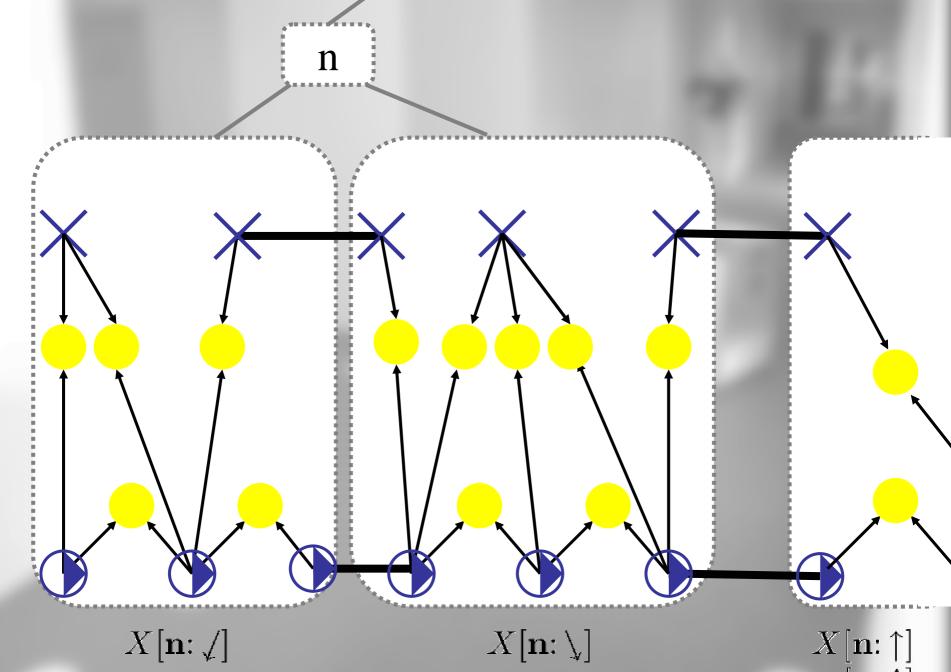








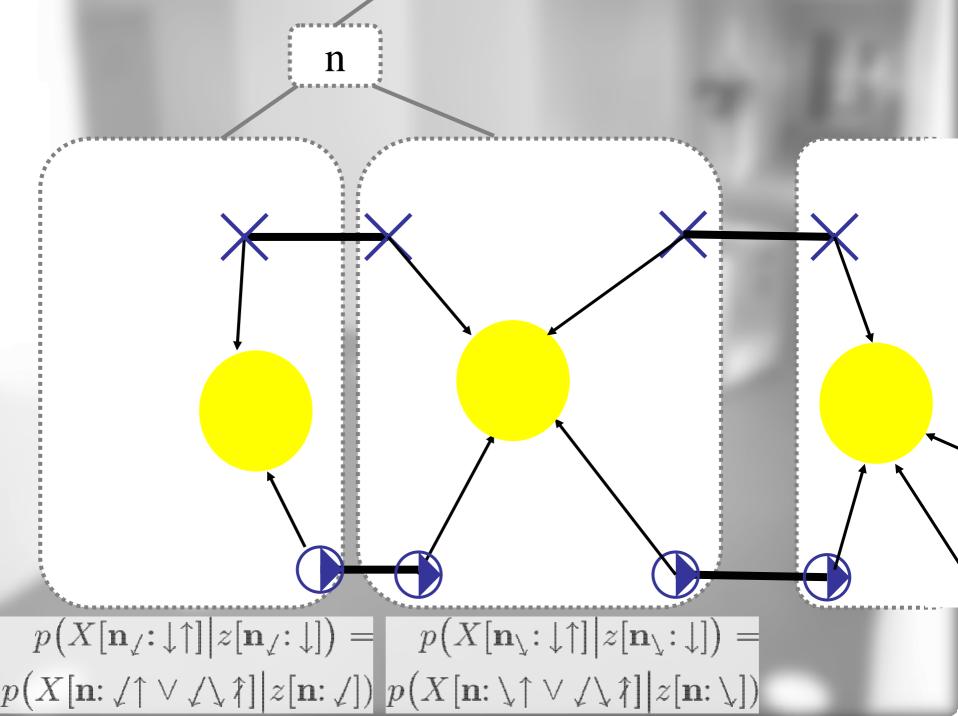


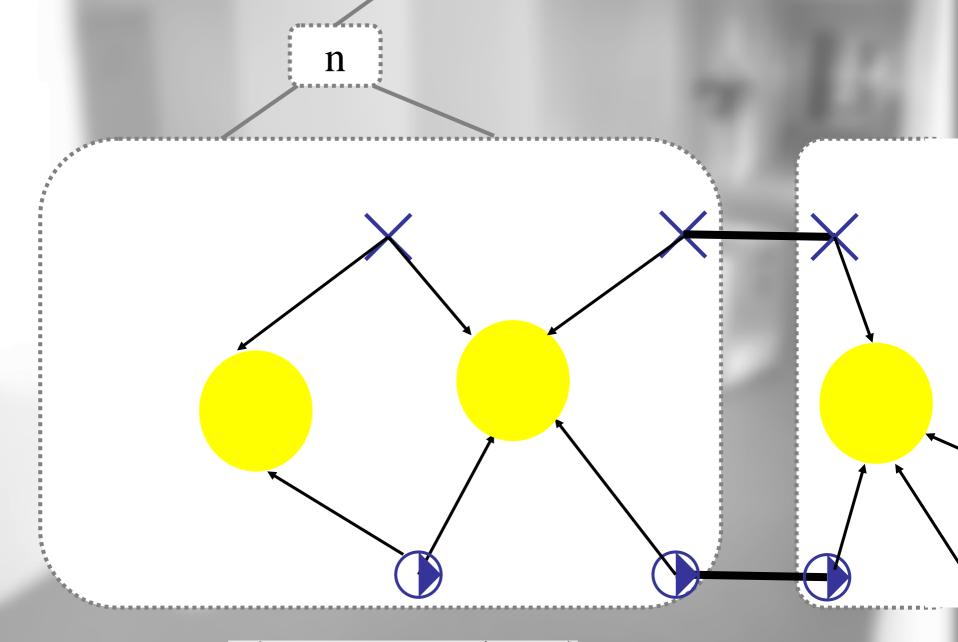


 $z[\mathbf{n}; \not \rfloor]$

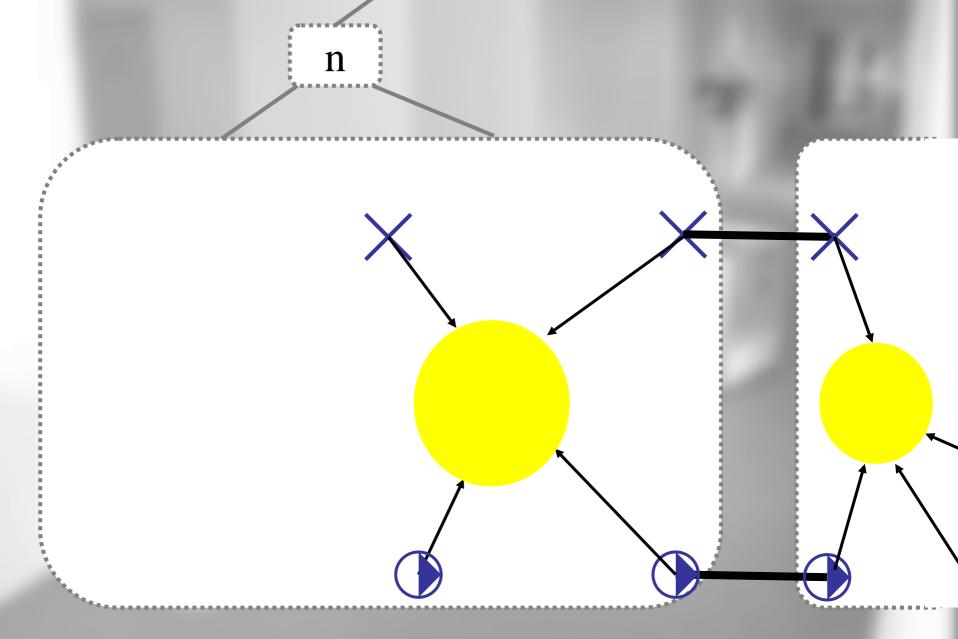
 $z[\mathbf{n}: \mathbf{n}]$

 $\begin{array}{c} X[\mathbf{n}:\uparrow] \\ z[\mathbf{n}:\uparrow] \end{array}$

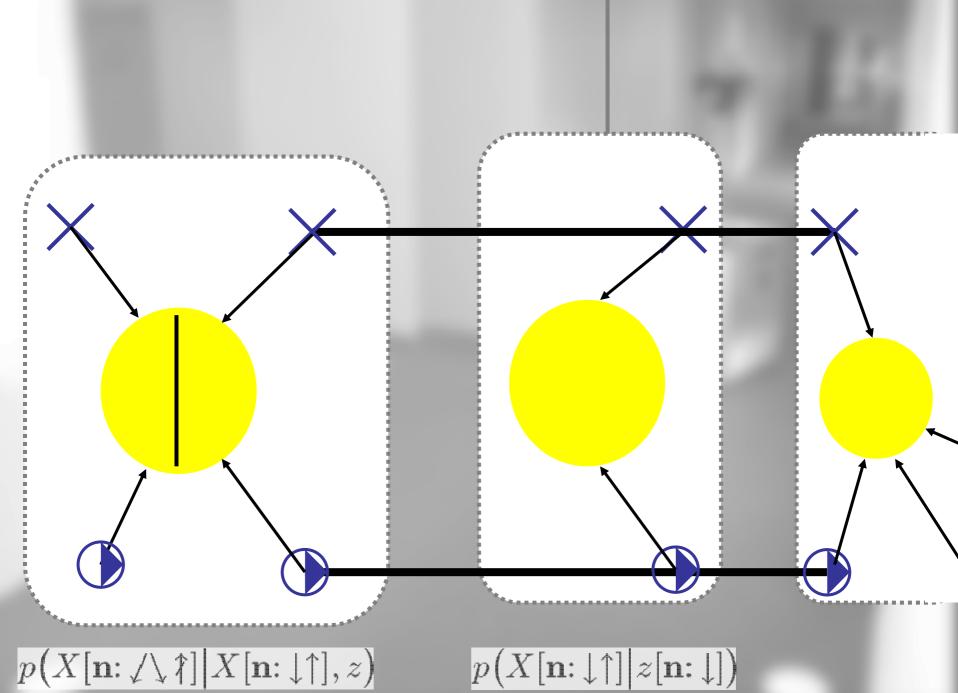


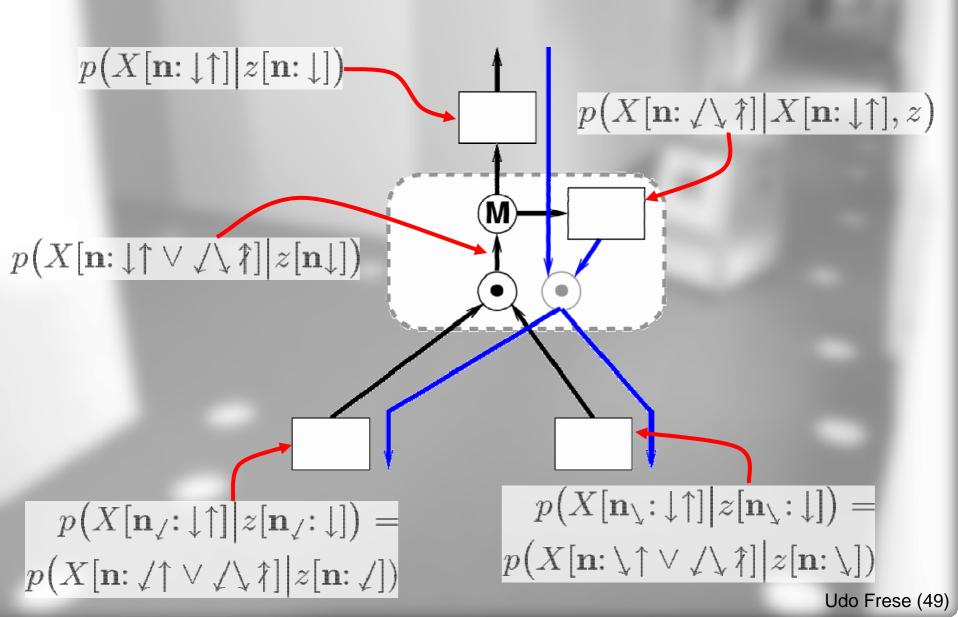


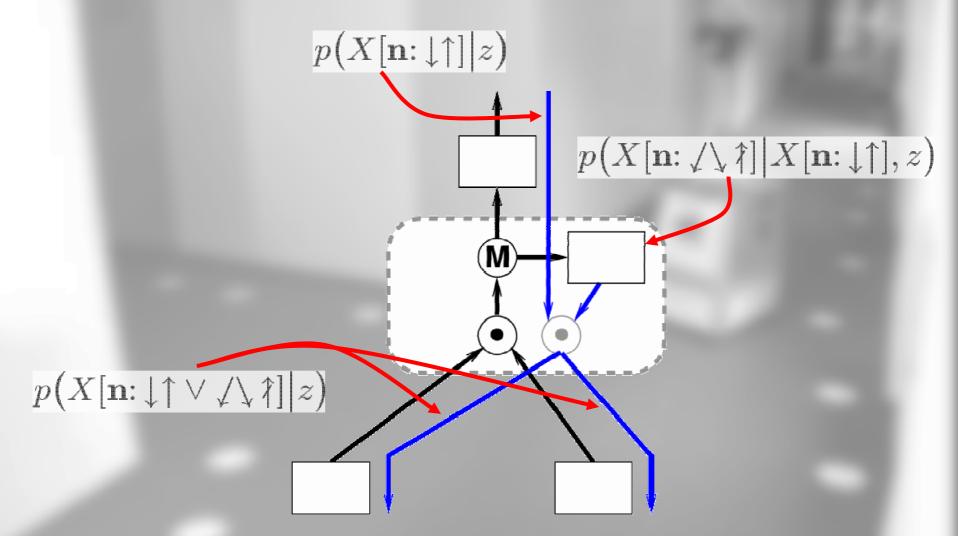
 $p(X[\mathbf{n}:\downarrow\uparrow\lor\swarrow\downarrow\uparrow]|z[\mathbf{n}\downarrow])$



 $p(X[\mathbf{n}:\downarrow\uparrow\lor\checkmark\downarrow\downarrow\uparrow]|z[\mathbf{n}\downarrow])$

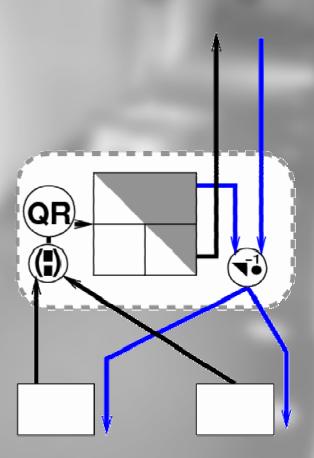






Actual Implementation

- Gaussians defined by square-root information matrix.
- Upwards (•) by stacking.
- (M) by QR-decomposition
- Downwards (•) by backsubstitution, i.e. solving a triangular equation system



$$\chi^{2}(x) = x^{T} A x + x^{T} b + \gamma$$

$$= \binom{x}{1}^{T} \underbrace{\binom{A \quad b/2}{b^{T}/2 \quad \gamma}}_{A'} \underbrace{\binom{x}{1}}_{x'}$$

