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ABSTRACT
This paper presents a novel approach to shared control for an
assistive robot by adaptively mapping the degrees of freedom (DoFs)
for the user to control with a low-dimensional input device. For
this, a convolutional neural network interprets camera data of the
current situation and outputs a probabilistic description of possible
robot motion the user might command.

Applying a novel representation of control modes, the network’s
output is used to generate individual degrees of freedom of robot
motion to be controlled by single DoF of the user’s input device.
These DoFs are not necessarily equal to the cardinal DoFs of the ro-
bot but are instead superimpositions of those, thus allowingmotions
like diagonal directions or orbiting around a point. This enables
the user to perform robot motions previously impossible with such
a low-dimensional input device.

The shared control is implemented for a proof-of-concept 2D
simulation and evaluated with an initial user study by comparing
it to a standard control approach. The results show a functional
control which is both subjectively and objectively significantly
faster, but subjectively more complex.

CCS CONCEPTS
• Computer systems organization→ Robotic control; Neural
networks; • Human-centered computing→ Interaction devices;
Interaction techniques; • Social and professional topics→ People
with disabilities; Assistive technologies.
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Assistive Robotics, Convolutional Neural Network (CNN), Deep
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1 INTRODUCTION
The general understanding of autonomy and technical systems is
something akin to using a computer program to independently
control the actuators of a machine or robot to solve a given task.
While this might be appropriate for the default industrial scenario,
it stands in vast contrast to applications of assistive robots, such
as the Kinova Jaco [17, 20], which aim to (re-)enable a person to
perform activities of daily living themselves, instead of having them
performed by another person or program. However, the manual
control of such devices can be very exhausting and taxing for the
user due to the complexity of the system and the user’s impairments,
thus generating a necessity for easier and more accessible methods
of control [5].

Some previous work has been done with the aim to automate or
ease specific activities of daily living [6, 8, 24]. However, a study in-
vestigating the performance and satisfaction of spinal cord injured
users of a wheelchair-mounted robotic arm with regards to manual
and autonomous control modes showed a higher satisfaction for
manual mode users, even though the autonomous mode required
less effort [16]. The resulting call for more flexible interfaces co-
incides with findings by [21], who show the users’ requirement
to personalise their interaction such that personal standards and
social norms are met. A situation with robotic assistance should
be as similar as possible to a respective situation without impair-
ments. Therefore, one should be very careful when applying fully
automated solutions to such assistive scenarios.

The alternative to a system being controlled by a computer is
usually to have it directly or indirectly controlled by a human
using a form of Human Computer Interface (HCI) with a keyboard,
joystick or similar input device. However, very few devices have
sufficient Degrees of Freedom (DoFs) to directly control a robot like
the Jaco and those that fulfil this specification require a significant
dexterity from the user. For most users of assistive robots, this poses
an impossible challenge due to their sicknesses or disabilities. In
order to use the remaining mobilities of a user, specific HCIs have
been developed [13, 19, 23, 23] which, due to the specifications and
limitations, mostly cannot compare to the default control interfaces
when it comes to their output DoFs. For example, the Jaco requires
at least seven DoFs (three for positioning, three for rotation, and
one for grasping), whereas input devices such as Eye-Trackers [23],
Chin- or Tongue-Mouses [10] only provide two. Even the robot’s
joystick only provides a maximum of three DoF to be controlled
at once, with buttons allowing to switch between different control
modes (cf. [1, 13, 18]). An extensive literature review regarding
functionality and performance of assistive robots concluded in a
call to “develop a two-way user interface between higher dexterity
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[robots] that could be operated by fewer [DoFs] from end-users”,
whilst keeping the users in control, as desired [3].

Various forms of shared user control exist, where the systems
utilise a combination of input from the user and the output of a
computer program. For example, [25] initially lets the user control
only the translational DoFs of a robot arm, whilst automatically
handling rotation. Close to a defined target, the system starts blend-
ing the user input with an automated grasp approach based on
the user-defined position, until finally applying a fully automated
grasp action. Based on a literature study on multiple systems using
shared control, [2] identifies the detection of user intent as one of
the largest problems within this area and calls out for moreMachine
Learning (ML) in shared control approaches. Following this call,
[7] presents a shared control approach for an electric wheelchair
passing small doorways, where the user can activate a blend of
their commands with a pre-trained ML-generated control.