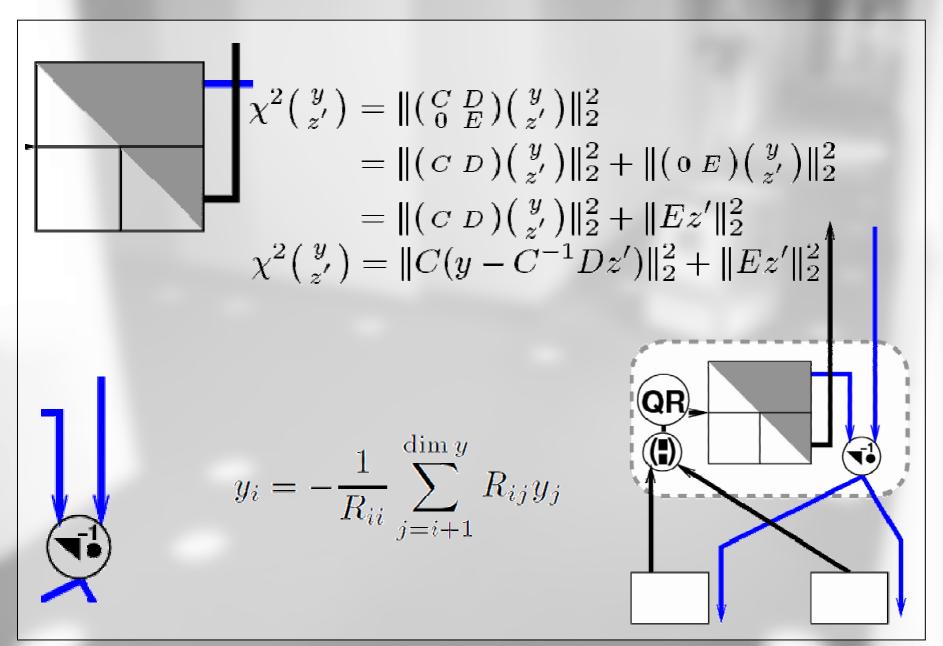
$$\chi^{2}(x) = \|Rx'\|_{2}^{2}, \quad A' = R^{T} R$$

$$\chi^{2}(x') = \chi_{1}^{2}(x') + \chi_{2}^{2}(x')$$

$$= \|R_{1}x'\|_{2}^{2} + \|R_{2}x'\|_{2}^{2}$$

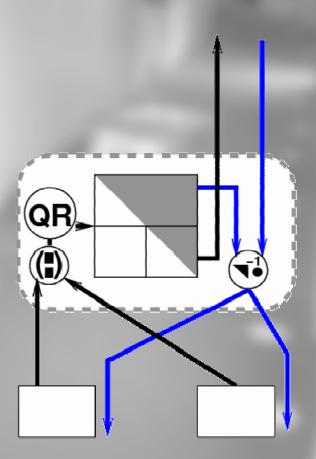
$$= \|\binom{R_{1}}{R_{2}}x'\|_{2}^{2}$$

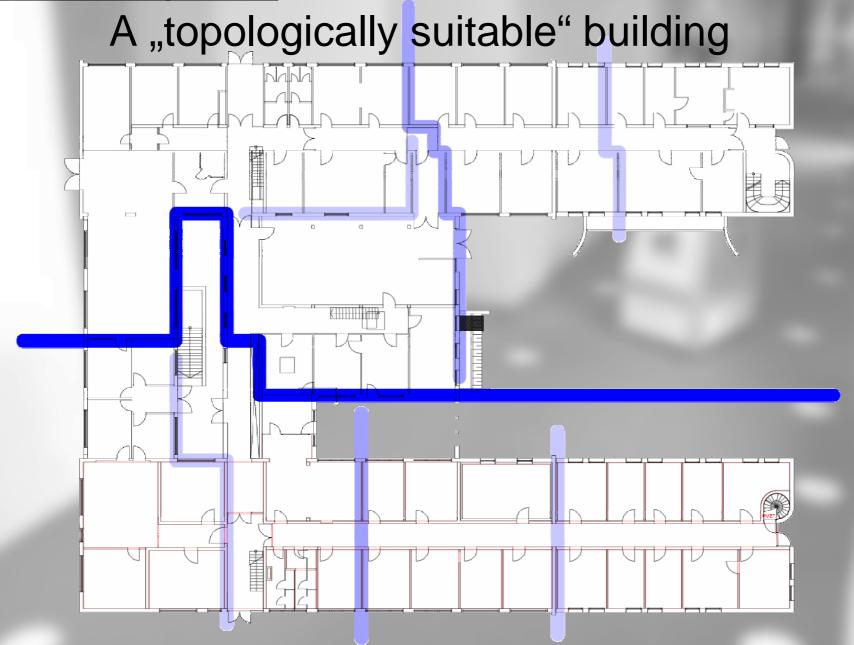
$$= \|Rx'\|_{2}^{2}, \quad \binom{R_{1}}{R_{2}} = QR$$

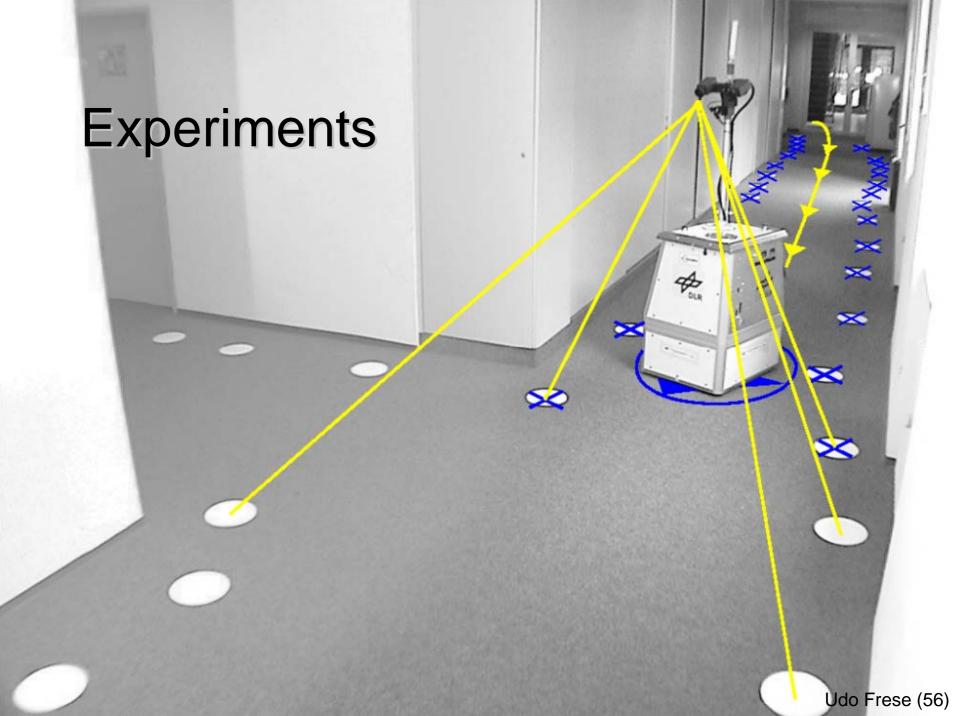


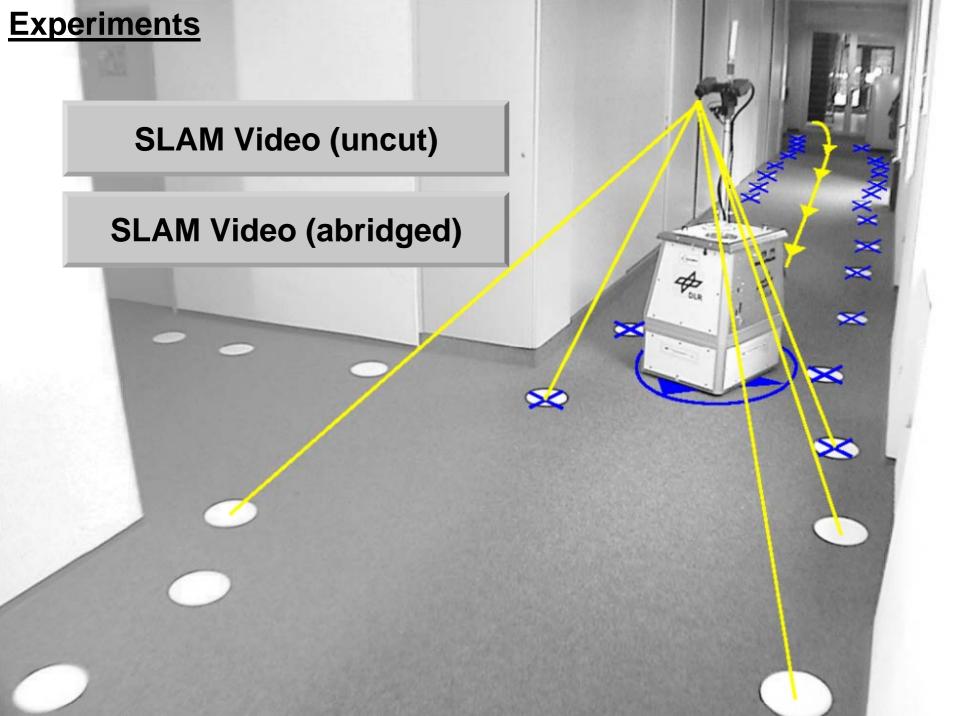
Why is it fast?

- Many small matrices instead of one large matrix.
- Update only O(log n) nodes upwards.
- Downwards (•) operation is extremely fast.
- Requires topologically suitable building.

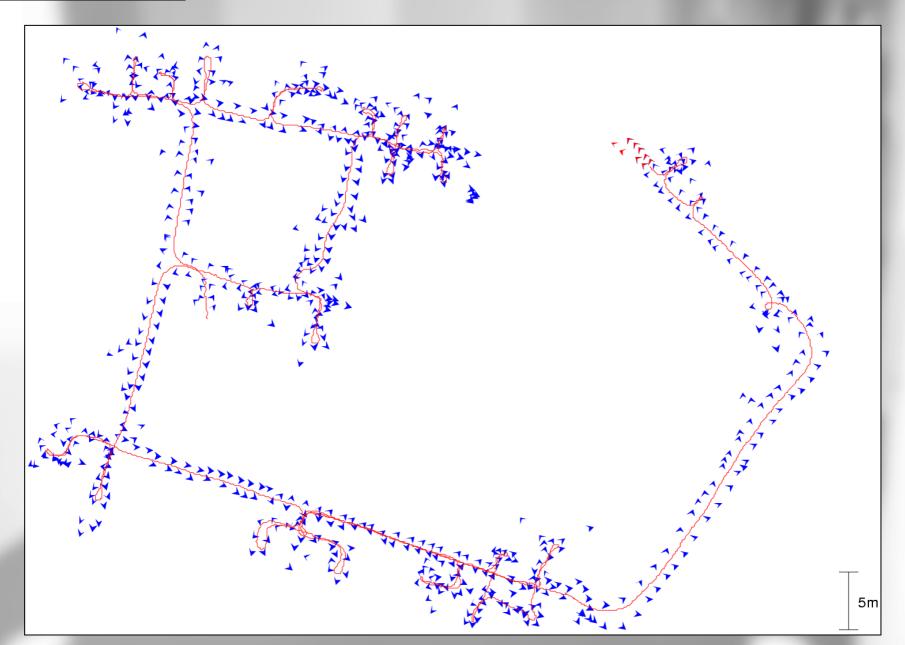




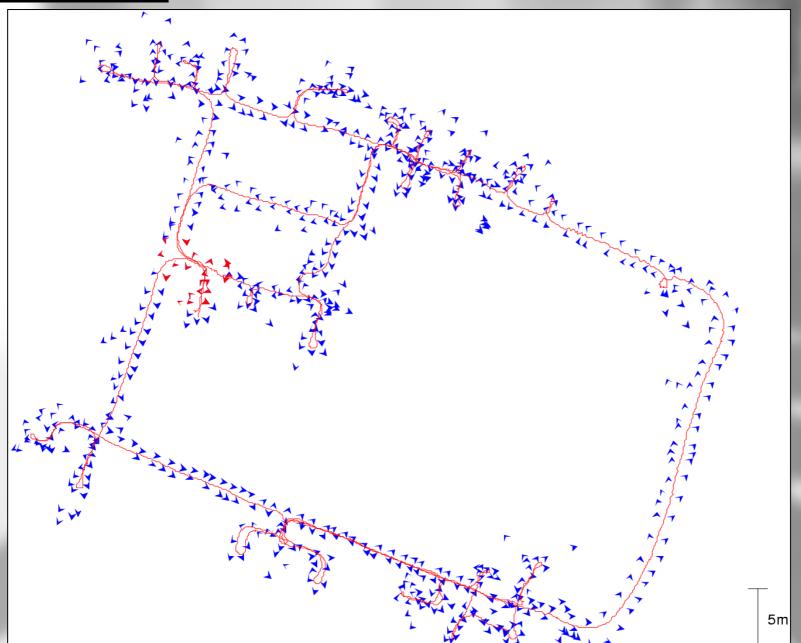




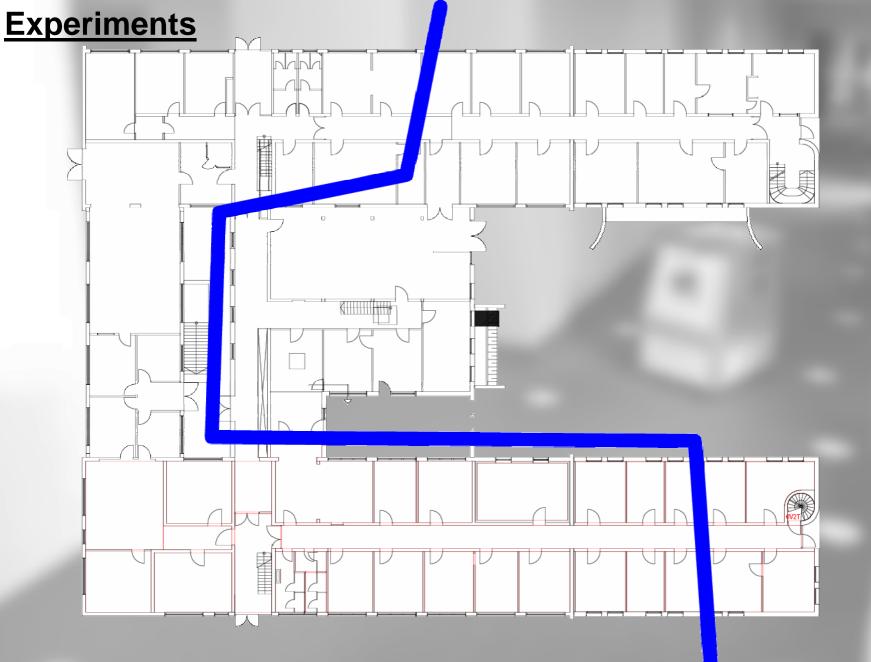
Experiments



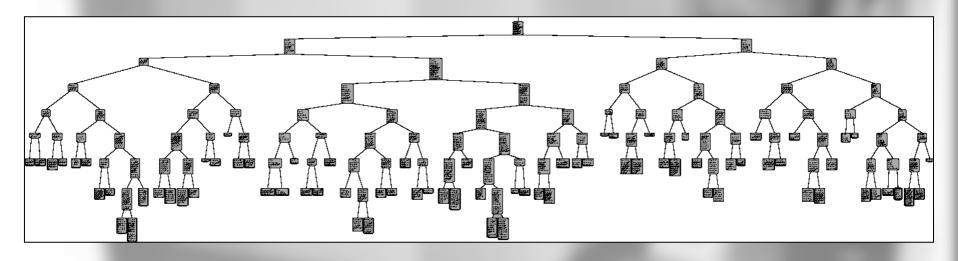
Experiments



Udo Frese (59)



Experiments



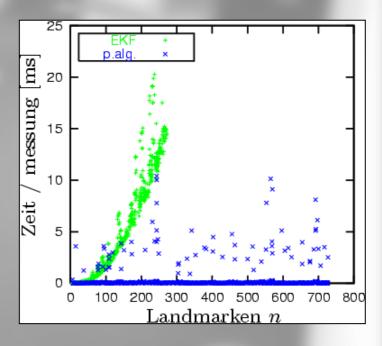
building
rooms
distance traveled
large loops
landmarks
measurements
robot poses
local landmarks

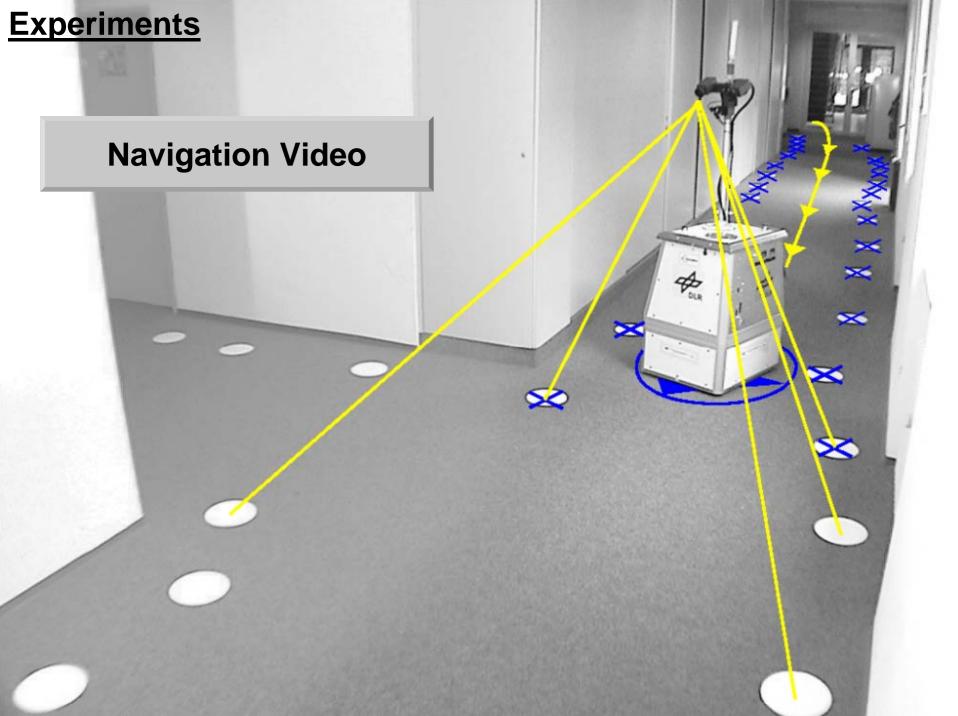
60m × 45m 29 505m 3 n = 725

m = 29142

p = 3297

k ≅ 16





Linearization, Integration, Marginalization and Sparsification Udo Frese (63)