CNN

Input Device

User Interface Software

Robot

Camera

×

𝐷
PCA

𝐷
𝑢 𝑣

𝑥 𝑦

Mode 
switching

Figure 1: Control pipeline for a user-controlled assistive ro-
bot

This paper presents a proof of concept for a novel variation of
shared control, where a Deep Learning (DL) based setup evalu-
ates the current situation and adaptively proposes a set of high-
dimensional DoFs of robot motion to be controlled by the user’s
low-DoF input device. Figure 1 shows the corresponding control
pipeline: Usually, the user-generated input 𝑢 is directly mapped to
the robot-controlling input 𝑣 (i.e. 𝐷 is static), which enables the
user to control a single cardinal DoF of the robot (i.e. x-axis, y-axis,
z-axis, roll, pitch, yaw) with each DoF of their input device. In cases
where the input device has fewer DoFs than the robot control, the
user generally has the option to switch between pre-defined modes,
thus changing the mapping from input device DoF to robot control
DoF (i.e. exchange 𝐷). We break this static connection by using a
Convolutional Neural Network (CNN) to describe the probabilistic
distribution 𝑦 of intended robot motion 𝑣 given the camera data 𝑥
(i.e. the current situation). A Principal Component Analysis (PCA)
is applied to calculate a matrix 𝐷 that adaptively maps the user-
generated input to the robot motion, thus portraying modes of
control.

The user stays in control; in particular a zero user command 𝑢
always results in no motion. This eliminates much of the safety
concerns of machine learning.

The presented approach enables the DL system not only to sug-
gest the set of cardinal DoFs but also superimpositions of those,
thus allowing motions previously impossible with a limited set of
input DoFs, such as diagonal paths, orbiting around a point in space
or approaching a goal at an angle (cf. Fig. 2). For this paper, the
proof-of-concept scenario is limited to a simulated 2D environment
with a robot defined by four cardinal DoFs (two positional, one

rotational, and grasping). Figure 2 shows the robot with cardinal
and adaptive DoFs, both represented by arrows.1

Figure 2: The simulated robot with two out of the four car-
dinal DoFs (left) and two adaptive DoFs (right)

The paper is organised as follows: After a review of previous
research to handling the discrepancy of input to output DoFs in
Section 2, Section 3 describes our approach in detail, with the sim-
ulation environment being described in Section 4. An initial user
study is presented in Section 5, with Section 6 discussing the result-
ing implications and directions for future work.

This paper provides a proof of concept for adaptive DoF mapping
in a 2D simulation environment.2 Its contributions are

• the idea of a novel DL approach to shared control for an
assistive robot arm,

• a general representation for DoF-based user control, option-
ally with modes,

• a 2D simulation environment for proof-of-concept of such
methods, and

• an initial user study regarding the usability of such an ap-
proach to shared control.

2 RELATEDWORK
The default method to controlling a high-DoF device using a low-
DoF input device (e.g. controlling an assistive robot arm using
a joystick) is mode switching. A single DoF of the input device
controls a single cardinal DoF of the robot. Switching the selected
mode changes this mapping, such that the same user input now
controls a different cardinal DoF of the robot. To the best knowledge
of the authors, no shared user control exists that allows the user
to control a device along arbitrary online-defined DoFs. However,
there are different approaches to mapping user input from a low-
DoF input device to a high-DoF system, as well as ML setups that
learn autonomous behaviours in a high dimensional environment.

For this paper we use cardinal DoFs to describe the set of DoFs
defined by, and axis-aligned to, the Cartesian coordinate system of
the robot, plus an additional DoF to handle closing the gripper. For
a robot with at least six DoFs in 3D space, like the Kinova Jaco, this
would be [X-Axis, Y-Axis, Z-Axis, Roll, Pitch, Yaw, Gripper].

Based on their method of user inclusion, it is possible to differ-
entiate control approaches into two categories [11]: In one the user
indicates targets and the autonomous system executes the action
mostly without user interaction (cf. [26]). The other integrates the
user as a direct source of movement control. If a user functions
as a direct source of control input, they often have an HCI with
low-DoF input device and different control modes. In experiments
1Video available at: http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
GoldauPetra21.m4v
2Resources available at: https://github.com/f371xx/adaptive_dof_mapping_2d
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by [11] using an HCI with a standard button-based mode switching
setup, more than one-sixth of the total execution time was spent
changing the currently selected mode. Within a deterministic sim-
ulation environment and a predefined goal, they showed that an
automatic mode switching approach already leads to an increase in
user satisfaction.