Different Levels of Approximation

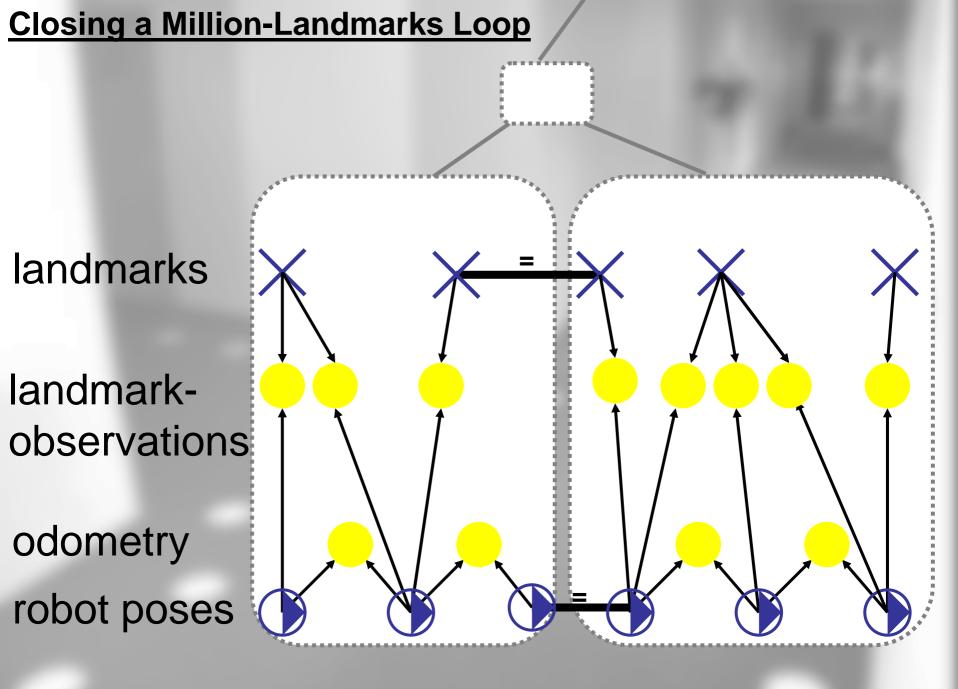
- keep all non-linear measurements
 - recompute Jacobians every time you need.
- linearize
 - integrate a whole region into one matrix
- marginalize
 - marginalize out old poses inside a region
- sparsify
 - duplicate some old poses and marginalize out
 - cutting odometry (like ESDS-Filter)

Different Levels of Approximation

- keep all non-linear measurements
 - recompute Jacobians every time you need.
- linearize
 - integrate a whole region into one matrix
- marginalize
 - marginalize out old pose:

Only approximations in treemap.

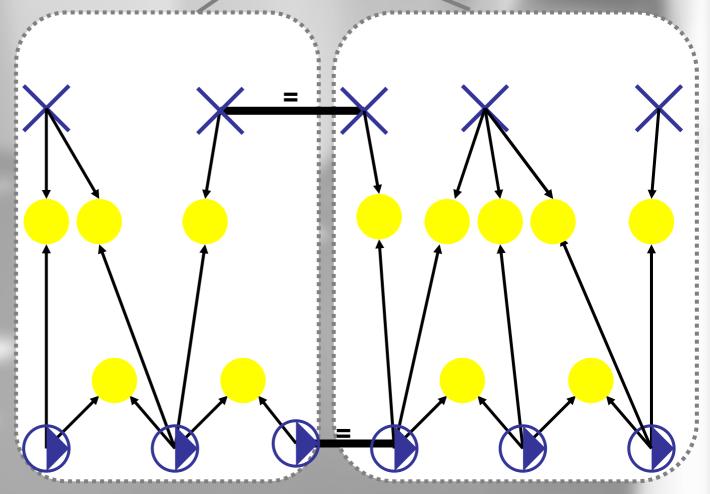
- sparsify
 - duplicate some old poses and marginalize out
 - cutting odometry (like ESDS-Filter)



Closing a Million-Landmarks Loop

A:

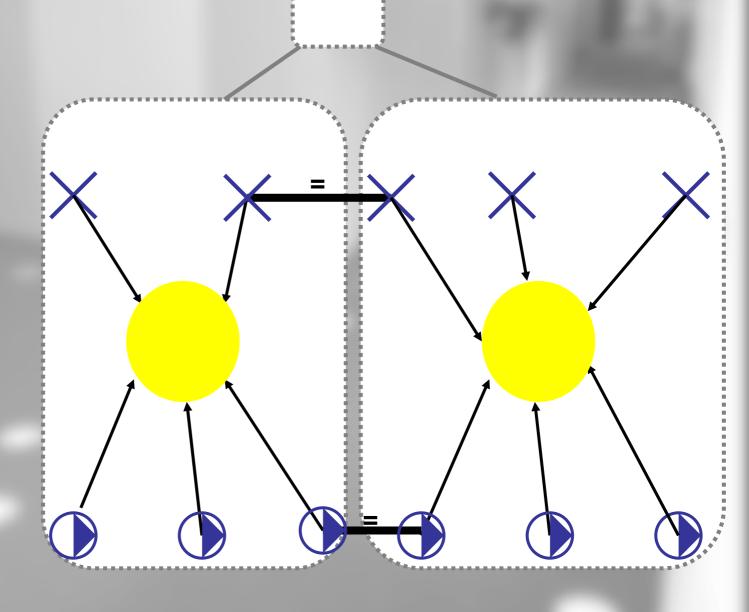
Nonlinear distributions

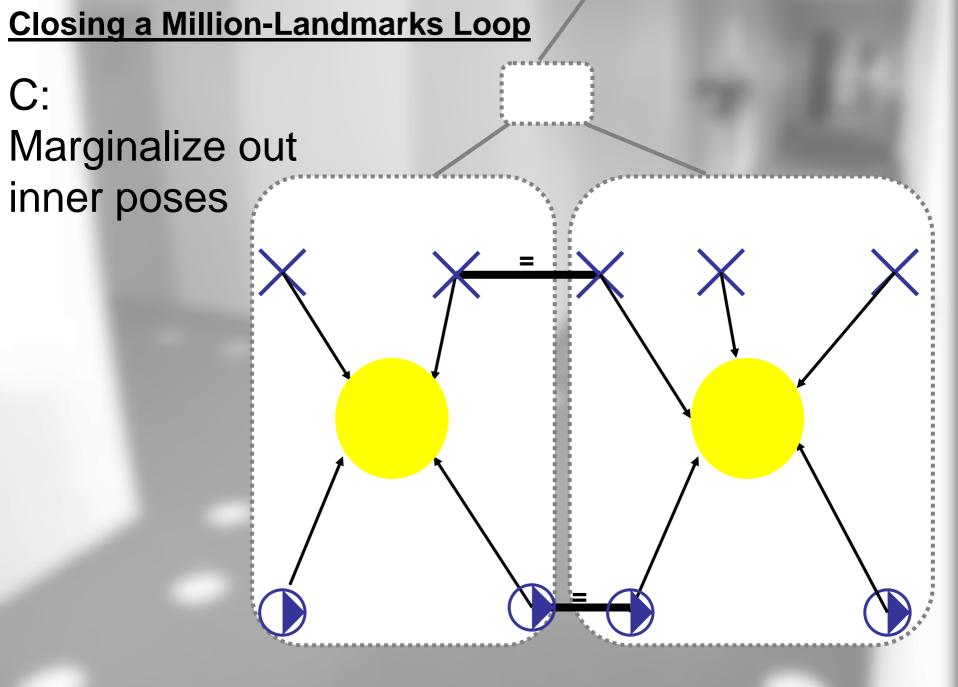


Closing a Million-Landmarks Loop

B:

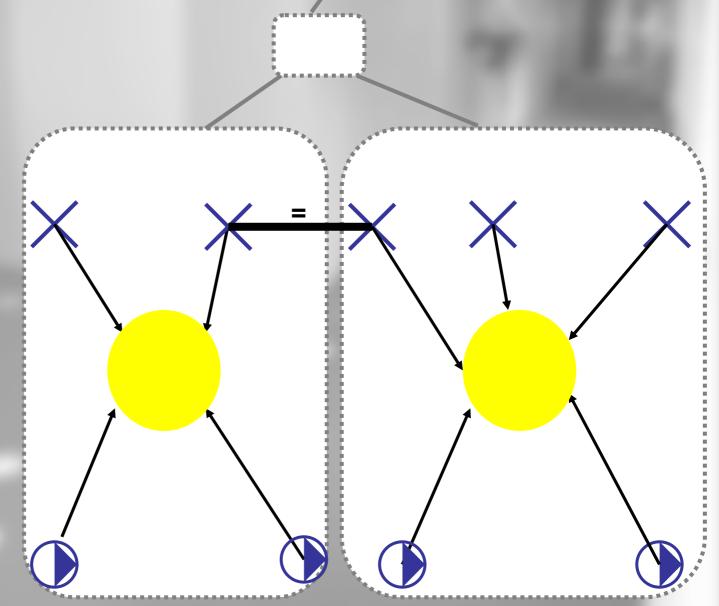
Linearize



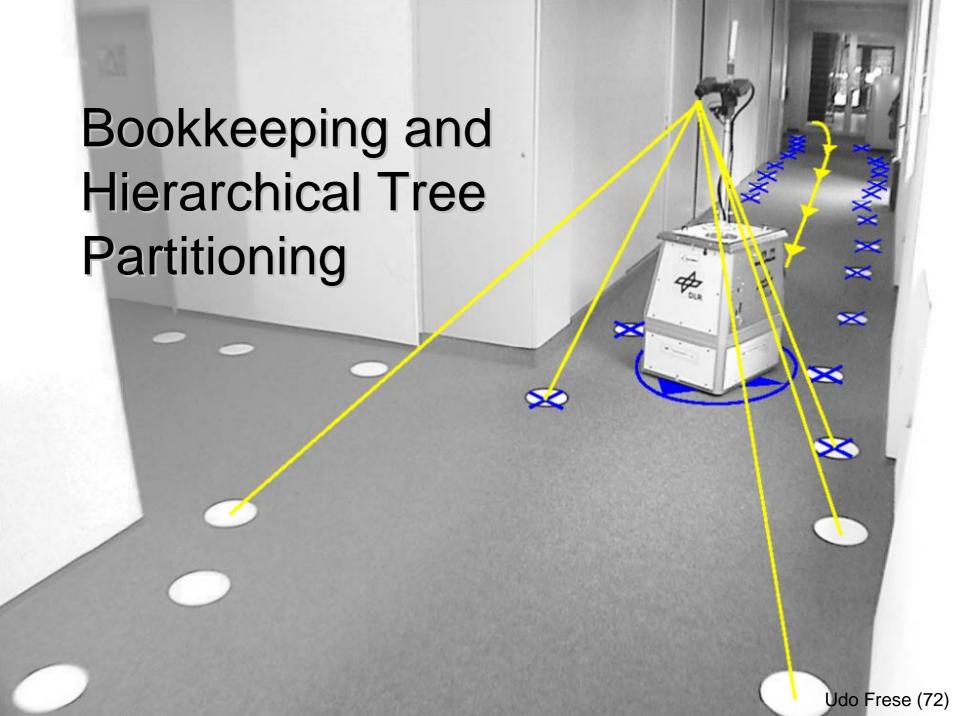


Closing a Million-Landmarks Loop

D:
Sparsify,
1: sacrifice
pose
equality
constraint

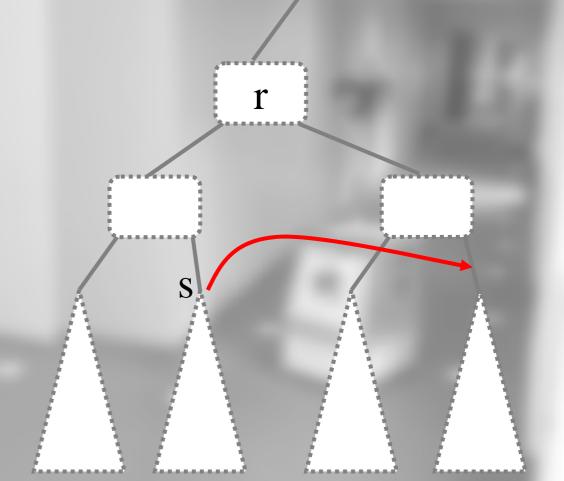


Closing a Million-Landmarks Loop D: Sparsify, 1: sacrifice pose equality constraint marginalize out all poses Udo Frese (71)

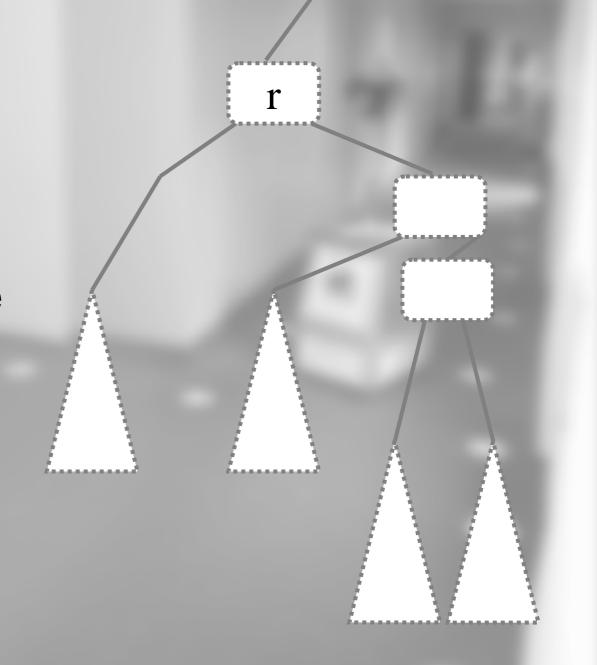


- Which nodes to recompute?
- Rearrange the tree to improve computation time.
- NP-hard
- Multilevel Khernighan and Lin heuristics established in the field of graph partitioning
- Do some Khernighan and Lin runs after each update
- Optimize worst-case update time

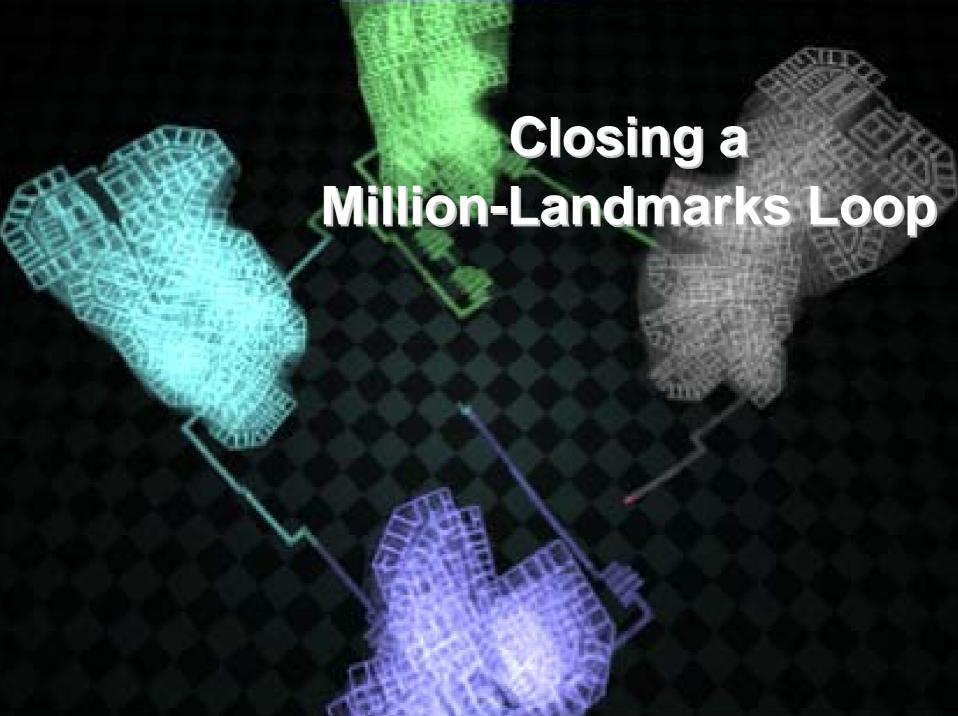
- Choose a node
 r from a queue
- Consider
 moving a single
 s subtree from
 one side of r to
 the other