Many manipulation actions require precise positioning. There-
fore, when controlling a device towards a goal (e.g. grasping a cup),
slight corrections in direction or orientation need to be made. De-
pending on the environment and perception of the user, this can
be a difficult task. For the task of grasping a cup, this would be the
precise positioning to not accidentally approach the cup off-center
or tip it over with the fingers. Also, if applying a mode switching
approach, these small adjustments generally require multiple mode
switches, all with very small actual movements of the device within
a single mode. To avoid this, research has shown remarkable suc-
cess with control blending [5], which arbitrates the user’s control
input with computer generated control, thus allowing the com-
puter to assist the user by avoiding obstacles or supporting with
the final approach [4]. However a study has shown that the level of
assistance should be customisable by the user to allow for perfect
adjustment to the user’s needs and abilities, as well as increase user
satisfaction [14].

With more complex scenarios and non-deterministic users, mul-
tiple goal states can be possible in a given situation (e.g. multiple
cups available from which the user can choose which to grasp).
For these scenarios, [9] presents a different approach to assistive
mode switching: The system isolates possible user intentions and
chooses the control mode whose actions will maximise the arbi-
tration of possible user goals in order to assist the ML System in
identifying the underlying intention. Once a threshold certainty
about the user’s intent is surpassed, control blending is applied to
assist the user. While this does show promising results, the user’s
control options are still limited to the cardinal DoFs.

Controlling more complex movements with a low-DoF inter-
face has been realised by predefining sequences within a complex
task and using autonomous planners to execute the task. Instead
of directly controlling each cardinal DoF of the manipulator, the
user utilises their low-DoF interface to define the velocity of the
automation and switch between the automated trajectories [15].

A more general option of controlling a robotic device with an
HCI is introduced by [22], who propose a neural network to map the
sensory readings of an input device to the control signals for a robot.
However, within their work they aim to learn an intuitive constant
mapping per user and task, therefore restricting the mapping to be
static and not adaptive to the situation.

3 MAPPING DEGREES OF FREEDOM
We want to not only do intelligent mode switching but instead
loose the system’s predefined definitions of DoFs and allow the
user to control the robot along DoFs that are regularly redefined
based on the current environment and situation.

3.1 Definitions
A DoF 𝑑 is therefore not limited to the predefined set of cardi-
nal DoFs but instead a vector 𝑑 ∈ R𝑛, ∥𝑑 ∥2 = 1 in the cardinal

coordinate space. This allows for DoFs that are not necessarily axis-
aligned to the cardinal coordinate frame, such as moving diagonally
or orbiting around a point. A 1-dimensional user input device (e.g.
a 1D joystick) could therefore control a high-DoF robot along such
an arbitrary 𝑛-dimensional DoF.

In the general case, given 𝑢 ∈ R𝑚 as the output of an𝑚-dimen-
sional user input device and 𝑣 ∈ R𝑛 as the 𝑛-dimensional robot
motion, a matrix 𝐷 ∈ R𝑛𝑥𝑚, 𝐷 = (𝑑0, 𝑑1, . . . , 𝑑𝑚) can be defined
such that

𝑣 = 𝐷 · 𝑢, (1)
where 𝐷 linearly maps an individual robot motion DoF 𝑑𝑖 to each
DoF of the user input device (cf. Fig. 1).

As most input devices supply fewer DoFs than the system which
they control (𝑚 < 𝑛), a form of mode switching is generally applied.
In our notation, this would be equal to exchanging the DoF-mapping
matrix 𝐷 . As an example, Figure 3 shows the static DoF-mapping
matrices of the three default control modes of the Kinova Jaco
joystick, omitting Drinking mode and the two-finger grasp option.

X-Axis
Y-Axis
Z-Axis
Roll
Pitch
Yaw

Gripper

Translational mode︷       ︸︸       ︷©«

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

ª®®®®®®®®®¬

Wrist mode︷       ︸︸       ︷©«

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

ª®®®®®®®®®¬

Finger mode︷       ︸︸       ︷©«

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0

ª®®®®®®®®®¬
Figure 3: The DoF mapping of the default control modes on
the Kinova Jaco joystick

Assuming the use of an input device with sufficient DoFs (𝑚 = 𝑛)
and corresponding DoF-map �̂� ∈ R𝑛×𝑛, �̂� = (𝑑0, 𝑑1, . . . , 𝑑𝑛) with
linearly independent DoFs 𝑑𝑖 and therefore rank(�̂�) = 𝑛, a user
would have complete control of the system without the necessity of
switching modes. We name such a mapping a complete DoF-set. If
each DoF of an input device directly controls a single cardinal robot
DoF using a complete DoF-set, �̂� would be equal to the identity
matrix. For an input device with𝑚 < 𝑛, the mapping for different
modes can be generated based on a complete DoF-set by stacking𝑚
columns of �̂� , optionally using zero-padding if𝑚 ∤ 𝑛. This method
ensures that the set of modes collectively gives the user the same
complete control as an input device with 𝑚 = 𝑛 if each column
(i.e. DoF) of �̂� is represented in at least one mode. For the Kinova
Jaco joystick, the underlying identity matrix-shaped �̂� can easily
be seen in Figure 3.

3.2 Approach
Our approach is to adaptively calculate the mapping 𝐷 for a low-
DoF input device, such that the most likely direction of control
is represented by the first DoF in 𝐷 . We require that the DoFs
are perpendicular to one another, such that each of the remaining
columns represents the next most likely direction for arbitration.
Assuming an optimal mapping, the first DoF should therefore enable
the user to manoeuvre the manipulator to their desired position,
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with the second DoF allowing them to adjust according to personal
preferences. Further options of arbitration exist with the remaining
DoFs.

For clarification, please see the following example: A user wants
to pour water from an open bottle into a cup. Whilst approach-
ing the bottle, the first DoF initially offers a 3D path command
towards the cup, with the second DoF offering an adjustment in the
z-direction, thus allowing to grasp the bottle higher or lower. Once
in grasping range, these DoFs automatically switch to grasping and
rotation around the bottle.

We generate the mapping 𝐷 from a complete DoF-set �̂� . If the
user wants to perform an action not represented by the current
mapping, simple mode switching is applied as a fallback option to
give the user the remaining modes for complete control. This can,
for example, be automated by switching after a defined idle time,
thus allowing to control a complex high-DoF system with a very
low-DoF input device. Regarding the update rate of the mapping,
internal tests showed the best results when keeping 𝐷 static while
the user is performing any action and, therefore, only updating 𝐷
when the user gives no input (i.e. zero-input).

3.3 Learning Degrees of Freedom
In order to learn a mapping of DoFs given a certain situation, train-
ing data of robot motion is required. As we aim to extend the
possibilities of control that are possible with a specific low-DoF
input device, it is necessary to take advantage of more complex
methods of control (i.e. high-DoF input devices) for the demon-
stration sequences. Therefore the control pipeline of the deployed
implementation in Figure 1 differs from the training setup.

During data generation, using an𝑚-dimensional input device
to command an 𝑛-dimensional robot with𝑚 ≥ 𝑛 allows maximum
flexibility and avoids control-based restrictions of robot motions.
Applying such a setup, the user interface software requires no mode
switching and a simple identity matrix-shaped DoF-mapping 𝐷 .
For data generation and training, the control pipeline is therefore
a direct link between input commands 𝑢 and robot motions 𝑣 . For
our scenario, a joystick-equipped gamepad with continuous user
input is used.

This setup allows to intentionally use able-bodied subjects with a
very different method of control to generate training data, making it
much easier to collect the dataset. Based on this, the CNN can learn
a distribution 𝑦 of arbitrarily complex robot motions 𝑣 for a specific
situation as described by the camera image 𝑥 . This means for a
situation as perceived by the camera image 𝑥 , the CNN predicts
which robot motions 𝑣 are likely and unlikely to follow, expressed
as a distribution of robot motions 𝑦.

3.4 Probabilistic view
We view the training data as samples from everyday activities
performed by a robot arm. For the probabilistic view discussed here,
an outcome of the considered probability space models a snapshot
of a random moment of a random everyday activity.

Let 𝑋 , 𝑌 and 𝑉 be random variables, where 𝑋 represents the
image provided by the camera and 𝑉 the robot motion. We are
interested in the training distribution of 𝑉 given 𝑋 (𝑉 |𝑋 = 𝑥),
i.e. what DoF the user will most likely command in the specific

situation evident in the camera data 𝑋 = 𝑥 . This distribution shall
be the basis for selecting an optimal DoF-mapping 𝐷 and hence the
output of the CNN.

Accordingly, we assume 𝑃 (𝑉 |𝑋 = 𝑥) to exist and follow a multi-
variate normal distribution N𝑛 (`, Σ) with the mean vector ` ∈ R𝑛
and the symmetric, positive definite covariance matrix Σ ∈ R𝑛×𝑛 . 𝑌
contains parameters describing `, Σ and is therefore also a random
variable, depending on 𝑋 .