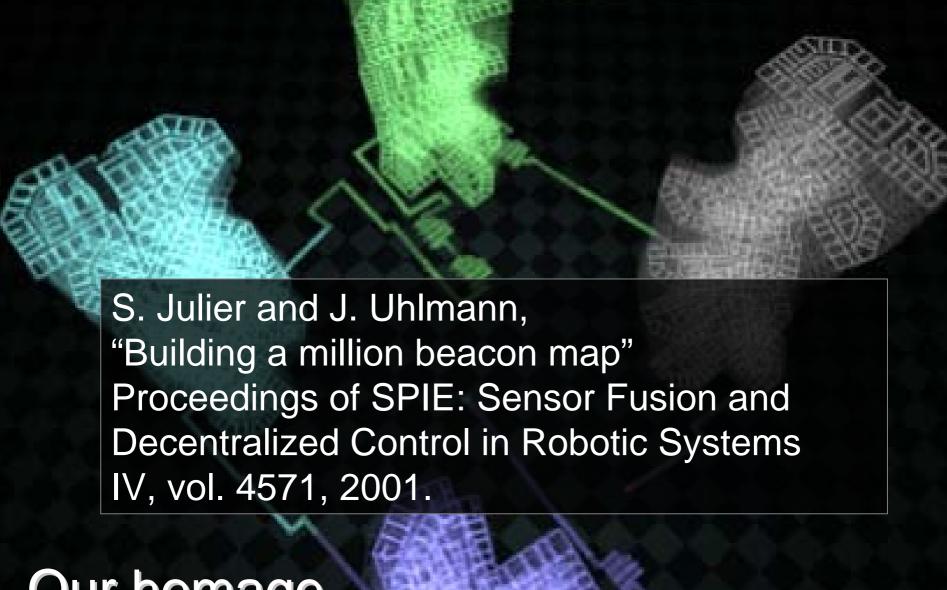


- Choose a node r from a queue
- Consider
 moving a single
 s subtree from
 one side of r to
 the other

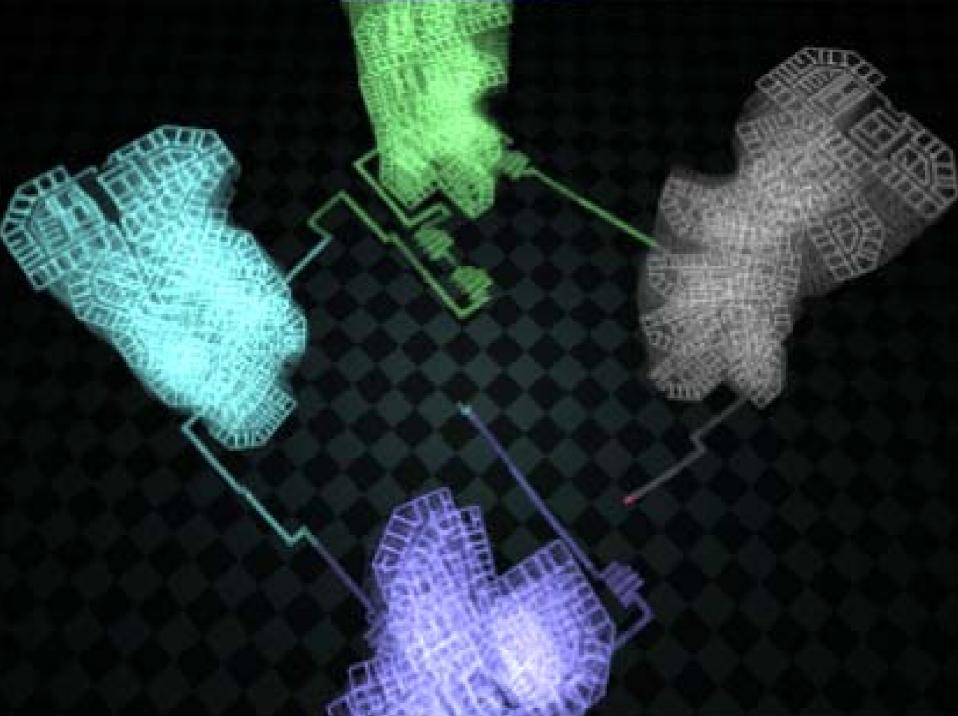


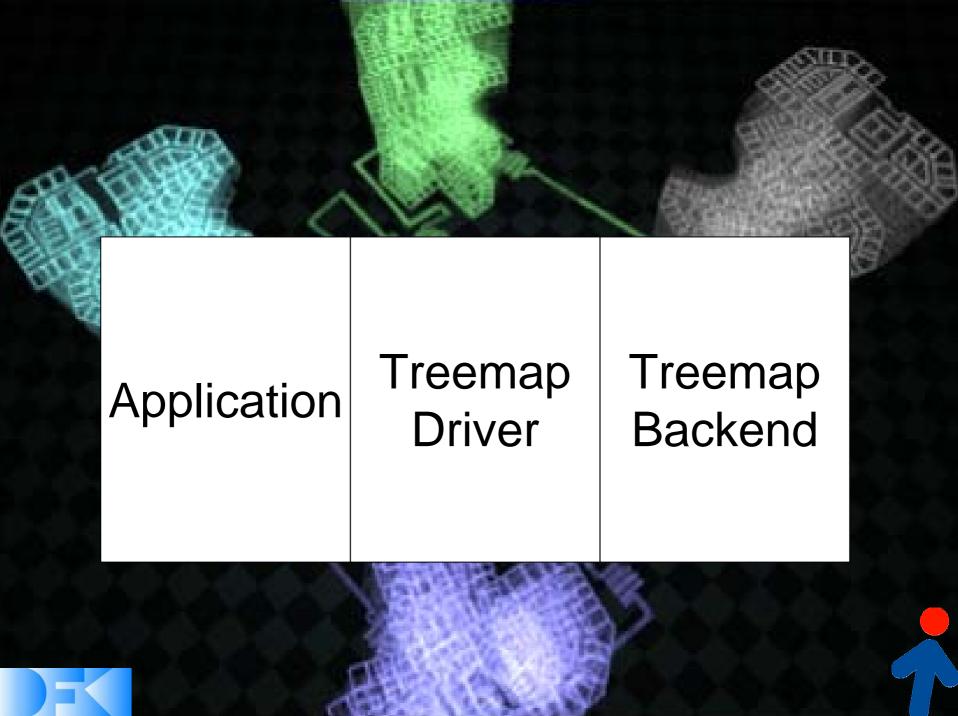
- Try to move every subtree that shares a feature (KL) on the left of s to move to the right of s and vice versa (O(k log² n))
- Choose the best
- Try it for some steps even if it makes things worst (KL)
- Consider integration, marginalization when moving
- Consider sparsification as a last resort