Treating the control commands in training sequences as samples
of 𝑉 , a feed-forward CNN is used to estimate 𝑌 given the camera
input 𝑋 . The link between 𝑌 describing the conditional distribution
of𝑉 and the particular𝑉 in the training sample is made by a specific
loss (see below), similar to a maximum likelihood loss. Wemoreover
define ` = (0, . . . , 0)𝑇 to represent a zero-motion when having the
respective zero-input from the user. The CNN therefore only needs
to calculate the covariance matrix Σ.

Knowing the distribution of user commands in a given situation
allows us to extract a representation of principal components and
use these as DoFs for our mapping. We can therefore calculate a
complete DoF-set �̂� by generating a matrix where each column
represents an eigenvector of Σ, sorted in descending order by their
respected eigenvalues. Thus, the mode generated by taking the
first𝑚 columns of �̂� as 𝐷 represents the smallest expected error
between the expected (intended) robot motion𝑉 and what the user
can command with the input device using 𝑢. This will be derived
in the following.

3.5 Mathematical Derivation of Optimal D
Our DoF-mapping𝐷 in (1) has fewer rows 𝑛 than columns𝑚, hence
not every 𝑣 can be obtained by an appropriate 𝑢. However,

𝑢 = 𝐷+𝑣, (2)

with 𝐷+ as the Moore-Penrose-inverse of 𝐷 gives the input 𝑢 that
produces a robot motion 𝐷𝑢 as close to 𝑣 as possible.

With this in mind, we want to obtain the best DoF-mapping
𝐷 ∈ R𝑛×𝑚 given that the intended user command𝑉 in this situation
is distributed as 𝑉 ∼ N𝑛 (0, Σ). We define best by the following
requirements:

∥𝐷𝑢∥2 ≤ ∥𝑢∥2 ∀𝑢 ∈ R𝑚 (3)

minimize E
(
∥𝑉 − 𝐷𝐷+𝑉 ∥22

)
(4)

among (4)-optimal 𝐷 minimize E
(
∥𝐷+𝑉 ∥22

)
(5)

Requirement (3) forbids too large amplification of the user input,
which would make the system hard to control. It also avoids an
infinite optimum for 𝐷 in (5). Requirement (4) expresses our pri-
mary goal, namely to minimize the expected difference between
the robot motion desired by the user𝑉 and the one 𝐷𝐷+𝑉 that can
be commanded via the input device. In general, there are several op-
timal solutions and among these, we prefer the one that minimizes
the command (5).

Note that (4) depends only on the subspace spanned by the
columns of 𝐷 (span𝐷), while (5) depends on 𝐷 itself.

𝐷 can be singular-value decomposed as𝐷 = 𝐴 diag(𝜎1, ..., 𝜎𝑚)𝐵𝑇 ,
𝐴 ∈ R𝑛×𝑚 , 𝐵 ∈ R𝑚×𝑚 , with orthonormal 𝐴 and 𝐵. Due to (3),
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𝜎𝑖 ≤ 1∀ 𝑖 , (5) can be rewritten in terms of the 𝜎𝑖 as

E
(
∥𝐷+𝑉 ∥22

)
= E

(
∥𝐵 diag(𝜎−11 , ..., 𝜎−1𝑚 )𝐴𝑇𝑉 ∥22

)
(6)

= E
(
∥ diag(𝜎−11 , ..., 𝜎−1𝑚 )𝐴𝑇𝑉 ∥22

)
(7)

= E ©«
𝑚∑︁
𝑗=1

(
𝜎−1𝑗 𝐴𝑇•𝑗𝑉

)2ª®¬ (8)

=

𝑚∑︁
𝑗=1

𝜎−2𝑗 E
((
𝐴𝑇•𝑗𝑉

)2)
(9)

Now 𝐷 can be replaced by 𝐷 ′ = 𝐴𝐵𝑇 (equivalently 𝜎 ′
𝑗
= 1) which

is orthonormal, still meets (3), has the same span as 𝐷 and hence
the same (4). It has at least as large singular values as 𝐷 and hence
an equal or smaller (9). Thus it improves (5).

In conclusion, we can restrict our search for the optimal (4) to
orthonormal 𝐷 , because among the solutions equally good in (4),
there is always an orthonormal one at least as good in (5).

We know, that𝐷𝐷+𝑉 is the closest approximation of𝑉 in span𝐷 .
Hence, 𝑉 − 𝐷𝐷+𝑉 is orthogonal to span𝐷 and 𝐷𝐷+𝑉 . It follows
by the Pythagorean theorem, that

∥𝑉 − 𝐷𝐷+𝑉 ∥22 = ∥𝑉 ∥22 − ∥𝐷𝐷+𝑉 ∥22 (10)

= ∥𝑉 ∥22 − ∥𝐷+𝑉 ∥22 = ∥𝑉 ∥22 − ∥𝐷𝑇𝑉 ∥22, (11)

where the last two equations are because 𝐷 is orthonormal. So (4)
is equivalent to

maximize𝐷 orthonormal E
(
∥𝐷𝑇𝑉 ∥22

)
= tr Cov(𝐷𝑇𝑉 ) (12)

= tr𝐷Σ𝐷𝑇 . (13)

This is a well studied problem in linear algebra and as [12, Corol-
lary 4.3.39] states, the maximum is obtained when 𝐷 is chosen as
orthonormal eigenvectors to the𝑚 largest eigenvalues.

This is the mathematical justification of our approach. It can
be readily generated by defining the eigenvectors of Σ sorted by
descending eigenvalues as a full DoF-set �̂� . First, 𝐷 consists of the
first𝑚 columns of �̂� . Should the desired robot motion not be (well)
covered by these DoFs, the user can switch to the next𝑚 columns.

3.6 Implementation
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Figure 4: Neural Network

The structure of our CNN is shown in Figure 4. The image-
shaped features are processed by Convolutional (Conv) layers with
Rectifying Linear Units (ReLU), Batch Normalisation (BN) and max
pooling such that fully connected layers can be applied on a flat

feature vector. As the final layer, a sample-based method estimates
the covariance matrix Σ, with

Σ̂ =
1
𝑘

𝑘∑︁
𝑖=1

(
𝑡𝑖

∥𝑡𝑖 ∥2

) (
𝑡𝑖

∥𝑡𝑖 ∥2

)𝑇
, (14)

Σ = Y 𝐼𝑛 + Σ̂, (15)
where Y > 0, 𝐼𝑛 is the n-dimensional identity matrix and 𝑡𝑖 ∈ R𝑛
are 𝑘 samples generated by the previous layer. Each sample is
normalised, such that

tr(Σ̂) =
𝑛∑︁
𝑖=1

_𝑖 = 1, (16)

with _𝑖 , 𝑖 = 1 . . . , 𝑛 being the eigenvalues of Σ̂. This method func-
tions as a novel output layer for neural networks, allowing to learn
conditioned covariance matrices, guaranteed to be positive definite
with defined trace.

We trained our neural network using the loss function 𝑙 (𝑣, Σ)
𝑙 (𝑣, Σ) = 𝑣𝑇 Σ−1𝑣 (17)

based on maximum log-likelihood loss, to learn a distribution such
that the probability of the robot motion 𝑣 ∈ R𝑛 is maximised. In
comparison to the standard maximum log likelihood loss, we have
omitted constant scaling factors and offsets, as well as the term
ln |Σ|. Conceptually, this term penalises the covariance matrix for
growing too large. As we limit this already by defining the trace of
the matrix and internal tests showed better training results without
this term, we chose to omit it.

4 SIMULATION ENVIRONMENT

ab

c1
c2d

Figure 5: Element overview of the simulation environment

A simple 2D simulation environment was created to develop,
test and evaluate the basic principles of adaptive DoF learning as a
proof of concept. Figure 5 shows a section of the environment that
includes all relevant features. To function as a minimal working
example, the user-controlled device is a robotic manipulator (a)
able to move forward and backward, sideways, rotate around its
center, and close the gripper (b). This sums to a 4-dimensional
setting, or 4 DoFs for the user to control. Two blue boxes (𝑐𝑖 ) need
to be grasped and moved towards the goal marker (d). The physics
between the robot, gripper and boxes are handled by a Box2D
JavaScript port3, while the goal marker is solely visual and has no
colliding component. At the start of an iteration, all components
are positioned randomly. Optionally, the simulation can be toggled,
3https://github.com/hecht-software/box2dweb

https://github.com/hecht-software/box2dweb
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such that the boxes have spikes on one side (cf. 𝑐2), effectively
adding an additional complexity to the scenario, as the gripper can
now only grasp the boxes from the side opposite the spike.