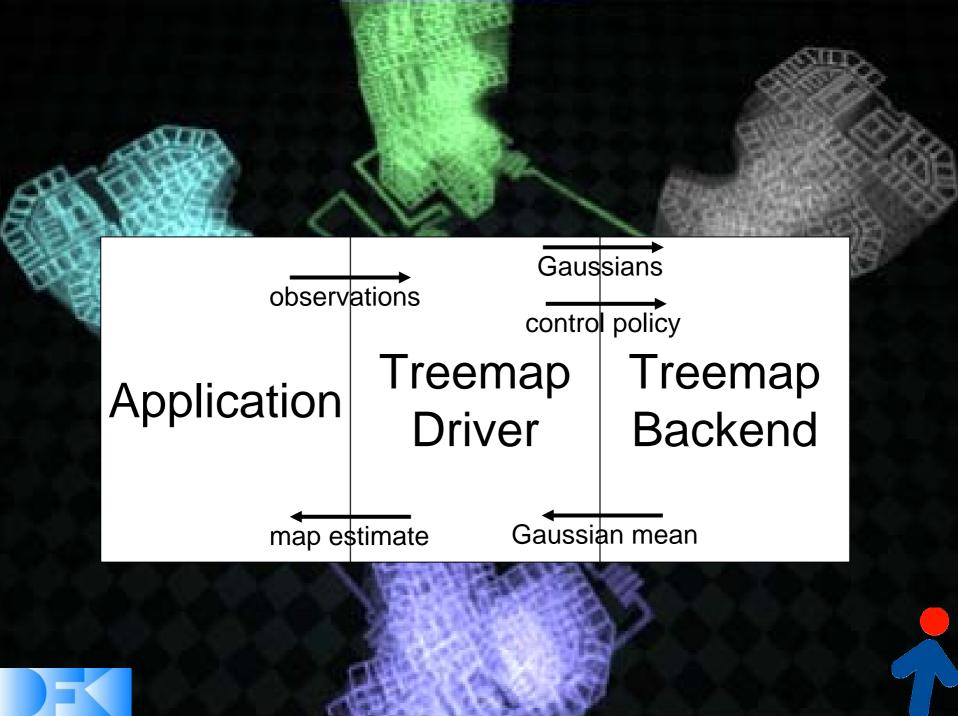


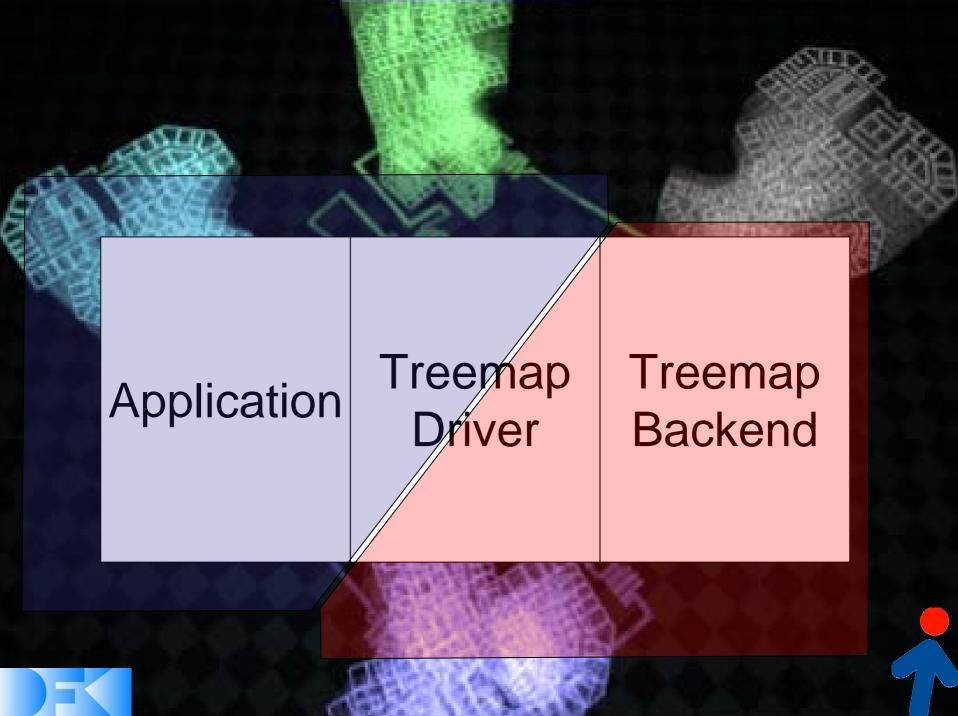


Our homage our response









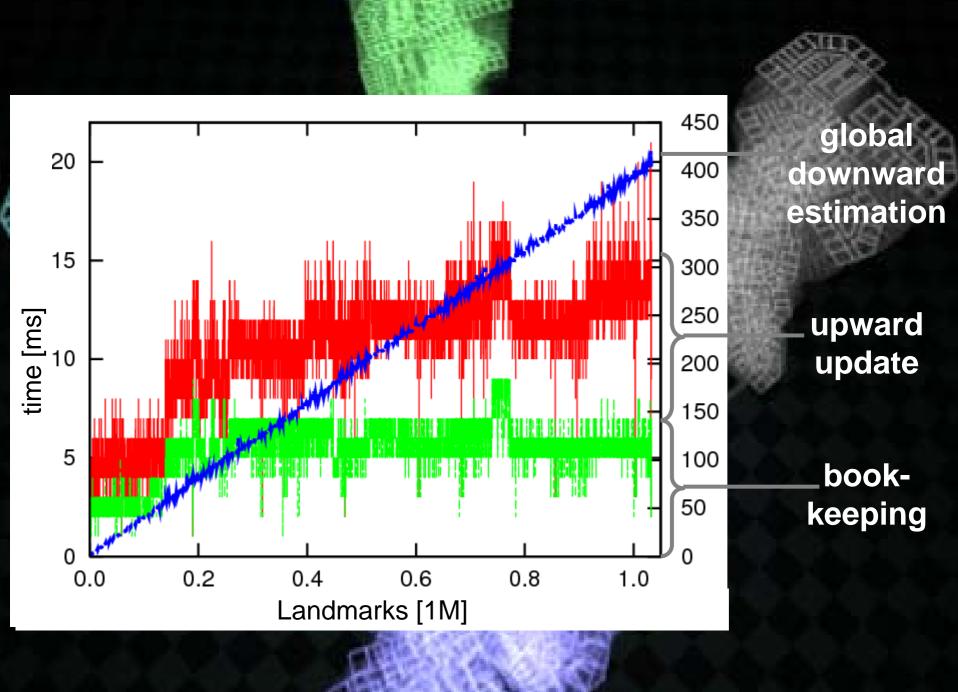
Video: Closing a Million-Landmarks Loop

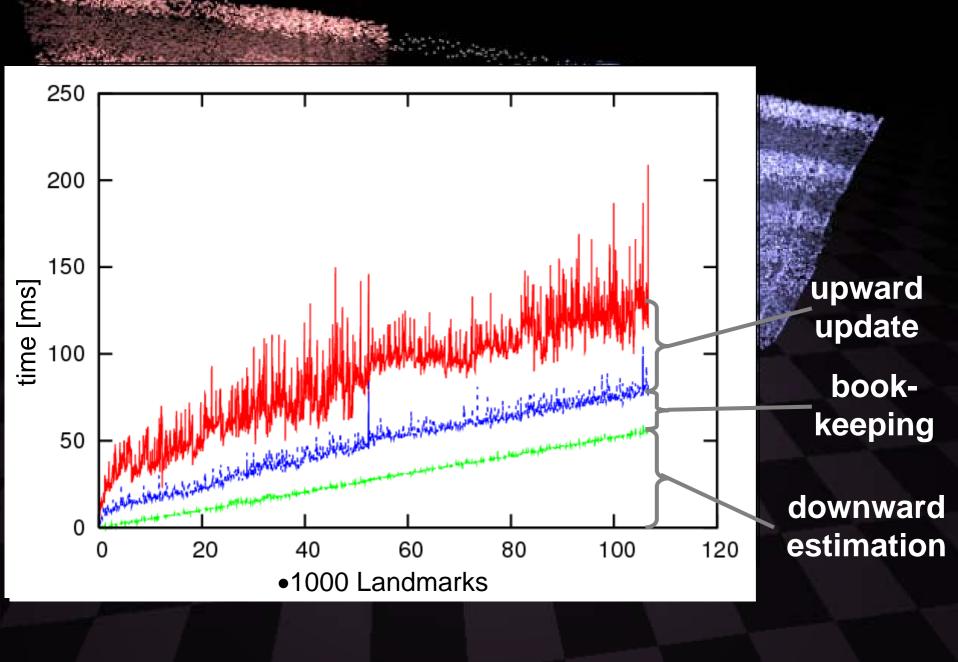
http://www.informatik.uni-bremen.de/~ufrese/slammillionlandmarks/fresemillionlandmarks.avi

Video: Using Treemap for a Generic Least Square Backend for 6-DOF SLAM

http://www.informatik.uni-bremen.de/~ufrese/slammillionlandmarks/avi

The Experiments





Treemap

- closes a loop over 1032271 features
 in 21ms (local) or 442ms (global)
- $O(k^3 \log n + k^2 \log^2 n + kn)$
- generic backend & specific driver
- open source soon
- driver has to implement
 - measurement function, initial estimate,
 Jacobian
 - approximation policy
 - -2-D, 3-DOF: 690 lines of C++ code
 - 3-D, 6-DOF: 410 lines of C++ code