Within this environment five options exist to control the robot:
(1) standard control using 8 binary buttons on the keyboard (2

per DoF, one positive and one negative) to control the robot
along the cardinal DoFs, therefore allowing only a limited
set of directions,

(2) standard control using 4 binary buttons and automated mode
switching to cycle through all four cardinal DoFs,

(3) standard control using a joystick with multiple continuous
inputs, thus fulfilling the requirement of a high-DoF input
device in section 3,

(4) adaptive control using up to 4 binary buttons on the keyboard
to steer the robot along up to twoDoFs of the neural network-
generated DoF-set, and

(5) adaptive control using a joystick with continuous input val-
ues based on the same DoF-set as 4.

Option 3 was used for data generation and options 2 and 4 for
evaluation. Options 1 and 5 are used for testing and future work
respectively.

A mode switching setup is used after five seconds without user
input. The currently active DoFs are represented by colored arrows,
showing the future state of the robot when following the respective
DoF. Figure 2 shows an example situation, with the standard control
shown on the left and the adaptive control on the right. When
using adaptive control, a server evaluates the current state of the
environment and generates the DoF-mapping matrix 𝐷 for the
simulation.

The simulation is implemented in JavaScript, therefore allowing
quick and easy website deployment for user studies and evalua-
tions. A variety of settings are customisable within a user inter-
face and allow different deployment strategies for the changing
DoFs, thus enabling us to evaluate how much DoF-variety, and
therein complexity, users can handle. Internal tests showed the best
results when not altering the DoF-set while the user enters any
non-zero input and normalising the individual DoFs such that the
largest component is always positive. While this prevents the neu-
ral network from constantly adjusting the DoFs to create smoother
movements, it makes the motion more predictable for the user. The
simulation can generate DoF-mappings either using rendered im-
ages for CNN-approaches or as an optional alternative using a slim
eight-dimensional status vector.

5 USER STUDY
To evaluate the concept of adaptive DoF control, we ran an initial
user study based on the 2D simulation system described above.
The aim was to compare the standard control (i.e. a static identity
matrix-shaped DoF-set) to our adaptive control.

Following the low-DoF HCIs of assistive systems, control option
2 was used for standard control and option 4 for adaptive control.
The user input is therefore limited to four binary keyboard buttons
to control two DoFs of the robot and having an automated mode
switch after every five seconds without user input. The adaptive
DoFs are redefined by the network whenever there is no user input,
whereas the standard control is based on the cardinal DoFs.

The users were tasked with completing the scenario twelve times:
Use the robot to grasp one box after the other and deliver each
of them individually to the goal. After every three attempts, the
control method switched between standard and adaptive control.
After six attempts, spikes were activated for the boxes. To avoid
preferences due to training effects, the initial control method was
chosen randomly. Before the experiments, each user was shown an
introductory video explaining the interface and control methods.
During the experiment, the users were kept informed about the
currently selected control method. Finally, each user was asked to
anonymously evaluate their experience using a questionnaire.

To evaluate the impact of training, a small subset of users were
given additional training of roughly ten minutes after their partic-
ipation in the above-mentioned experiments. After this training,
they repeated the adaptive sections of the experiment and gave
their evaluation in a similar questionnaire.

5.1 Training
For the adaptive control we trained CNNs for both the scenario
with and without spikes based on individual training sets, where
the former dataset had spikes activated during data generation. In
order to allow complete freedom of motion, the training data for
both sets were generated with control option 3. For each training
sequence, the simulation started with a random configuration and
the users were tasked with grasping the boxes (on the non-spiked
side if applicable) and delivering them to the target.

The dataset used for the scenario without spikes was generated
by two people and consists of 392 sequences with a total of 29927
datapoints. The network converged in seven epochs.

The dataset used for the scenario with spikes was generated by
three people and consists of 488 sequences with a total of 28075
datapoints. The network converged in eight epochs.

5.2 Results
The group of participants consisted of 23 people with a 8/13/1/1
gender split (female/male/diverse/no answer) with ages from 20
to 34 (25.96 ± 3.30). Of those, 2 male and 2 female, ages from 22
to 26, participated in the extended study after training. Regarding
their previous experience with keyboard-based controls, the users
responded between 1 and 10 (7.04 ± 3.10) on a scale from 1 (never
used before) to 10 (usage on a daily basis).

0 1 2 3 4
Control is fast

Control is easy

agreement from 0 (not at all) to 4 (completely)

Figure 6: User evaluation of standard (white) and adaptive
(grey) control

The users evaluated the speed and ease of both control methods
in each scenario (square boxes and boxes with spikes) on a 5 point
Likert scale. Figure 6 shows the results in a bar chart with the bar
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width representing the mean value and error bars showing the
standard deviation.

We evaluated two hypotheses, 𝐻1: adaptive control is subjectively
faster than standard control, and 𝐻2: standard control is perceived
easier than adaptive control using dependant two-sampled one-sided
t-tests. We were able to reject the null-hypotheses for both 𝐻1 and
𝐻2 and show the differences to be significant (cf. table 1).

On a scale from one to five, the users gave the standard control a
rating of 3.17± 0.65 and the adaptive control 3.09± 1.00. Evaluating
the suitability of the presented controls in more complex scenarios
on a scale from one to ten, the users gave (4.87 ± 1.79) points for
the standard control and 5.83 ± 1.99 for the adaptive control.

0 50 100 150 200
Standard Control

Adaptive Control

time in s

Figure 7: Sequence execution times

Figure 7 shows the distribution of sequence execution times
using either standard or adaptive control. While the times vary
strongly, it can be observed that the fastest sequences were always
performed with the adaptive control, whereas the slowest used
standard control. We evaluated hypothesis 𝐻3: adaptive control is
faster than standard control with a dependant two-sampled one-
sided t-test and were able to reject the null-hypothesis and conclude
the results to be significant (cf. table 1). This supports the subjective
user responses regarding speed and shows that they were able
to successfully utilise the subjectively more complex control to
achieve lower execution times.

Table 1: T-test results

𝑀𝐷 𝑆𝐷𝐷 t df p
𝐻1 -1.07 1.46 -3.51 44 < 0.001
𝐻2 1.70 0.86 9.43 44 < 0.001
𝐻3 21.32 49.96 5.01 274 < 0.001

After additional training, the subset of users performing adaptive
control a second time rated the adaptive control faster and easier
than before training, while still not rating quite as easy as the
standard control. The measured average execution times of the
adaptive control sequences after training are lower than before,
thus supporting their claim.

5.3 Limitations
The data obtained by this study has been generated entirely online
andwithout any supervision.While this assures real anonymity and
avoids personal bias, it cannot be assured that all users completely
understood the control methods and the task itself. The partici-
pants of the study included a good gender diversity and variety of
experience, but only a small age range.

In an optional comment field, some users expressed their desire
for a more extensive training and the corresponding expectation
that this would greatly benefit the adaptive approach. For the stan-
dard control, they also listed the mode switching delay as too long,
with some requesting an additional button for switching. Users also
complained about not using different subsets of cardinal DoFs (i.e.
different definitions of modes). For the adaptive control, there were
some complaints about too quick DoF changes, as well as occasional
situations where the first and second DoF swapped among each
other, therefore missing an opportunity to learn a button-to-action
mapping for the user.

In addition to the data presented, five participants generated
data, that was deemed flawed and omitted: One person left the
simulation idle for several minutes, thus rendering the timings
useless; three people seemingly did not follow the instructions by
never actually grasping the boxes, and the data of one person was
not transmitted completely.

6 CONCLUSION
In this work, we provided proof-of-concept of a novel method for
shared control of an assistive robot and evaluated the idea within a
2D simulation environment. For this, we defined a new standardised
representation of control modes and introduced a CNN structure
to adaptively generate DoF-mappings based on camera data of the
current situation and trained it using a specific output layer for
conditioned covariance matrices.

The presented application is a simplified proof of concept with a
larger scenario as perspective. Even though we expect the largest
impact of adaptive DoF-learning in the more complex scenario, the
results of our user study show a significant decrease in execution
times even in the simple environment. We therefore conclude that
adaptive DoF-mapping has the potential to provide a novel interface
to assistive robot control and significantly lower task execution
times. However, a big challenge for the robot arm application will
be communicating the DoFs to the user.

6.1 Future Work
As this work is only a proof of concept in a low-DoF environment,
the next steps will be integrating the CNN and concept of control
in a more complex 3D environment. It will also be necessary to
evaluate the control on more specific tasks of daily living, instead
of simple 2D box manipulation.

By addressing more complex environments, an even more flex-
ible interface is necessary. We will therefore evaluate the use of
a joystick as an input device for our adaptive control. This will
allow users to apply continuous commands, rather than binary
button-outputs, to control the robot in the defined modes. This
would enable the user to not only control directions of movement,
but also control robot velocities.
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